肾小管上皮细胞损伤后的适应性修复异常及其机制的研究进展

2023-06-25 20:43:14郑博文刘华亭陈晨侯彦婕范晓阳刘光珍
中国医学创新 2023年10期

郑博文 刘华亭 陈晨 侯彦婕 范晓阳 刘光珍

【摘要】 肾小管上皮细胞是肾单位重要的组成结构之一,对维持肾脏正常生理功能具有重要作用。近年研究提示,近端小管严重损伤或多次损伤将导致不可逆的结构破坏和功能丢失,引起间质小管炎症和纤维化、肾小球硬化,以及毛细血管稀疏等慢性化表现。当肾小管上皮细胞损伤后,会发生适应性修复异常,具体机制包括细胞衰老、代谢紊乱和部分上皮细胞-间充质转化等,这将导致肾脏纤维化的发生发展。在大多数存活的患者中,尤其是在轻度损伤的情况下,可以观察到肾小管的再生和成功的肾修复。在适应性修复中,存活的肾小管上皮细胞经历去分化和增殖,以恢复功能。然而在严重、重复性损伤或肾脏老化的情况下,肾小管上皮细胞可能会出现适应性修复异常的情况,这会导致进行性肾脏纤维化。本文就近年来肾小管上皮细胞损伤后的适应性修复异常及其机制的研究进展做如下综述。

【关键词】 肾小管上皮细胞 适应性修复异常 损伤机制

Advances in Adaptive Repair Abnormalities and Mechanisms of Renal Tubular Epithelial Cells Damage/ZHENG Bowen, LIU Huating, CHEN Chen, HOU Yanjie, FAN Xiaoyang, LIU Guangzhen. //Medical Innovation of China, 2023, 20(10): -173

[Abstract] Renal tubular epithelial cells are one of the important structural components of nephrons and play an important role in maintaining the normal physiological function of the kidney. Recent studies have suggested that severe damage or multiple damage to the proximal tubules will lead to irreversible structural destruction and functional loss, causing interstitial tubulitis and fibrosis, glomeruloscerosis, and capillary rarefaction and other chronic manifestations. When the renal tubular epithelial cells are damaged, adaptive repair abnormalities will occur, with specific mechanisms including cell senescence, metabolic disorders and partial epithelial-mesenchymal transition, which will lead to the development of renal fibrosis. Tubular regeneration and successful renal repair can be observed in most surviving patients, especially in the setting of mild damage. In adaptive repair, surviving renal tubular epithelial cells undergo dedifferentiation and proliferation to restore function. However, in the cases of severe, repeated damage or renal aging, renal tubular epithelial cells may exhibit adaptive repair abnormalities that lead to progressive renal fibrosis. In this paper, the research progress of adaptive repair abnormalities and its mechanism after renal tubular epithelial cells damage in recent years is reviewed as follows.

[Key words] Renal tubular epithelial cells Adaptive Repair Abnormalities Damage mechanism

First-author's address: Shanxi Academy of Traditional Chinese Medicine, Taiyuan 030012, China

doi:10.3969/j.issn.1674-4985.2023.10.040

通常腎小管上皮细胞具有强大的自我更新能力,当损伤因素去除后可以快速修复。然而当损伤因素持续存在,肾小管上皮细胞修复不良,会出现细胞衰老、代谢紊乱和部分上皮细胞-间充质转化(epithelial-mesenchymal transition,EMT),将导致肾脏炎症和纤维化的发生发展。

1 衰老

适应性修复异常的肾小管上皮细胞会有细胞衰老的表现[1-2]。细胞衰老是指与细胞周期阻滞和促炎症“衰老相关分泌表型”(senescence associated secretory phenotype,SASP)相关的明确程序[3]。这两种变化是连接肾小管上皮细胞衰老和肾脏纤维化的桥梁。

1.1 SASP 尽管衰老细胞在细胞周期中处于停滞状态,但由于其天生具有创造促炎症环境和分泌促纤维化分子(SASP的成分)的能力,衰老细胞在代谢上仍然非常活跃,可转化为纤维化细胞[4]。SASP分泌组依赖于多种促炎细胞因子、促纤维化因子、趋化因子、生长因子和基质降解因子的产生[5-6]。肾小管上皮细胞中SASP的激活导致成纤维细胞和血管周围周细胞的激活和增殖,进而诱导细胞外基质生成和小管间质炎症[1,7]。除了SASP的常见成分外,衰老细胞产生的线粒体活性氧水平上升,还可释放线粒体DNA,进一步促进模式识别受体(pattern recognition receptor,PRR)的激活[8-9]。Notch信号通路被认为是激活衰老分子(p21、p16Ink4a)的信号途径,促进肾小管上皮细胞增殖及间质纤维化[10]。Wnt蛋白(如Wnt9A)持续激活肾小管上皮细胞可诱导肾小管衰老,其特征是p16、p19、p53和p21的表达增加[11]。先天性免疫系统也会促进肾小管上皮细胞的衰老,急性肾损害(acute kidney injury,AKI)通过Toll样受体(toll-like receptors,TLR)导致先天性免疫细胞浸润,白细胞介素-1受体(interleukin-1 receptor,IL-1R)信号促进肾小管上皮细胞的衰老[12]。总的来说,以上途径放大了炎症、线粒体功能障碍和衰老的恶性循环,最终导致肾小管修复失调而促进肾脏纤维化。

1.2 细胞周期阻滞 研究发现,肾小管上皮细胞的细胞周期阻滞是推动肾脏纤维化的重要因素。并且细胞周期阻滞是细胞衰老最重要的特征之一,是肾小管上皮细胞修复失调的结果。细胞开始分裂修复,必须按照细胞周期程序进入和退出每一期。如果细胞退出某一期或停滞在某一期太久或太短,正常的修复和恢复过程将出现紊乱。受到损伤后,肾小管上皮细胞进入细胞周期,再生并替换损伤过程中会丢失细胞,而一些细胞被阻滞在G1或G2期进行DNA修复[13]。停滞的肾小管上皮细胞也无法再生以取代丢失的细胞,为成纤维细胞的增殖和细胞外基质(extracellular matrix,ECM)的沉积留下空间。在AKI的毒性和阻塞性模型中,肾小管上皮细胞细胞周期阻滞与纤维化结局之间有因果关系[14]。G2/M期肾小管上皮细胞可以激活JNK信号诱导促纤维化细胞因子(TGF-β1和CTGF)等促纤维化因子的产生,从而刺激成纤维细胞增殖和细胞外基质的堆积,导致细胞外基质产生和肾脏纤维化。Liu等[15]在单侧输尿管梗阻(unilateral uretera obstruction,UUO)模型中也发现,损伤肾小管上皮细胞中低氧诱导因子1α(hypoxia-inducible factor 1α,HIF-1α)活化上调p53表达,通过抑制细胞周期蛋白依赖性激酶1和细胞周期蛋白B1、D1,诱导G2/M期阻滞,促进肾脏纤维化。C反应蛋白(C reactive protein,CRP)诱导的细胞周期G1/S阻滞也可通过Smad3-p21/p27机制导致进行性肾小管间质纤维化(tubulointerstitial fibrosis,TIF)[16-17]。缺氧也可以导致G2/M期阻滞[1]。刘水英等[18]进一步证实了近端肾小管上皮细胞在G2/M期成为西罗莫司自噬空间偶联区(tor-autophagy spatial coupling compartments,TASCCs)的靶点,从而促进了类似于衰老相关分泌表型的促纤维化分泌。细胞周期蛋白G1可促进肾小管上皮细胞中G2/M期阻滞和TASCCs的形成,从而促进慢性肾脏病(chronic kidney disease,CKD)小鼠的肾脏纤维化进展速度。所有这些变化都会导致肾小管间质纤维化,加重肾功能丧失。

2 代谢紊乱

适应性修复异常的肾小管上皮细胞会代谢紊乱,包括代谢重编程、活性氧(reactive oxygen species,ROS)和内质网应激,最终导致肾脏纤维化。

2.1 代谢重编程 肾小管上皮细胞是最需要能量的细胞,主要依靠线粒体中的脂肪酸β-氧化(fatty acid β-oxidation,FAO)提供三磷酸腺苷(adenosinetriphosphate,ATP)。当肾小管上皮细胞受到刺激时,如短暂缺氧或药物毒性,FAO将关闭一段时间,直到损伤结束[19-20]。肾小管上皮细胞若长期无法恢复正常能量代谢便会影响AKI的转归,导致肾脏纤维化[21]。FAO的损伤归因于过氧化物酶体增殖物激活受体α(PPARα)、肉毒碱棕榈酰转移酶1(CPT1)活性的下调[22]和miR-218-10的过度表达[23]。最近的研究表明,AKI期间存活的肾小管上皮细胞可以通过增加糖酵解来缓解FAO缺陷的情况[23-25]。代谢重编程(朝向糖酵解)可以快速生成ATP,并涉及丙酮酸激酶M2(PKM2),但会加重肾小管损伤和纤维化[23,25]。由于FAO关闭,肾小管上皮细胞中游离脂肪酸的利用率降低会促进肾脏中的脂质积累和纤维化,肾小管上皮细胞出现一定程度的脂质积累,会导致细胞功能障碍及坏死,称为脂毒性[26-29]。这些发现表明,脂毒性可以激活炎症反应和促进纤维化。在线粒體内,辅酶烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)是FAO的限速催化剂[30-31]。肾小管上皮细胞的NAD+水平受到抑制,NAD+降低,阻碍FAO,减少ATP生成[32]。Kang等[22]研究小组表明,FAO的显著抑制是由TGF-β信号传导诱导的。肾小管上皮细胞中FAO缺乏和脂质积聚可相互促进,形成恶性循环,最终加重肾损伤和肾脏纤维化[22,33-34]。

2.2 ROS 肾小管上皮细胞中线粒体的NLRP3炎症小体通过产生ROS促进肾小管萎缩和纤维化,ROS在CKD发病过程中以非依赖炎症体的方式增强了TGF-β/Smad信号通路[35-36]。NLRP3炎症小体还通过与UUO模型中肾小管上皮细胞中的线粒体抗病毒信号蛋白结合,参与线粒体ROS的产生和损伤[37]。并且高水平白蛋白结合的长链饱和FAs通过激活促炎症途径,包括肿瘤坏死因子α(TNF-α)、C-C基序趋化因子配体2(CCL2)和IL-6,来促进肾小管损伤和间质纤维化的进展,也会增加ROS应激的产生[38-39]。此外,在高糖诱导的肾小管上皮细胞中,CD36的过度表达促进了NLRP3炎症小体的激活和IL-1β的分泌,从而抑制线粒体FAO并刺激线粒体ROS的产生[40]。高级氧化蛋白产物(AOPP)的积累导致线粒体损伤和氧化应激[41]。最近的一项研究表明,这一过程可能由mROS-TXNIP-NLRP3路径介导[42]。ROS还可以增加其他几种促炎症和促纤维化因子的表达,包括单核细胞趋化蛋白-1(MCP-1)、纤溶酶原激活物抑制剂和转化生长因子β1(TGF-β1),以上途径产生ROS促进肾小管上皮细胞纤维化[43]。

2.3 内质网应激 内质网生理功能紊乱可破坏内质网蛋白及钙离子稳态,诱发内质网应激。内质网应激表现为未折叠蛋白反应(unfolded protein response,UPR),这是一种帮助细胞存活的内在适应性过程。然而,UPR的持续激活可能最终导致细胞凋亡[44]。这一过程通过激活caspase-9/caspase-3级联,由内质网特异性caspase-12介导[45]。最近的一项研究也揭示了一种新型内质网相关蛋白网状蛋白1A的促纤维化作用。网状蛋白1A与延长内质网应激和肾小管上皮细胞凋亡有关[46]。4-苯基丁酸钠可以在体内模拟内质网伴侣的作用,并大大减少內质网应激引起的肾小管上皮细胞凋亡和肾脏纤维化[47]。

3 部分上皮间质转化

EMT是使极性上皮细胞呈现出间充质表型的过程,包括迁移能力增强、侵袭性增强、抗凋亡能力增强和ECM产生的成分增加[48]。如上所述,肾小管上皮细胞在损伤后经历去分化和再生以产生新的管状细胞。同时,它们产生各种因子,将炎症细胞吸引到肾小管间质部位,进一步改变小管间质微环境,迫使肾小管上皮细胞转向间充质表型,以适应这些变化并避免凋亡[49-50]。EMT也可以说是一种表型转化程序,其特征为上皮标记物(如E-钙黏蛋白、闭锁小带蛋白-1和细胞角蛋白)丢失和间质特征(包括波形蛋白、平滑肌肌动蛋白、成纤维细胞特异性蛋白-1、间质基质成分Ⅰ型胶原和纤连蛋白)表达。肾小管上皮细胞中Snail或Twist转录调节因子的条件性缺失足以抑制EMT。肾小管上皮细胞在肾脏纤维化过程中发生的是不完全EMT,也就是说EMT不是一个“全有或全无”的过程,而是一系列变化[13,49,51],即细胞同时表达上皮和间充质细胞的标志物,并呈现动态变化的过程[52-55]。

据报道,G2/M期阻滞与EMT相关,TGF-β1能够通过细胞周期抑制剂因子p21诱导肾脏纤维化过程中肾小管上皮细胞的G2/M期阻滞和EMT[55-57]。EMT和细胞衰老(表现为G2/M期阻滞)实际上有很多共同点。两者都发生在持续性损伤和修复异常后;两者都经历去分化过程,促炎和促纤维化细胞因子的分泌加剧了肾脏纤维化。此外,它们甚至可能是同一过程中不可分割的两个方面,EMT强调表型变化,衰老强调细胞周期变化。例如,在多种AKI模型中,肾小管上皮细胞被阻滞在细胞周期的G2/M期,并获得促纤维化表型,而活化的肌成纤维细胞也可以对肾小管上皮细胞产生促纤维化作用。ECM的累积导致基质硬度增加和间质中的其他生物力学变化,进而导致TGF-β1表达和EMT水平增加[58]。新发现表明,脂肪酸氧化失调后肾小管上皮细胞内脂质积聚,也可促进EMT导致肾小管间质纤维化[22]。部分EMT可以诱导肾小管功能损伤,触发细胞周期停滞和促进关键纤维化细胞因子的释放,其过程所涉及的信号通路很复杂,包括TGF-β1/Smad通路、ILK通路、Wnt/β连环蛋白通路、p38 MAPK通路、Shh信号通路等[59-61]。

4 小结

总之,在这篇综述中,肾小管上皮细胞受到损伤后会发生适应性修复异常的情况,具体机制包括细胞衰老、代谢紊乱与部分EMT等。保护肾小管上皮细胞并促进肾小管上皮细胞修复可能是防治肾脏纤维化的重要策略。维持正常肾小管功能免遭疾病重复的破坏,恢复健康的正常肾小管分泌功能很可能将是CKD患者治疗中的一项首要任务。

参考文献

[1] ANDRADE L,RODRIGUES C E,GOMES S A,et al.Acute kidney injury as a condition of renal senescence[J].Cell Transplant,2018,27(5):739-753.

[2] QI R,YANG C.Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury[J].Cell Death Dis,2018,9(11):1126.

[3] KIM S,JIANG K,FERGUSON C,et al.Transplanted senescent renal scattered tubular-like cells induce injury in the mouse kidney[J].American Journal of Physiology,2020,318(5):F1167-F1176.

[4] WILEY C D,VELARDE M C,LECOT P,et al.Mitochondrial dysfunction induces senescence with a distinct secretory phenotype[J].Cell Metab,2016,23(2):303-314.

[5] BONVENTRE J V.Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis[J].Kidney Int Suppl,2014,4(1):39-44.

[6] FERENBACH D A,BONVENTRE J V.Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD[J].Nat Rev Nephrol,2015,11(5):264-276.

[7] KIM M G,YANG J,KO Y S,et al.Impact of aging on transition of acute kidney injury to chronic kidney disease[J].Sci Rep,2019,9(1):18445.

[8] CHAPMAN J,FIELDER E,PASSOS J F.Mitochondrial dysfunction and cell senescence: deciphering a complex relationship[J].FEBS Lett,2019,593(13):1566-1579.

[9] MAEKAWA H,INOUE T,OUCHI H,et al.Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury[J].Cell Rep,2019,29(5):1261-1273.

[10] SORENSEN-ZENDER I,RONG S,SUSNIK N,et al.Renal tubular notch signaling triggers a prosenescent state after acute kidney injury[J]. Am J Physiol Renal Physiol,2014,306(8):F907-F915.

[11] LUO C,ZHOU S,ZHOU Z,et al.Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells[J].J Am Soc Nephrol,2018,29(4):1238-1256.

[12] JIN H,ZHANG Y,DING Q,et al.Epithelial innate immunity mediates tubular cell senescence after kidney injury[J/OL].JCI Insight,2019,4(2):e125490.https://pubmed.ncbi.nlm.nih.gov/30674725/.

[13] GEWIN L S.Renal fibrosis: primacy of the proximal tubule[J].Matrix Biol,2018(68-69):248-262.

[14] YANG L,BESSCHETNOVA T Y,BROOKS C R,et al.

Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury[J].Nat Med,2010,16(5):535-543.

[15] LIU L,ZHANG P,BAI M,et al.p53 upregulated by HIF-1α promotes hypoxia-induced G2/M arrest and renal fibrosis in vitro and in vivo[J].J Mol Cell Biol,2019,11(5):371-382.

[16] TANG J,LIU N,TOLBERT E,et al.Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury[J].Am J Pathol,2013,183(1):160-172.

[17]丁照瑩,汤涛涛,刘必成.肾小管上皮细胞损伤在急性肾损伤向慢性肾脏病转变中的作用研究进展[J].中华医学杂志,2021,101(6):442-446.

[18]刘水英,尹建永,张芳菲,等.G2/M细胞周期阻滞在急性肾损伤向慢性肾脏病转变中的作用研究进展[J].临床肾脏病杂志,2020,20(10):834-837.

[19] LI M,LI C M,YE Z C,et al.Sirt3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice[J].J Cell Mol Med,2020,24(9):5109-5121.

[20] BATAILLE A,GALICHON P,CHELGHOUM N,et al.

Increased fatty acid oxidation in differentiated proximal tubular cells surviving a reversible episode of acute kidney injury[J].Cell Physiol Biochem,2018,47(4):1338-1351.

[21]汪知玉,张文.脂肪酸氧化在缺血再灌注急性肾损伤发病及转归中的作用[J].中华肾脏病杂志,2019(10):784-789.

[22] KANG H M,AHN S H,CHOI P,et al.Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development[J].Nat Med,2015,21(1):37-46.

[23] LAN R,GENG H,SINGHA P K,et al.Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI[J].J Am Soc Nephrol,2016,27(11):3356-3367.

[24] SCHOLZ H,BOIVIN F J,SCHMIDT-OTT K M,et al.Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection[J].Nat Rev Nephrol,2021,17(5):335-349.

[25] LI M,JIA F,ZHOU H,et al.Elevated aerobic glycolysis in renal tubular epithelial cells influences the proliferation and differentiation of podocytes and promotes renal interstitial fibrosis[J].Eur Rev Med Pharmacol Sci,2018,22(16):5082-5090.

[26] JANG H S,NOH M R,KIM J,et al.Defective mitochondrial fatty acid oxidation and lipotoxicity in kidney diseases[J].Front Med (Lausanne),2020,12(7):65.

[27] ERPICUM P,ROWART P,DEFRAIGNE J O,et al.What we need to know about lipid-associated injury in case of renal ischemia-reperfusion[J].Am J Physiol Renal Physiol,2018,315(6):F1714-F1719.

[28] SOUMURA M,KUME S,ISSHIKI K,et al.Oleate and eicosapentaenoic acid attenuate palmitate-induced inflammation and apoptosis in renal proximal tubular cell[J].Biochem Biophys Res Commun,2010,402(2):265-271.

[29] KATSOULIERIS E,MABLEY J G,SAMAI M,et al.Lipotoxicity in renal proximal tubular cells: relationship between endoplasmic reticulum stress and oxidative stress pathways[J].Free Radic Biol Med,2010,48(12):1654-1662.

[30] SZETO H H.Pharmacologic approaches to improve mitochondrial function in AKI and CKD[J].J Am Soc Nephrol,2017,28(10):2856-2865.

[31] ZHENG J,DEVALARAJA-NARASHIMHA K,SINGARAVELU K,et al. Poly (ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury[J].Am J Physiol Renal Physiol,2005,288(2):F387-F398.

[32] TRAN M T,ZSENGELLER Z K,BERG A H,et al.PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection[J].Nature,2016,531(7595):528-532.

[33] JANG H S,NOH M R,JUNG E M,et al.Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury[J].Kidney Int,2020,97(2):327-339.

[34] WEINBERG J M.Lipotoxicity[J].Kidney Int,2006,70(9):1560-1566.

[35] LORENZ G, DARISIPUDI M N,ANDERS H J.Canonical and non-canonical effects of the NLRP3 inflammasome in kidney inflammation and fibrosis[J].Nephrol Dial Transplant,2014,29(1):41-48.

[36] BRACEY N A,GERSHKOVICH B,CHUN J,et al.Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome[J].J Biol Chem,2014,289(28):19571-19584.

[37] KIM S M,KIM Y G,KIM D J,et al.Inflammasome-independent role of NLRP3 mediates mitochondrial regulation in renal injury[J].Front Immunol,2018,12(9):2563.

[38] KENNEDY D J,CHEN Y,HUANG W,et al.CD36 and Na/K-ATPase-α1 form a proinflammatory signaling loop in kidney[J].Hypertension,2013,61(1):216-224.

[39] GAO X,WU J,QIAN Y,et al.Oxidized high-density lipoprotein impairs the function of human renal proximal tubule epithelial cells through CD36[J].Int J Mol Med,2014,34(2):564-572.

[40] HOU Y,WANG Q,HAN B,et al.CD36 promotes NLRP3 inflammasome activation via the mtROS pathway in renal tubular epithelial cells of diabetic kidneys[J].Cell Death Dis,2021,12(6):523.

[41] LI X,XU L,HOU X,et al.Advanced oxidation protein products aggravate tubulointerstitial fibrosis through protein kinase C-dependent mitochondrial injury in early diabetic nephropathy[J].Antioxid Redox Signal,2019,30(9):1162-1185.

[42] WEN Y,LIU Y R,TANG T T,et al.mROS-TXNIP axis activates NLRP3 inflammasome to mediate renal injury during ischemic AKI[J].Int J Biochem Cell Biol,2018,98:43-53.

[43] HIGGINS G C,COUGHLAN M T.Mitochondrial dysfunction and mitophagy: The beginning and end to diabetic nephropathy?[J].Br J Pharmacol,2014,171(8):1917-1942.

[44] FAN Y,LEE K,WANG N,et al.The role of endoplasmic reticulum stress in diabetic nephropathy[J].Curr Diab Rep,2017,17(3):17.

[45] XU Y,GUO M,JIANG W,et al.Endoplasmic reticulum stress and its effects on renal tubular cells apoptosis in ischemic acute kidney injury[J].Ren Fail,2016,38(5):831-837.

[46] HE L,FAN Y,XIAO W,et al.Febuxostat attenuates ER stress mediated kidney injury in a rat model of hyperuricemic nephropathy[J].Oncotarget,2017,8(67):111295-111308.

[47] LIU S H,YANG C C,CHAN D C,et al.Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro[J].Oncotarget,2016,7(16):22116-22127.

[48] KALLURI R,WEINBERG R A.The basics of epithelial-mesenchymal transition[J].J Clin Invest,2009,119(6):1420-1428.

[49] LIU B C,TANG T T,LV L L,et al.Renal tubule injury: a driving force toward chronic kidney disease[J].Kidney Int,2018,93(3):568-579.

[50] SCHELLING J R.Tubular atrophy in the pathogenesis of chronic kidney disease progression[J].Pediatr Nephrol,2016,31(5):693-706.

[51] LIU Y.Cellular and molecular mechanisms of renal fibrosis[J].Nat Rev Nephrol,2011,7(12):684-696.

[52] OVADYA Y,KRIZHANOVSKY V.A new Twist in kidney fibrosis[J].Nat Med,2015,21(9):975-987.

[53] ZHOU D,LIU Y.Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis[J].Nat Rev Nephrol,2016,12(2):68-70.

[54] GRANDE M T,S?NCHEZ-LAORDEN B,L?PEZ-BLAU C,et al.Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease[J].Nat Med,2015,21(9):989-997.

[55] LOVISA S,LEBLEU V S,TAMPE B,et al.Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis[J].Nat Med,2015,21(9):998-1009.

[56] WU C F,CHIANG W C,LAI C F,et al.Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis[J].Am J Pathol,2013,182(1):118-131.

[57] MEGYESI J,TARCSAFALVI A,LI S,et al.Increased expression of p21WAF1/CIP1 in kidney proximal tubules mediates fibrosis[J].Am J Physiol Renal Physiol,2015,308(2):F122-F130.

[58] O'CONNOR J W,GOMEZ E W.Biomechanics of TGFβ-induced epithelial-mesenchymal transition: implications for fibrosis and cancer[J].Clin Transl Med,2014,3:23.

[59] BAI Y,LU H,LIN C,et al.Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis[J].Int J Mol Med,2016,37(5):1317-1327.

[60] GONZALEZ D M,MEDICI D.Signaling mechanisms of the epithelial-mesenchymal transition[J/OL].Sci Signal,2014,7(344):e8.https://pubmed.ncbi.nlm.nih.gov/25249658/.

[61]王小麗.高糖诱导的肾小管上皮细胞向间充质转化与TGF-β1/p38MAPK通路的关系[D].大连:大连医科大学,2019.

(收稿日期:2022-10-19) (本文编辑:陈韵)