蓝春宝 徐森 程建新 陈双林 应益山 郭子武 汪忠华 杨丽婷 胡瑞财
摘 要: 苦竹(Pleioblastus amarus)是優质笋材兼用竹种,分布广。为探究界面区苦竹分株秆形及地上构件生物量分配格局的变化特征,解析苦竹对异质生境适应机制,该研究选取了相邻的苦竹林和苦竹-杉木(Cunninghamia lanceolata)混交林两种林分类型,分别测定了苦竹林和混交林中心区及界面区不同龄级立竹秆形和秆、枝、叶的生物量,分析立竹秆形及地上构件生物量积累、分配、异速生长关系的差异。结果表明:(1)界面区1 a立竹生物量积累及分配差异增大,其中苦竹林界面区各构件相对生物量和叶生物量分配比例提高,而混交林界面区各构件相对生物量和叶生物量分配比例降低;2 a立竹生物量积累及分配比例的差异缩小,界面区两边2 a立竹各构件相对生物量和生物量分配比例均无明显差异。(2)界面区立竹秆形特征及1 a立竹各构件生物量异速生长关系均无明显变化,而苦竹林界面区2 a立竹秆的增长速率提高,枝、叶的增长速率降低。综上认为,苦竹通过权衡资源分配关系,明显改变界面区立竹秆形及生物量分配格局,以提高克隆分株对异质环境的适合度。
关键词: 苦竹, 异质环境, 界面区, 秆形, 生物量, 异速生长
中图分类号: Q948 文献标识码: A 文章编号: 1000-3142(2023)05-0858-11
Abstract: Pleioblastus amarus, a bamboo species with wide distribution, can be utilized for its high quality shoot and timber. In order to explore the change characteristics of the culm form and the biomass distribution pattern of aboveground components in the interface area of P. amarus and to understand how the bamboo species adapt to heterogeneous habitats, pure stand of P. amarus, Cunninghamia lanceolata and mixed forest with P. amarus and C. lanceolata were selected to investigate culm form, culm, branch and leaf biomass of 1-2 year-old P. amarus in the central and boundary zone of the pure forest and mixed forests, and the differences culm shape and aboveground module biomass accumulation, allocation and allometric grouth relationship were analyzed. The results were as follows: (1) The differences of biomass accumulation and allocation of one-year old P. amarus in the interface area increased. Furthermore, the relative biomass of module and leaf biomass allocation under the interface area of P. amarus forest increased, while the relative biomass of module and leaf biomass allocation under the mixed forest interface decreased. However, the differences of biomass accumulation and allocation of two-year old bamboos decreased, and there was no significant difference on relative biomass of module and biomass allocation of two-year old bamboos on the two sides of the interface area. (2) Culm shape characteristics and the allometric growth relationship of module biomass of the one-year old bamboo changed slightly, while allometric growth rate of culm biomass of two-year old bamboo in the interface area of P. amarus stand increased, and those of the branches and leaves decreased. All the above results indicate that the culm shape and biomass allocation pattern of P. amarus obviously change under the interface area by balancing the relationship of resource allocation to enhance suitability and fitness to heterogeneous environment.
Key words: Pleioblastus amarus, heterogeneous environment, interface area, culm form, biomass, allometric growth
植物表型形态特征是植物与环境条件长期适应的结果,与植物的生存对策和对资源的获取及利用能力密切相关(Xu et al.,2009),而生物量是植物物质和能量积累的直接体现(兰洁等,2020),異质环境下植物形态特征及其生物量分配格局的变化能够反映植物为适应环境变化所采取的适应性调节策略。克隆植物是指在自然条件下能够通过营养繁殖自发产生多个在遗传上一致、形态和生理上独立或者潜在独立个体的一类植物(Li & Takahashi 2003; Xu et al., 2012),空间上植物生长所需要的各种环境资源多呈斑块状分布,而克隆植物则可通过克隆分株的可塑性调节适应异质性环境(Xu et al., 2010; 徐苏男等, 2018),克隆分株赋予克隆植物比非克隆植物具有更高的可塑性(解蕊等,2010)。姜星星等(2014)研究发现,异质光生境下大米草(Spartina anglica)遮阴分株的叶片数量和生物量较同质条件显著升高;而异质水分下薇甘菊(Mikania micrantha)通过克隆整合显著提高了低水斑块克隆分株生物量,但对整个克隆片段生物量无明显影响(李晓霞等,2017)。也有研究表明,香蒲(Typha orientalis)株高、分株数及生物量因养分异质性而显著增加,而菖蒲(Acorus calamus)、水葱(Schoenoplectus tabernaemontani)和花蔺(Butomus umbellatus)则无明显变化(Yu et al.,2020)。可见,克隆植物通过秆形和生物量可塑性调节提高自身的生境适应和资源利用能力且不同植物生境适应策略存在差异。因此,开展克隆植物形态及生物量分配格局的环境效应研究,对于明确植物在与环境交互作用中形成的生存适应策略具有重要意义。
苦竹(Pleioblastus amarus)隶属于禾本科大明竹属,是优良的笋材兼用竹种,广泛分布于长江流域各省及云南、贵州等地,其竹秆通直,竹节长、质轻,可制作工艺品和乐器;竹材纤维含量高,是理想的造纸原料。苦竹作为典型的克隆植物,其强烈的克隆整合功能使立竹能够高效地利用异质资源,从而增强对环境胁迫的抵抗能力(庄明浩等,2011;Guo et al.,2017),而立竹表型可塑性是竹子适应生境并实现资源最优化配置的重要特征,对提高竹子在生境中的竞争力和适合度有重要作用。目前,异质环境下竹子表型可塑性的研究主要集中在光照、水分、养分等单一环境下(Liu et al.,2004;宋利霞等,2007;江明艳等,2011),而竹子生长所必需的各类资源(光照、水分和矿质元素等)及环境因素(温度、湿度等)存在复杂的空间异质性;同时,由于竹鞭拓展能力较强,因此竹子具有强大的繁衍能力和扩张性,异质环境下可以通过克隆整合将水分、养分等资源传递给其他分株,从而向邻近群落不断扩张,打破了原有林分结构,形成混交林。目前,已开展较多混交林内杉木(Cunninghamia lanceolata)、阔叶林等的生长及物种多样性的研究(欧阳明等,2016;杨清培等,2017;陈珺等,2021),但对于混交林立竹表型可塑性的研究尚未有涉及,混交林下立竹秆形及生物量变异特征尚不明确。鉴于此,本研究选取了相邻的苦竹林和苦竹-杉木混交林两种林分类型,分析苦竹林和混交林中心区及界面区不同龄级立竹秆形和生物量积累、分配、异速生长关系的差异,拟探讨:(1)界面区克隆整合作用对苦竹秆形和地上生物量分配特征是否存在明显影响;(2)若存在明显影响,不同龄级苦竹适应策略是否存在明显差异。本研究旨在解析苦竹秆形及生物量对异质生境适应机制,为苦竹资源的开发利用及苦竹林科学经营提供理论参考。
1 材料与方法
1.1 试验地概况
试验地位于浙江省龙游县溪口林场(119°11′38″ E、28°51′45″ N)。该地区属于中亚热带季风气候,四季分明,年均降水量为1 621 mm,年均气温为17.3 ℃,极端高温和极端低温分别为41 ℃和-11.4 ℃,年均无霜期为261.5 d,年均相对湿度为80%,年均日照时数为1 769 h。土壤为山地黄壤,土层厚度在100 cm以上,pH值为6.5。试验地杉木林为1985年1年生杉木实生苗造林,造林密度为2 700~3 000 plant·hm-2,造林面积为4 hm2;2000年杉木林皆伐后形成萌条林,密度为2 250 plant·hm-2;苦竹为苦竹自然林,面积为10 hm2。近年来,由于杉木林和苦竹林长期处于自然封育状态,未进行垦复及其他人工经营干扰措施,因此苦竹逐渐向杉木林扩张而形成苦竹-杉木混交林。
1.2 试验方法
2021年10月,选取立地条件基本一致的连续的苦竹林和苦竹-杉木混交林两种林分类型。以苦竹林和苦竹-杉木混交林分界线为界面,在界面两侧分别沿苦竹林方向和混交林方向10 m和3 m处设置试验样地,即苦竹林中心区(central area of Pleioblastus amarus forest,AF)、苦竹林界面区(boundary zone of P. amarus forest,BA)、混交林界面区(boundary zone of mixed forest,BM)和混交林中心区(central area of mixed forest,MF)4种试验样地(图1)。分别在BA、BM样地边界区向两边设置2 m × 2 m的样方,在AF、MF样地边界区两边设置5 m × 5 m的样方,对样方内的苦竹或杉木进行每木检尺,记录杉木与苦竹的数量、胸径、树高等,并计算树种组成和密度(表1)。树种组成按照杉木和苦竹两树种胸高断面积的比值来确定。根据样地立竹数量、胸径分布确定样竹,在各样地中选择生长良好、无病虫害的1 a和2 a代表性样竹各10株,使样竹在各试验样地(AF、BA、BM、MF)内分布均匀(程建新等,2022)。将样竹齐地伐倒,逐株测量立竹胸径、枝下高、全高、节数和枝盘数,计算相对枝下高(立竹枝下高/立竹胸径)、相对全高(立竹全高/立竹胸径)和分枝率(枝盘数/节数),在立竹胸径处锯断用且游标卡尺测量最小直径和最大直径以及胸高处相互垂直的两个方向的直径和内腔直径,计算扁圆率(立竹胸高处最小直径/最大直径)和壁厚率[(立竹胸高处直径-内腔直径)/立竹胸高处直径]。分离秆、枝、叶分别称重,取秆、枝、叶的上、中、下部的混合样品,于烘箱中105 ℃杀青30 min,85 ℃烘至恒重,称干重,计算各构件生物量、出叶强度(叶生物量/枝生物量)和构件相对生物量(构件生物量/立竹胸径)。
1.3 数据分析
在Excel 2010软件中进行数据处理和图表制作,采用SPSS 23.0软件进行单因素(one-way ANOVA)方差分析和邓肯(Duncan)多重比较(α=0.05),分析各处理1 a和2 a苦竹秆形和地上构件生物量积累及分配的差异;采用R 4.0.3统计软件的Smart软件包对不同处理苦竹秆、枝、叶生物量进行标准主轴回归分析(standardized major axis,SMA),異速增长方程为y=axb,经对数转化后为lg y=lg a + b lg x,其中方程斜率b为异速生长指数,若|b|与1.00差异显著,表明x和y间呈异速生长关系,同时比较不同处理斜率之间的差异性,AF. 苦竹林中心区; BA. 苦竹林界面区; BM. 混交林界面区; MF. 混交林中心区。
若其无显著差异则计算共同斜率,并采用Wald 检验不同试验林类型中苦竹沿共同主轴位移差异的显著性。
2 结果与分析
2.1 苦竹秆形特征
由表2可知,BA、BM和MF试验林类型中2 a立竹胸径均显著低于1 a立竹,而立竹龄级对其他秆形指标均无明显影响。苦竹林至混交林方向,1 a立竹相对枝下高、1 a和2 a立竹相对全高、壁厚率均降低,AF中1 a立竹相对枝下高、1 a和2 a立竹相对全高、壁厚率均显著高于MF,而1 a和2 a立竹胸径和立竹分枝率总体上则相反,且界面区BA和BM中1 a和2 a立竹各秆形指标间均无明显差异。由此可见,虽然异质环境对苦竹立竹秆形可塑性有重要影响,但界面区两侧立竹秆形间无明显差异。
2.2 苦竹地上构件生物量积累
由表3可知,随着立竹龄级的增大,苦竹枝、叶的生物量和相对秆、枝、叶、总生物量均升高,但MF处理不同立竹龄级间秆相对生物量无明显差异;AF和BM中立竹的秆和总生物量均显著升高,而MF中立竹的秆生物量显著降低。苦竹林至混交林方向,1 a立竹各构件生物量和构件相对生物量均呈“N”型变化趋势, 且BA处理均显著高于BM处理;2 a立竹秆、枝、总生物量均呈“V”型变化趋势,BM中的显著低于MF处理,与BA处理间无明显差异,而2 a立竹叶生物量和相对叶生物量则相反,BA中的显著高于AF中的,与BM处理间无明显差异;2 a立竹相对秆、总生物量呈降低趋势,AF中的显著高于BM和MF中的,并且BA和BM处理间无明显差异。由此可见,界面区不同龄级立竹生物量对异质环境的响应存在明显差异,BA中1 a立竹各构件生物量显著升高,而BM中的显著降低;2 a立竹BA和BM中叶生物量均升高,而秆和总生物量均降低。
2.3 苦竹地上构件生物量分配特征
由表4可知,苦竹立竹出叶强度和枝、叶生物量分配比例随立竹龄级的增大均显著升高,而秆生物量分配比例则相反。苦竹林至混交林方向,1 a立竹出叶强度和叶生物量分配比例均呈“V”型变化趋势,BM中的显著低于其他试验林类型,立竹秆、枝生物量分配比例间无明显差异;2 a立竹出叶强度、叶生物量分配比例均呈倒“V”型变化趋势,BA和BM中的显著高于AF和MF,且前两者间无明显差异;2 a立竹秆生物量分配比例呈降低趋势,AF中的显著高于其他试验林类型,且后三者间无明显差异,而2 a立竹枝生物量分配比例则相反。由此可见,异质环境下界面区1 a立竹叶生物量分配比例及出叶强度降低,而2 a立竹枝、叶分配比例及出叶强度增加,秆分配比例降低。
2.4 苦竹地上构件生物量异速生长关系
由图2可知,1 a立竹秆、枝、叶-总生物量间均存在共同斜率,其中秆-总生物量斜率与1.00无明显差异,二者呈等速生长模式,而枝、叶-总生物量斜率与1.00均差异显著,呈异速生长模式(表5);Wald检验显示,枝、叶-总生物量的截距沿y轴均出现明显的负向移动,BM处理枝-总生物量差异性位移量最低,AF中的叶-总生物量差异性位移量最低,而秆-总生物量差异性位移量各处理间无明显差异。AF中的2 a立竹秆、枝、叶-总生物量和BA中的2 a立竹秆-总生物量斜率与1.00均差异显著,呈异速生长模式,而其他试验林类型中的2 a立竹秆、枝、叶-总生物量斜率与1.00均无明显差异,呈等速生长模式;苦竹纯林至混交林方向,2 a立竹秆-总生物量斜率呈倒“V”型变化趋势,BA处理显著高于AF、BM和MF,而2 a立竹枝、叶-总生物量则相反,BM与BA间无明显差异,均显著低于AF。由此可见,虽然异质环境对1 a立竹秆、枝、叶生物量增长速率无明显影响,但显著提高了苦竹林界面区2 a立竹秆的增长速率,降低了枝、叶的增长速率。
3 讨论
形态可塑性是植物适应异质生境的重要生态对策,是指在不同环境条件下,植物改变其基本形态结构的能力(Bergamini & Peintinger,2002;汤俊兵等,2010)。竹子是典型的克隆植物,在不同水分、养分和光照环境下,竹子通过形态可塑性变化,可以最大程度地获取资源,并进行资源的再分配(陶建平和钟章成,2000;陶建平和宋利霞,2006),从而提高竹子在生境中的竞争力和适合度。立竹胸径、高度可明显影响竹材产量,分枝率是立竹整体分枝能力,反映立竹对光资源的获取及利用,而壁厚率是衡量竹材力学特性的重要指标,对竹材利用率及篾性有重要的决定作用。本研究中,混交林中心区立竹胸径显著高于苦竹林中心区立竹,而界面区两侧立竹胸径间无明显差异,这与谭宏超等(2017)的研究毛竹(Phyllostachys edulis)-杉木混交下毛竹立竹胸径显著增大的结果相一致。董文渊等(2002)研究表明,立竹胸径与水分状况密切相关。苦竹纯林郁闭度低,其林下光照强度会明显高于混交林,而较强的光照会加快林地土壤水分散失,造成水资源相对匮乏(刘烁等,2011,黄慧敏等,2018)。竹-杉混交林因其林内光照强度低导致土壤水分散失较慢,同时又可提高林地土壤孔隙度,增强土壤保水性能(蔡秀梅,2013),进而促进立竹胸径增长。苦竹为中小型混生竹种,在竹-杉混交林中主要位于杉木林下,同时混交林立竹密度较低,苦竹生长空间较纯林更加充足,邻体干扰相应减轻,立竹分枝率的增加有利于叶片的排布以减少叶片间的遮挡,提高植株对光资源的获取与种间竞争的能力。混交林立竹相对全高、枝下高和壁厚率的降低则可能与立竹在满足自身基本体积生长后,将部分资源投入于枝的生长而导致其相对高度和秆壁厚的降低密切相关。这表明异质环境对苦竹立竹秆形特征有重要影响,界面区两侧立竹秆形特征无明显变异。
生物量分配格局是植物适应环境异质性的结果,同时反映出异质环境中植物协调投资/收益间的权衡关系(Wright et al.,2007;解蕊等,2010)。本研究中,从苦竹纯林到竹-杉混交林,苦竹1 a立竹各构件相对生物量均呈“N”型变化趋势,幼株抽枝展叶尚不完全,其生长主要依靠母竹资源与能量传输以及鞭根对土壤养分的吸收快速完成形态建成。竹-杉混交经营对土壤具有明显的培肥作用(漆良华等,2012;杜满义等,2013)。同时,由于苦竹根系分布及养分需求与杉木存在差异,因此苦竹的营养供应更充分,进而促进l a立竹各构件相对生物量的积累。而界面区两侧1 a立竹相对生物量差异的增加,一方面可能由于苦竹林界面区1 a立竹通过地下鞭系向混交林扩展提高养分吸收能力,导致界面区两侧l a立竹对资源的竞争加剧;另一方面可能由于克隆整合作用使处于资源匮乏生境的分株能够间接地从资源丰富生境的分株获取资源(王长爱等,2006;李晓霞等,2018)。混交林界面区立竹可能通过降低自身生物量的积累,向处于低养强光下相邻克隆单元传输资源以提高其对低养环境的适应,增强种群的繁殖能力,进而促进苦竹林界面区立竹相对生物量的积累(Wang et al.,2009;李晓霞等,2017)。本研究结果表明,随龄级的增加,立竹形态、生理功能发育完全,其生长所需营养也由母竹供应过渡到自给自足,并通过地下茎的生理整合功能将光合产物供应给无性系种群的更新生长。混交条件下立竹可用光资源降低,叶片光合能力减弱,进而导致立竹相对总生物量的降低,界面区立竹间的克隆整合作用降低了界面區两侧立竹相对生物量的差异,这与章超等(2020)认为2 a立竹呈现出明显的利他行为相一致;而混交条件下立竹相对秆生物量的降低则与胸径的增加密切相关。苦竹从纯林环境越过杉竹分界线侵入杉木林内而形成杉竹混交林复层结构,立竹光资源由全光照经界面区侧旁遮荫过渡到高郁闭度的杉木林下环境而降低,1 a立竹通过增大强光下叶投资比例提高对光资源的利用(高贵宾等,2017),苦竹林界面区一侧立竹出叶强度及叶分配比例的增加有助于立竹获取更多的碳,以满足自身生长需求以及通过分株间的克隆整合作用维持混交林界面区一侧立竹的生长。竹-杉混交林荫蔽环境下,2 a立竹光合构件-叶和支持构件-枝的生物量分配比例明显提高,这与解蕊(2009)的研究亚高山针叶林中,随林冠郁闭度的增加,缺苞箭竹(Fargesia denudata)分株枝、叶生物量等地上部分投资增大的结论相一致,说明荫蔽条件下,立竹通过提高光合构件的投资,以增强对光资源的获取能力(Liu et al.,2004),并且弱光环境不利于竹子的重量生长(涂绪中和李德文,2020),立竹会降低秆的生物量分配比例。
李鑫等(2019)研究表明,异速生长关系可以定量描述植物生长与资源分配间的关系,各性状间的异速生长关系常受到环境条件、人工经营干扰等的影响而非保持固定不变,但本研究中各试验林1 a立竹秆、枝、叶的异速生长均具共同斜率,说明混交生长对1 a立竹秆-枝-叶权衡关系总体影响较小。苦竹林界面区2 a立竹秆的增长速率显著提高,而枝、叶的增长速率显著降低,并且苦竹林界面区2 a立竹枝、叶-总生物量由异速生长关系转变为等速生长关系,这与2 a立竹对秆、枝、叶生物量分配比例的结论存在差异,其原因可能是由于立竹个体大小差异导致(王树梅等,2021)。综上表明,异质环境对苦竹立竹生物量分配格局有重要影响,并且界面区和中心区1 a、2 a立竹间资源分配策略存在明显差异,这种差异体现了苦竹通过对各构件生物量分配的权衡来充分获取及利用环境资源(李西良等,2014),从而确保竹林向有利于种群繁衍的方向进行。
4 结论
异质环境下,苦竹通过权衡资源分配关系,诱发其形态产生可塑性变化,减小界面区立竹秆形特征间的差异。界面区不同龄级立竹生物量分配格局对异质环境的响应规律存在明显差异,异质环境下界面区两侧1 a立竹生物量分配格局差异增加,促进全光照下立竹生物量的积累及叶生物量分配比例的提高,而2 a立竹生物量分配格局差异减小。因此,在苦竹混交林经营中,为提高混交林下立竹质量可以通过人为适度降低界面区林冠郁闭度来改变其光环境。
参考文献:
BERGAMINI A, PEINTINGER M, 2002. Effects of light and nitrogen on morphological plasticity of the moss Calliergonella cuspidata [J]. Oikos, 96(2): 355-363.
CAI XM, 2013. Effects of Phyllostachys pubescens and Chinese fir mixed forest on soil qualities in the central Fujian [J]. For Sci Technol, 38(4): 22-24. [蔡秀梅, 2013. 闽中竹杉混交林与毛竹纯林的土壤质量比较 [J]. 林业科技, 38(4): 22-24.]
CHEN J, ZHANG QX, GU J, et al., 2021. Initial effects of Phyllostachys edulis invasion on stand structure and species composition of Chinese fir forest [J]. J Fujian Agric For Univ (Nat Sci Ed), 50(4): 517-523. [陈珺, 张庆晓, 顾娇, 等, 2021. 毛竹入侵对杉木林生长和植被组成的初期影响 [J]. 福建农林大学学报(自然科学版), 50(4): 517-523.]
CHENG JX, HE YY, GUO ZW, et al., 2022.Variations in branching and leaf unfolding efficiencies of bamboo clonal ramets in the interface area of Pleioblastus amarus and Cunninghamia lanceolata mixed forest [J]. J Bam Res, 41(2): 24-33. [程建新, 何玉友, 郭子武, 等, 2022. 苦竹杉木混交林界面区竹子克隆分株抽枝展叶效率变化特征 [J]. 竹子学报, 41(2): 24-33.]
DU MY, FAN SH, LIU GL, et al., 2013. Effect of mixed operating in Moso bamboo (Phyllostachys edulis) forest on soil labile carbon pool and carbon management index [J]. J Nanjing For Univ (Nat Sci Ed), 37(5): 49-54. [杜满义, 范少辉, 刘广路, 等, 2013. 毛竹林混交经营对土壤活性有机碳库和碳库管理指数的影响 [J]. 南京林业大学学报(自然科学版), 37(5): 49-54.]
DONG WY, HUANG BL, XIE ZX, et al., 2002. The ecological strategy of clonal growth of Qiongzhuea tumidinoda under different levels of water resource supply [J]. J Nanjing For Univ (Nat Sci Ed), 26(6): 21-24. [董文渊, 黄宝龙, 谢泽轩, 等, 2002. 不同水分条件下筇竹无性系的生态适应性研究 [J]. 南京林业大学学报(自然科学版), 26(6): 21-24.]
GUO ZW, HU JJ, CHEN SL, et al., 2017. Nitrogen addition and clonal integration alleviate water stress of dependent ramets of Indocalamus decorus under heterogeneous soil water environment [J]. Sci Rep, 7(1): 44524.
GAO GB, ZHONG H, PAN YH, et al., 2017. Effects of ecological factors on biomass allocation of Indocalamus decorus pot seedlings [J]. J Nanjing For Univ (Nat Sci Ed), 41(5): 35-41. [高貴宾, 钟浩, 潘雁红, 等, 2017. 生态因子对美丽箬竹盆栽苗生物量分配的影响 [J]. 南京林业大学学报(自然科学版), 41(5): 35-41.]
HUANG HM, DONG R, QIAN F, et al., 2018. Response of clonal morphological plasticity of Fargesia decurvata to different forest canopy structures and light conditions [J]. Acta Ecol Sin, 38(19): 6835-6845. [黄慧敏, 董蓉, 钱凤, 等, 2018. 紫耳箭竹克隆形态可塑性对典型冠层结构及光环境的响应 [J]. 生态学报, 38(19): 6835-6845.]
JIANG XX, DONG BC, LUO FL, et al., 2014. Effects of light intensity contrast on clonal integration of Spartina anglica [J]. Chin J Appl Ecol, 25(10): 2826-2832. [姜星星, 董必成, 罗芳丽, 等, 2014. 光强对比度对大米草克隆整合作用的影响 [J]. 应用生态学报, 25(10): 2826-2832.]
JIANG MY, CHEN QB, LUO ZH, et al., 2011. Effects of soil fertility on the growth and chemical components in stalks of Neosincalamus affinis [J]. J Sichuan Agric Univ, 29(4): 482-487. [江明艳, 陈其兵, 罗正华, 等, 2011. 土壤肥力对慈竹生长及竹材成分的影响 [J]. 四川农业大学学报, 29(4): 482-487.]
LAN J, XIAO ZQ, LI JM, et al., 2020. Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains [J]. J Zhejiang A F Univ, 37(3): 416-423. [兰洁, 肖中琪, 李吉玫, 等, 2020. 天山雪岭云杉生物量分配格局及异速生长模型 [J]. 浙江农林大学学报, 37(3): 416-423.]
LIU S, ZHOU GM, BAI SB, 2011. Light intensity changes on Cunninghamia lanceolata in mixed stands with different concentrations of Phyllostachys pubescens [J]. J Zhejiang A F Univ, 28(4): 550-554. [刘烁, 周国模, 白尚斌, 2011. 基于光照强度变化的毛竹扩张对杉木影响的探讨 [J]. 浙江农林大学学报, 28(4): 550-554.]
LI XX, FAN ZW, SHEN YD, et al., 2017. Effects of clonal integration on the growth of Mikania micrantha in habitats with heterogeneous nutrient availability [J]. Chin J Ecol, 36(5): 1271-1276. [李晓霞, 范志伟, 沈奕德, 等, 2017. 克隆整合对异质性土壤养分生境下薇甘菊生长的影响 [J]. 生态学杂志, 36(5): 1271-1276.]
LIU Q, LI YX, ZHONG ZC, 2004. Effects of moisture availability on clonal growth in bamboo Pleioblastus maculata [J]. Plant Ecol, 173(1): 107-113.
LI DZ, TAKAHASHI S, 2003. Particularities of clonal plant species induced by physiological integration [J]. Grass Sci, 49(4): 395-402.
LI X, LI K, DUAN AA, et al., 2019. Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances [J]. J Beijing For Univ, 41(4): 41-50. [李鑫, 李昆, 段安安, 等, 2019. 不同地理种源云南松幼苗生物量分配及其异速生长 [J]. 北京林业大学学报, 41(4): 41-50.]
LI XL, HOU XY, WU XH, et al., 2014. Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe [J]. Chin J Plant Ecol, 38(5): 440-451. [李西良, 侯向阳, 吴新宏, 等, 2014. 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应 [J]. 植物生态学报, 38(5): 440-451.]
OU YM, YANG QP, CHEN X, et al., 2016. Effects of the expansion of Phyllostachys edulis on species composition, structure and diversity of the secondary evergreen broad-leaved forests [J]. Bioldivers Sci, 24(6): 649-657. [欧阳明, 杨清培, 陈昕, 等, 2016. 毛竹扩张对次生常绿阔叶林物种组成、结构与多样性的影响 [J]. 生物多样性, 24(6): 649-657.]
QI LH, DU MY, FAN SH, et al., 2012. Dynamics of soil organic carbon pool in Phyllostachy edulis forest and P. edulis-Cunninghamia lanceolata mixed forest in hilly regions of central Hunan, Southern China [J]. Chin J Ecol, 31(12): 3038-3043. [漆良華, 杜满义, 范少辉, 等, 2012. 湘中丘陵区毛竹纯林、竹杉混交林土壤有机碳库动态 [J]. 生态学杂志, 31(12): 3038-3043.]
SONG LX, TAO JP, RAN CY, et al., 2007. Clonal growth of Fargesia nitida under different canopy conditions in a subalpine dark coniferous forest in Wolong Nature Reserve, China [J]. J Plant Ecol, 31(4): 637-644. [宋利霞, 陶建平, 冉春燕, 等, 2007. 卧龙亚高山暗针叶林不同林冠环境下华西箭竹的克隆生长 [J]. 植物生态学报, 31(4): 637-644.]
TANG JB, XIAO Y, AN SQ, 2010. Advance of studies on rhizomatous clonal plants ecology [J]. Acta Ecol Sin, 30(11): 3028-3036. [汤俊兵, 肖燕, 安树青, 2010. 根茎克隆植物生态学研究进展 [J]. 生态学报, 30(11): 3028-3036.]
TAO JP, ZHONG ZC, 2000. Morphological responses to different nutrient supply in the stoloniferous herb Glechoma longituba [J]. Acta Ecol Sin, 20(2): 207-211. [陶建平, 钟章成, 2000. 匍匐茎草本活血丹(Glechoma longituba)在不同养分条件下的克隆形态 [J]. 生态学报, 20(2): 207-211.]
TAO JP, SONG LX, 2006. Response of clonal plasticity of Fargesia nitida to different canopy conditions of subalpine coniferous forest [J]. Acta Ecol Sin, 26(12): 4019-4026. [陶建平, 宋利霞, 2006. 亚高山暗针叶林不同林冠环境下华西箭竹的克隆可塑性 [J]. 生态学报, 26(12): 4019-4026.]
TAN HC, JIN YX, GAO H, 2017. A study of the effect of mixed bamboo forest on forest tree growth and stand soil [J]. World Bam Rattan, 15(1): 6-10. [谭宏超, 金雨欣, 高恒, 2017. 竹子混交林对林木生长及林分土壤的影响研究 [J]. 世界竹藤通讯, 15(1): 6-10.]
TU XZ, LI DW, 2020. Effects of light intensity on edibility of Fargesia denudata [J]. J Sichuan For Sci Technol, 41(5): 105-110. [涂绪中, 李德文, 2020. 光照强度对大熊猫取食缺苞箭竹可食性的影响 [J]. 四川林业科技, 41(5): 105-110.]
WANG CA, LI DZ, ZHU ZL, et al., 2006. Research methods for physiological integration of clonal plants and their application [J]. Chin J Appl Environ Biol, 12(4): 581-588. [王长爱, 李德志, 朱志玲, 等, 2006. 克隆植物生理整合作用的研究方法及其应用 [J]. 应用与环境生物学报, 12(4): 581-588.]
WANG N, YU FH, LI PX, et al., 2009. Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb Alternanthera philoxeroides [J]. Plant Biol, 11(3): 483-489.
WANG SM, FAN SH, XIAO X, et al., 2021. Effects of strip cutting on aboveground biomass accumulation and allocation, and allometric growth of Phyllostachys edulis [J]. J Nanjing For Univ (Nat Sci Ed), 45(5): 19-24. [王树梅, 范少辉, 肖箫, 等, 2021. 带状采伐对毛竹地上生物量分配及异速生长的影响 [J]. 南京林业大学学报(自然科学版), 45(5): 19-24.]
WRIGHT IJ, ACKERLY DD, BONGERS F, et al., 2007. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests [J]. Ann Bot-London, 99(5): 1003-1015.
XU F, GUO WH, XU WH, et al., 2009. Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves? [J]. Prog Nat Sci, 19(12): 1789-1798.
XU CY, SCHOOLER SS, KLINKEN R, 2010. Effects of clonal integration and light availability on the growth and physiology of two invasive herbs [J]. J Ecol, 98(4): 833-844.
XU SN, LIU YH, LI HY, et al., 2018. Physiological integration of growth, carbohydrates, and soluble protein of Zoysia japonica clonal ramets under nutrient heterogeneity [J]. Chin J Appl Ecol, 29(11): 3569-3576. [徐苏男, 刘艳虹, 李虹仪, 等, 2018. 养分异质条件下结缕草克隆分株生长、碳水化合物及可溶性蛋白的生理整合 [J]. 应用生态学报, 29(11): 3569-3576.]
XU L, YU FH, VAN DRUNEN E, et al., 2012. Trampling, defoliation and physiological integration affect growth, morphological and mechanical properties of a root-suckering clonal tree [J]. Ann Bot, 109(5): 1001-1008.
XIE R, LI JQ, ZHAO X, et al., 2010. Effect of different canopy conditions on biomass allocation and clonal morphology of Fargesia denudata in a subalpine coniferous forest in southwestern China [J]. Chin J Plant Ecol, 34(6): 753-760. [解蕊, 李俊清, 赵雪, 等, 2010. 林冠环境对亚高山针叶林下缺苞箭竹生物量分配和克隆形态的影响 [J]. 植物生态学报, 34(6): 753-760.]
XIE R, 2009. Clonal growth of staple food bamboo for giant panda under canopy conditions in a subalpine coniferous forest [D]. Beijing: Beijing Forestry University: 33-36. [解蕊, 2009. 亚高山不同针叶林冠下大熊猫主食竹的克隆生长 [D]. 北京: 北京林业大学: 33-36.]
YANG QP, GUO YR, LAN WJ, 2017. Addition effects of co-expansion of two bamboos on plant diversity in broad-leaved forests [J]. Chin J Appl Ecol, 28(10): 3155-3162. [杨清培, 郭英荣, 兰文军, 等, 2017. 竹子扩张对阔叶林物种多样性的影响:两竹种的叠加效应 [J]. 应用生态学报, 28(10): 3155-3162.]
YU HW, WANG LG, LIU CH, et al., 2020. Effects of a spatially heterogeneous nutrient distribution on the growth of clonal wetland plants [J]. BMC Ecol, 20(1): 59.
ZHUANG MH, LI YC, CHEN SL, 2011. Advances in the researches of bamboo physiological integration and its ecological significance [J]. J Bam Res, 30(2): 5-9. [庄明浩, 李迎春, 陈双林, 2011. 竹子生理整合作用的生态学意义及研究进展 [J]. 竹子研究汇刊, 30(2): 5-9.]
ZHANG C, GU R, CHEN SL, et al., 2020. Effect of ramet age on nitrogen clonal integration of Phyllostachys violascens based on stoichiometric characteristics of C, N and P [J]. For Res, 33(2): 35-42. [章超, 谷瑞, 陳双林, 等, 2020. 从C、N、P化学计量特征分析雷竹氮素克隆整合分株年龄效应 [J]. 林业科学研究, 33(2): 35-42.]
(责任编辑 李 莉 王登惠)