曲潇玲 宋丽云 张道顺 丁程瀛 沈广材 张友臣 张晓亮 焦裕冰 李莹 杨金广 申莉莉
摘 要:前期研究表明NbNAC062能夠抑制PVY早期侵染,本研究通过构建NbNAC062敲除突变体和过表达植株进一步明确NbNAC062的抗病毒功能,并利用异硫氰酸荧光素(fluorescein-5-isothiocyanate,FITC)标记的壳聚糖季铵盐(chitosan quaternary ammonium salt,HACC)包被NbNAC062质粒,制备HACC-NbNAC062纳米药物。激光共聚焦显微镜对纳米药物进行示踪;透射电镜和激光粒子分析仪对其表征进行分析。通过GFP荧光差异、qRT-PCR和蛋白免疫印迹检测病毒含量来探明纳米药物对PVY侵染的影响。结果显示,敲除组病毒GFP荧光增强,而过表达组病毒GFP荧光减弱,PVY CP含量与上述结果一致。纳米药物粒径集中分布在18~32 nm之间;Zeta电位为+41.8 mV。浸润纳米药物HACC-NbNAC062后48 h,在细胞内观察到FITC-HACC(绿色荧光)与RFP-NbNAC062(红色荧光);接种PVY-GFP后5、7、9 d,NbNAC062-HACC施药组的PVY CP mRNA水平较对照组分别下调17.41%、47.81%、13.03%;第7天施药组PVY CP蛋白水平明显低于对照组,病毒荧光强度显著暗于对照组。上述研究结果说明HACC-NbNAC062纳米药物成功递送了NbNAC062,并发挥了其对PVY初期侵染的抑制作用。
关键词:NbNAC062;马铃薯Y病毒;敲除;过表达;HACC-NbNAC062纳米药物
中图分类号:S435.72 文献标识码:A 文章编号:1007-5119(2023)02-0035-08
Abstract: Previous studies have shown that NbNAC062 inhibits early PVY infection. In this study, NbNAC062 knockout mutants and overexpression plants were used to further clarify the antiviral function of NbNAC062. The NbNAC062 plasmid was coated with fluorescein isothiocyanate (FITC)-labeled chitosan quaternary ammonium salt (HACC) to prepare HACC-NbNAC062 nanomedicine. Laser confocal microscopy was used to trace the nanomedicine and its characteristics were analyzed by transmission electron microscopy and laser particle analyzer. The viral content was determined GFP fluorescence difference, qRT-PCR and Western blot to explore the effects of nanomedicine on PVY infection. The results showed that the viral GFP fluorescence in the knockout group was enhanced, while the viral fluorescence in the overexpression group was weakened. The PVY CP content was consistent with the above results. The diameter of HACC-NbNAC062 nanomedicine was 18~32 nm; the Zeta potential was +41.8 mV. FITC-HACC (green fluorescence) and RFP-NbNAC062 (red fluorescence) were observed in the plant cells at 48 h after infiltrated with the HACC-NbNAC062 nanomedicine. Comparing with the control group, the PVY CP mRNA levels in the NbNAC062-HACC group were down-regulated by 17.41%, 47.81%, and 13.03% respectively 5, 7, and 9 days after PVY-GFP inoculation. The protein level was significantly lower than that of the control group at 7 days after viral inoculation, and the GFP fluorescence intensity was significantly darker than that of the control group. The above research results indicated that the HACC-NbNAC062 nanomedicine successfully delivered NbNAC062 and exerted its inhibitory effect on the initial infection of PVY.
Keywords: NbNAC062; potato virus Y; gene knockdown; over-expression; HACC-NbNAC062 nanomedicine
马铃薯Y病毒(potato virus Y,PVY)能侵染包括茄科、藜科、豆科在内的34属170余种植物,是烟草上最具破坏性的病毒[1]。自苗期开始喷施抗病毒剂预防是病害的主要控制策略之一,但目前生产上缺少靶向高效药剂。培育抗病品种是目前最有效的防治措施,而植物抗病基因的挖掘和功能阐明可为植物病害的防治提供新的种质资源。
NAC作为植物特有的转录因子,在植物整个生命周期中发挥重要作用[2],不仅调控分生组织形成、侧根形成、花器官发育、果实成熟及叶片衰老[3-6]等生长发育过程;还参与低温、冷害、干旱、盐害等非生物胁迫下的抗逆反应及发育进程[7-8]。此外,一些NAC转录因子还受病菌和病毒侵染的诱导,调控植物的防卫反应。例如,拟南芥AtNAC062能与病程相关蛋白基因PR1、PR2、PR5结合,激发抗性反应,抑制丁香假单胞菌(Pseudomonas syringae)侵染[9];玉米ZmNAC41和ZmNAC100可防御炭疽病菌(Colletotrichum graminicola)侵染[10]。煙草NbNAC089和百合LrNAC35有助于诱导植株对黄瓜花叶病毒(cucumber mosaic virus,CMV)和烟草花叶病毒(tobacco mosaic virus,TMV)的防御反应[11-12]。
将抗病蛋白核酸递送进入细胞是发挥其抗性作用的前提。纳米材料的高通量应用能够将生物分子快速简单地引入植物细胞,而无需昂贵且费力的生物分子转移技术[13-15]。研究发现,壳聚糖季铵盐(quaternary ammonium salt of chitosan,HACC)可有效包裹核酸使其免受酶的降解,并有效进入细胞,是目前核酸传递中广泛应用的纳米材料[16-18]。本课题组前期研究表明,HACC能有效递送抗病蛋白NbMLP28质粒,增强植物对病毒侵染的抗性[19];本氏烟转录因子NbNAC062能通过促进细胞生存信号而抑制PVY病毒的早期侵染增殖[20],但尚未在敲除突变体和过表达植株中验证。基于敲除突变体和组成型过表达植株的靶标特异性和稳定性,本文以本氏烟为材料,构建NbNAC062敲除突变体和过表达植株,明确其在PVY侵染过程中的作用;创制壳聚糖-DNA质粒纳米药物并检测其对PVY的防效,以期为PVY的靶向防控提供参考。
1 材料与方法
1.1 供试植株、病毒、质粒和试剂
供试烟苗均为5~6叶期温室土培本氏烟(N. benthamiana),培养温度(25±1)℃,光照16 h/d,光照强度2000 lx,相对湿度65%;供试病毒为保存于三生NN烟(N. tabacum var. Samsun NN)活体上的PVY,及中国农业科学院烟草研究所病毒组自制侵染性克隆PVY-GFP[21],于–80 ℃保存。
pEarleyGate100-RFP-NbNAC062质粒由烟草所病毒组制备[20],pORE-Cas9质粒由西南大学夏庆友老师惠赠[22];壳聚糖季铵盐(chitosan quaternary ammonium salt,HACC)和荧光素-5-异氰酸酯(fluorescein-5-isothiocyanate,FITC)购自上海源叶生物科技有限公司,二甲基亚砜(dimethyl sulfoxide,DMSO)购自Sigma-Aldrich公司。测序由派森诺生物科技有限公司完成。
1.2 NbNAC062敲除突变体和过表达植株构建
根据NbNAC062基因序列设计2个sgRNA位点(表1)。将单链Oligo DNA退火形成的双链DNA,Bsa I酶切pORE-Cas9产生的线性化表达载体,两者经T4 DNA连接酶连接后,转化至大肠杆菌,筛选卡那霉素抗性阳性转化子,提取质粒,将其转化至农杆菌,筛选阳性转化子[2]。根据NbNAC062序列设计含XbaⅠ、EcoRⅠ酶切位点的引物Fu- NbNAC F/R(表1)。扩增NbNAC062并将其连接入Fu46-RFP,构建入门载体Fu46::RFP::NbNAC062;利用LR反应,将其与pEarleyGate100重组构建NbNAC062表达载体,提取质粒并转化农杆菌。制备农杆菌悬液后,利用叶盘法转染本氏烟,通过Bar抗性筛选阳性小芽,生根培养[20]。
提取敲除突变体叶片总DNA,分别利用sg1 F/R和sg2 F/R检测引物(表1),进行PCR扩增,测序比对靶基因有效突变株。提取过表达植株叶片总DNA,利用NbNAC062 F/R引物(表1)进行PCR扩增,琼脂糖凝胶电泳检测NbNAC062表达量。以细胞膜绿色染液BBcellProbe M01(488 nm/500 nm, Bestbio)为对照,在激光共聚焦显微镜下观察NbNAC062的亚细胞定位[20]。
1.3 NbNAC062敲除突变体和过表达植株的表型及对PVY侵染的影响
将野生型本氏烟、NbNAC062敲除突变体和过表达植株,分别套袋收种和检测后,于营养基质土中播种,温室培养。观察出苗率、苗期及成株叶片和花器官表型。5~6叶期时,浸润接种PVY-GFP侵染性克隆。每处理15株,3次重复。接种后7 d在紫外灯下观察叶片上病毒荧光强度及扩展情况;提取各处理叶片总蛋白,通过Western blot检测PVY CP蛋白积累差异。
1.4 FITC标记HACC
将10 mg HACC和50 mL ddH2O置于烧杯中,于磁力搅拌器上,800 r/min、25 ℃搅拌至颗粒融化,配置0.2 mg/mL的HACC溶液,4 ℃保存。将20 mg FITC和20 mL DMSO液体置于烧杯中,300 r/min、25 ℃、黑暗条件下搅拌至粉末融化,配置1 mg/mL FITC溶液,4 ℃避光保存。在铝箔纸包裹的灭菌锥形瓶中,加入等体积的HACC与FITC,25 ℃避光轻轻搅拌3 h后,将混合溶液倒入预先煮沸(10 min)且降至室温的8000~14000 Da透析袋中,封口后于ddH2O中,4 ℃黑暗透析3 d,制备FITC-HACC溶液[19]。
1.5 NbNAC062纳米药物制备、表征检测及表达示踪
将pEarleyGate100-RFP-NbNAC062质粒(200 ng/?L)与HACC溶液(0.2 mg/mL),分别按3∶1、2∶1、1∶1、1∶2、1∶3、1∶4、1∶5(V∶V)混匀后,经55 ℃水浴1 min,涡旋振荡30 s、静置10 min,制备壳聚糖-DNA纳米药物HACC-NbNAC062。通过琼脂糖凝胶电泳,检测包裹效率。以FITC-HACC溶液替代HACC溶液,制备FITC标记的纳米药物FITC-HACC-NbNAC062。透射电镜下检测药物的微观形态和大小;激光粒度分析仪检测其粒径分布和Zeta电位。于本氏烟下表皮上浸润纳米药物FITC-HACC-NbNAC062,每片叶200 ?L,48 h后在激光共聚焦显微镜下检测药物的表达和示踪[19]。
1.6 HACC-NbNAC02纳米药物对PVY的防效检测
取长势均匀的本氏烟两组,于下表皮浸润纳米药物FITC-HACC-NbNAC062(200 ?L/叶),以浸润FITC-HACC的为对照组,每处理移栽15株,3次重复。温室培养12 h后,分别浸润接种PVY-GFP侵染性克隆。接种后1、3、5、7、9、11、13、15 d,取接种叶进行qRT-PCR检测PVY CP mRNA含量或通过Western blot检测PVY CP蛋白积累。另取部分植株于接种后7、8、10、11、13、15 d,在紫外灯下持续观察叶片荧光情况[19]。
1.7 实时荧光定量PCR(Quantitative Real-time PCR)
按照制造商的说明利用TRIzol(Vazyme, 南京)法提取植物总RNA和反转录试剂盒合成cDNA(Vazyme, 南京),利用Applied Biosystems 7500快速实时PCR系统(Applied Biosystems,Waltham,MA,USA),使用SYBR Premix Ex TaqTM试剂盒(Vazyme,南京)进行qRT-PCR。β-肌动蛋白基因用作内源对照,使用引物PVY-CP-F和PVY-CP-R检测病毒外壳蛋白表达的变化。采用–2-△△CT法计算 目的基因的相对表达量,每处理3个生物学重复。
1.8 蛋白质印迹(Western Blotting)
从本氏烟中提取植物总蛋白质,并与2×蛋白质上样缓冲(含DTT)液等体积混合后,将蛋白质样品在95 ℃下孵育3 min,置于12% SDS-聚丙烯酰胺凝胶上分离。然后通过电转印仪将分离的蛋白质转移到硝酸纤维素膜上。PVY CP抗体(SRA20001,Agdia,USA)和β-肌动蛋白(CW0264M,CWBIO,北京)抗体用于蛋白印迹。
2 结 果
2.1 NbNAC062敲除与过表达材料检测
在NbNAC062敲除突变体中,PCR分别扩增sg-1、sg-2靶序列。测序结果比对显示(图1),sg-1中在第18 bp位置处,插入了1 bp的腺嘌呤脱氧核糖核苷酸(A);sg-2中从第14 bp位置起,缺失了3 bp的腺嘌呤脱氧核糖核苷酸(A)和1 bp的鸟嘌呤脱氧核糖核苷酸(G),依次為AAAG,该突变体为有效敲除,可以筛选纯合子作为后续试验的材料。
在NbNAC062过表达植株中,扩增NbNAC062靶基因,琼脂糖凝胶电泳检测显示,在1944 bp位置出现预期的电泳条带,且过表达植株的条带亮度显著强于野生型(图2A),说明该材料已过表达NbNAC062。激光共聚焦显微镜观察发现,过表达植株中,显示红色荧光的RFP-NbNAC062蛋白(图2B)与显示绿色荧光的细胞膜染液BBcellProbe M01(图2C)发生共定位,产生黄色荧光(图2D),说明过表达植株NbNAC062蛋白定位于细胞膜,这一结果与之前检测到的NbNAC062在正常情况下定位于细胞膜相一致[24]。
2.2 NbNAC062敲除与过表达材料表型及对PVY侵染的影响
野生型、敲除、过表达本氏烟材料种子,播种后第10天出苗率、幼苗及开花结果成株表型,三者均无明显差异(图3A),说明正常情况下NbNAC062基因的敲除或过表达对植株的生长发育无显著影响。对5~6叶期野生型、敲除突变体和过表达本氏烟叶片浸润接种PVY-GFP后7 d,绿色荧光显示,相较于野生型对照组,敲除组病毒荧光增强,而过表达组病毒荧光减弱(图3B);PVY CP蛋白表达量亦显示NbNAC062敲除促进了病毒积累,而过表达抑制了病毒积累(图3C)。这说明本氏烟转录因子NbNAC062对PVY侵染具有一定的抑制作用,可用于纳米药物制备。
2.3 NbNAC062-FITC-HACC药物示踪
抗病毒药物充分发挥作用的前提是药物进入植物细胞内。如图4,壳聚糖-DNA纳米药物NbNAC062-FITC-HACC浸润本氏烟后48 h,激光共聚焦显微镜下显示,红色荧光标记的融合蛋白RFP-NbNAC062与绿色荧光标记的壳聚糖季铵盐FITC-HACC发生共定位,产生黄色荧光。说明pEarleyGate100-RFP-NbNAC062质粒可被壳聚糖季铵盐HACC递送进入细胞内,并发生表达。
2.4 NbNAC062-HACC纳米药物表征测定
琼脂糖凝胶电泳检测HACC对NbNAC062的最大载药量,显示pEarleyGate100-RFP-NbNAC062质粒(200 ng/?L)与HACC溶液按照体积比1∶2混均,包裹效率较好(图5A)。透射电镜下(TEM),纳米药物NbNAC062-HACC呈近球形的颗粒状,微观形态良好(图5B);激光粒度分析仪测定显示,药物颗粒集中分布在18~32 nm之间,粒径较均匀(图5C);纳米药物NbNAC062-HACC的Zeta电位为+41.8 mV(图5D)。说明形态和大小均符合纳米药物的表征要求,且药物溶液体系稳定性良好,可以开展药物抑制PVY侵染增殖的室内防效试验。
2.5 NbNAC062纳米药物对马铃薯Y病毒初期侵染的防效检测
qRT-PCR检测结果显示(图6A),相较于HACC对照组,PVY接种后1、3、5、7、9、11、15 d,NbNAC062-HACC纳米药物处理组的CP表达分别下调15.44%、27.00%、17.41%、47.81%、13.03%、10.98%、7.13%,其中5、7、9 d,药物处理组的病毒CP表达下调达到了显著或极显著水平,接种后7 d的Western blot检测亦显示(图6B),药物处理组的PVY CP蛋白表达显著低于对照组。接种后7~11 d的植株紫外荧光亦显示(图6C),在7~8 d,NbNAC062-HACC药物处理组的PVY荧光强度显著低于HACC对照组,10 d之后荧光强度差异不明显,与PVY CP表达量检测相符,显示植株在接种PVY前预先施用纳米药物,能显著抑制或延缓PVY的早期积累和扩展。
3 讨 论
烟草NAC转录因子可以调控叶片衰老、参与盐胁迫和响应病毒侵染[6-7,12,20]。本课题组前期研究表明本氏烟NbNAC062能促进细胞生存而抑制病毒的早期侵染增殖[20]。这一结论在本研究中,通过创制敲除突变体和过表达植株进一步得到验证,即敲除组对PVY敏感性上升,而过表达组则抑制病毒侵染增殖(图3)。本氏烟NbNAC062对病毒侵染增殖的抑制作用,与烟草NbNAC089和百合LrNAC35抑制CMV和TMV侵染[11-12],及拟南芥AtNAC089抵御车前草花叶病毒(plantago asiatica mosaic virus,PlAMV)的侵染[9,23]相一致;但与番茄卷叶病毒(tomato leaf curl virus,TLCV)可利用植株的SINAC1基因与自身的复制增强蛋白REn结合,促进自身DNA复制,加速病毒增殖[24]相反。虽然,目前的研究尚不能明确是不同寄主的不同NAC转录因子,还是不同病毒类型(TMV、CMV、PVY均为RNA病毒,TLCV为DNA病毒)导致了这种差异。但推测,寄主在通过一些NAC类转录因子抑制病毒侵染的同时,一些病毒也会进化出适应途径,通过主动的诱导激活和劫持利用,而實现自身增殖。此外,本研究中敲除和过表达NbNAC062,正常条件下均不影响植株的生长发育(图3);但作为重要的试验材料,后续还应进行干旱、盐害、冷害等逆境胁迫试验,进一步阐释其在烟草抗逆中的功能。
细胞壁不仅是植物的保护屏障,还是外源生物分子进入植物体的主要运输障碍,限制了功能性外源DNA的传递。相较于传统的病毒类载体,单壁碳纳米管、介孔二氧化硅、壳聚糖季铵盐等无细胞毒性的纳米材料是核酸药物传递的安全、有效载体。壳聚糖衍生物壳聚糖季铵盐(HACC)是核酸传递的纳米载体,具有生物相容性、可降解性及广谱抗菌性[16-17],可有效包裹核酸,使DNA免受DNA酶的降解并有效进入细胞[18],目前已应用于医药、食品、环保、农业等研究领域。本研究创制的壳聚糖 -DNA纳米药物NbNAC062-HACC,其球形颗粒的形态和大小均符合纳米药物要求[25-26],且药物稳定性良好,能在细胞内稳定表达(图4、5);接种病毒前预先浸润施用NbNAC062-HACC纳米药物,能显著抑制和延缓PVY的初期侵染和增殖(图6)。但作为药物开发,仍需改进施药方法。NbNAC062作为抑制PVY侵染的功能核酸,要充分发挥其作用,可尝试制备DNA水凝胶的分子纳米药物[27-28],以更好地穿越核膜,发挥其转录因子的调控作用。
4 结 论
本研究表明,在正常条件下,敲除和过表达转录因子NbNAC062对本氏烟生长发育无显著影响;在PVY侵染胁迫下,过表达NbNAC062转基因植株对病毒侵染初期具有抑制作用。壳聚糖-DNA纳米药物NbNAC062-HACC表征和稳定性良好,且能在细胞内表达;预先施用能抑制和延缓PVY在本氏烟中的积累和扩展。
参考文献
[1]朱贤朝,王彦亭,王智发. 中国烟草病害[M]. 北京:中国农业出版社,2002.
ZHU X C, WANG Y T, WANG Z F. Tobacco disease of China[M]. Beijing: China Agriculture Press, 2002.
[2]马雪祺,阴艳红,冯婧娴,等. 植物NAC转录因子研究进展[J]. 植物生理学报,2021,57(12):2225-2234.
MA X Q, YIN Y H, FENG J X, et al. Research progress of NAC transcription factors in plant[J]. Plant Physiology Journal, 2021, 57(12): 2225-2234.
[3]KOU X, LIU C, HAN L, et al. NAC transcription factors play an important role in ethylene biosynthesis, reception and signaling of tomato fruit ripening[J]. Molecular Genetics and Genomics, 2016, 291(3): 1205-1217.
[4]RUSHTON P J, BOKOWIEC M T, HAN S, et al. Tobacco transcription factors: novel insights into transcriptional regulation in the solanaceae[J]. Plant Physiology, 2008, 147(1): 280-295.
[5]ODA-YAMAMIZO C, MITSUDA N, SAKAMOTO S, et al. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves[J]. Scientific Reports, 2016, 6(1): 23609.
[6]LI W, LI X X, CHAO J T, et al. NAC family transcription factors in tobacco and their potential role in regulating leaf senescence[J]. Frontiers in Plant Science, 2018, 9: 1900.
[7]LIU Q L, XU K D, ZHAO L J, et al. Overexpression of a novel Chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco[J]. Biotechnology Letters, 2011, 33(10): 2073-2082.
[8]JIAN W, ZHENG Y X, YU T T, et al. SlNAC6, A NAC transcription factor, is involved in drought stress response and reproductive process in tomato[J]. Journal of Plant Physiology, 2021, 264: 153483.
[9]GAYRAL M, ARIAS GAGUANCELA O, BASQUEZ E, et al. Multiple ER-to-nucleus stress signaling pathways are activated during Plantago asiatica mosaic virus and Turnip mosaic virus infection in Arabidopsis thaliana[J]. The Plant Journal, 2020, 103(3): 1233-1245.
[10]SEO P J, KIM M J, PARK J Y, et al. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis[J]. The Plant Journal, 2010, 61(4): 661-671.
[11]VOITSIK A M, MUENCH S, DEISING H B, et al. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection[J]. Bmc Plant Biology, 2013, 13(1): 85-100.
[12]LI F F, SUN H J, JIAO Y B, et al. Viral infection-induced endoplasmic reticulum stress and a membrane-associated transcription factor NbNAC089 is involved in resistance to virus in Nicotiana benthamiana[J]. Plant Pathology, 2018, 67: 233-243.
[13]DEMIRER G S, ZHANG H, MATOS J L, et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants[J]. Nature Nanotechnology, 2019, 14(5): 456-464.
[14]THAGUN C, HORII Y, MORI M, et al. Non-transgenic gene modulation via spray delivery of nucleic acid/peptide complexes into plant nuclei and chloroplasts[J]. ACS nano, 2022, 16(3): 3506-3521.
[15]WANG J W, CUNNINGHAM F J, GOH N S, et al. Nanoparticles for protein delivery in planta[J]. Current Opinion in Plant Biology, 2021, 60: 102052.
[16]YANG Y, YANG S, WANG Y, et al. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan[J]. Acta Biomaterialia, 2016, 46: 112-128.
[17]MORI T, OKUMURA M, MATSUURA M, et al. Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro[J]. Biomaterials, 1997, 18(13): 947-951.
[18]LI G F, WANG J C, FENG X M, et al. Preparation and testing of quaternized chitosan nanoparticles as gene delivery vehicles[J]. Applied Biochemistry and Biotechnology, 2015, 175(7): 3244-3257.
[19]ZHANG D S, SONG L Y, LIN Z L, et al. HACC-based nanoscale delivery of the NbMLP28 plasmid as a crop protection strategy for viral diseases[J]. ACS Omega, 2021 6(49): 33953-33960.
[20]曲瀟玲,焦裕冰,罗健达,等. 本氏烟NbNAC062的克隆及对马铃薯Y病毒侵染的抑制作用[J]. 中国农业科学,2021,54(19):4110-4120.
QU X L, JIAO Y B, LUO J D, et al. Cloning of Nicotiana benthamiana NAC062 and its inhibitory effect on potato virus Y infection[J]. Scientia Agricultura Sinica, 2021, 54(19): 4110-4120.
[21]SUN H J, SHEN L L, QIN Y X, et al. CLC-Nt1 affects potato virus Y infection via regulation of endoplasmic reticulum luminal Ph[J]. New Phytologist, 2018, 220: 539-552.
[22]GAO J P, WANG G H, MA S Y, et al. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum[J]. Plant Molecular Biology, 2015, 87(1/2): 99-110.
[23]SUN D, ZHANG X, ZHANG Q, et al. Comparative transcriptome profiling uncovers a Lilium regale NAC transcription factor, LrNAC35, contributing to defence response against cucumber mosaic virus and tobacco mosaic virus[J]. Molecular plant pathology, 2019, 20(12): 1662-1681.
[24]SELTH L A, DOGRA S C, RASHEED M S, et al. A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication[J]. The Plant Cell, 2005, 17(1): 311-325.
[25]DEMIRER G S, ZHANG H, GOH N S, et al. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants[J]. Nature Protocol, 2019, 14(10): 1-24.
[26]MITTER N, WORRALL E A, ROBINSON K E, et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses[J]. Nature Plants, 2017, 3(2): 16207.
[27]陶晴,卞晓军,张彤,等. DNA水凝胶的制备及应用[J]. 生物工程学报,2021,37(9):3162-3178.
TAO Q, BIAN X J, ZHANG T, et al. Preparation and application of DNA hydrogels: a review[J]. Chinese Journal of Biotechnology, 2021, 37(9): 3162-3178.
[28]HU Q Q, LI H, WANG L H, et al. DNA nanotechnology-enabled drug delivery systems[J]. Chemical Reviews, 2019, 119: 6459-6506.