张新杰,孙永明,闫 淼,李金平,李 颖
·农业生物环境与能源工程·
低温产甲烷菌群对玉米秸秆低温厌氧消化的生物强化作用
张新杰1,2,3,4,孙永明1,2,3,闫 淼2,3,李金平1,4,李 颖2,3※
(1. 兰州理工大学能源与动力工程学院,兰州 730050;2. 中国科学院广州能源研究所,广州 510640;3. 中国科学院可再生能源重点实验室,广州 510640;4. 甘肃省生物质能与太阳能互补供能系统重点实验室,兰州 730050)
为研究产甲烷菌群对秸秆低温厌氧消化的生物强化作用,试研究将长期驯化的低温产甲烷菌群投加至秸秆厌氧消化体系中,对比不同添加剂量(3%、6%、9%、12%、15%和18%)对低温(20 ℃)批式厌氧消化性能的影响。对产甲烷性能、中间代谢产物进行统计学和动力学分析,评价生物强化效果,确定最佳剂量,结合微生物群落分析揭示生物强化作用机制,结果表明:生物强化可促进秸秆低温厌氧消化,提高甲烷率1.27~2.24倍,促进乙酸和丙酸的降解,避免酸抑制,相比对照组缩短厌氧消化时间(80)12~19 d;动力学分析表明:生物强化可缩短厌氧消化的延滞期;统计学分析表明:强化甲烷产量的最佳剂量为12%,单位质量菌群强化甲烷产量的最佳剂量为6%;微生物群落分析显示生物强化促进低温厌氧消化的主要原因是提高了产甲烷菌和相对丰度。
甲烷;玉米秸秆;低温厌氧消化;生物强化;微生物群落
厌氧消化技术可减少有机废弃物的环境污染,并实现废弃物的资源化利用[1]。近年来,厌氧消化处理有机废弃物的沼气工程规模化兴起,因低温气候条件影响,北方沼气产业规模显著滞后于南方[2]。低温下运行的沼气工程因产气低、保温成本高、效益差,导致部分处于闲置状态。地下式沼气工程无需加热,可常年维持在20℃左右,但产气较少,约(0.2~0.5) m3/(m3·d)。地上沼气工程通过锅炉、发电余热或太阳能[3]等加热方式,虽能维持中温(约35 ℃)发酵温度,但保温成本高。北方冬季平均气温-20 ℃,若在35 ℃下运行一个3 000 m3的发酵罐,其保温耗能约3 025 kW·h/d(根据热损方程计算),相当于消耗每天产气量(以产气率0.8 m3/(m3·d)计)的59%用于保温,低温运行不具经济性。秸秆是重要的生物质资源,在中国北方资源量丰富[4],研究提高秸秆低温消化产甲烷性能的方法,对推进中国乃至世界寒区秸秆沼气工程应用具有重要的科学意义[5]。
与中温(35 ℃)和高温(55 ℃)厌氧消化相比,低温(≤20 ℃)厌氧消化性能不佳,主要因为温度影响微生物的活性,温度降低使细胞膜上运输蛋白通道变窄,细胞摄入物质能力下降,导致细胞生长缓慢,数量变少。古菌比细菌对低温更敏感,导致反应器内挥发性脂肪酸(volatile fatty acids,VFA)积累和pH值下降,启动及运行困难,甲烷产量低[6]。
目前,提高低温厌氧消化产甲烷的方法主要有:驯化低温接种物提高微生物耐受性[7-8];降低有机负荷(organic loading rate,OLR)避免酸抑制[9];加入颗粒活性炭[10]、磁铁矿、石墨烯[11]等导电材料促进直接电子转移;共发酵优化C/N[12]、反应器优化改造[13]和生物强化技术[14]等。其中,生物强化是通过添加具有特定功能微生物来提高消化性能的一种直接的方法[15-16]。
此前,利用本实验室已驯化的丙酸产甲烷菌群对能源草[17]、鸡粪[18-19]和餐厨垃圾[20]的中温厌氧消化进行生物强化,证实产甲烷菌群可恢复酸败、缓解氨抑制并提高产甲烷率。此外,尝试了利用中温丙酸产甲烷菌群强化低温连续厌氧发酵[21]和低温批式牛粪-秸秆共发酵[22],虽然产甲烷性能比未强化的低温发酵有所提升,但与中温产甲烷水平还具有一定差距。因此,为进一步提高低温厌氧发酵的生物强化性能,本实验室又驯化出了低温丙酸产甲烷菌群,目前,利用低温产甲烷菌群强化低温厌氧消化的研究鲜有报道,因此有必要探究低温产甲烷菌群对秸秆低温厌氧消化的生物强化作用。
生物强化菌群添加量是影响强化效果及成本的重要因素,因此,本研究探究菌群剂量对秸秆低温厌氧消化生物强化效果的影响,确定最佳剂量,并揭示生物强化的微生物机理,为提高低温厌氧消化性能提供理论基础和指导。
原料为玉米秸秆(maize stover,MS),粉碎至粒径为1 mm备用。接种物为牛粪沼液,接种前分别进行一周的低温(20 ℃)或中温(37 ℃)驯化(纤维素为碳源,OLR为0.5g/(L·d)。低温和中温接种物微生物群落组成详见2.5.1和2.5.2节,接种前进行一周的脱气处理,0.4 mm网孔纱布过滤。生物强化菌系(bioaugmentation seeds,BS)为丙酸产甲烷菌群,取自中国科学院广州能源研究所长期稳定运行的70 L低温(20±1)℃厌氧消化罐,其产甲烷水平与中温(35 ℃)条件下相当,利用丙酸的VS产甲烷率为390 mL/g,是理论产甲烷率的74%。菌系添加形式为菌泥,将菌液离心(4 000 r/min,5 min)后获得。表1为各试验原料的基本参数。
表1 原料、接种物、生物强化菌系基本特性
试验设置发酵TS浓度为8%,反应器为1 000 mL,工作体积为800 mL,设置9个试验组,6个生物强化组,为R1~R6,生物强化剂量(g/g,以VS计)分别为3%、6%、9%、12%、15%、18%;另设置3组对照组,分别为RM:中温不加菌系对照组;R0:低温不加菌系对照组,RIn:生物强化对照组,添加18%的秸秆发酵液菌泥(发酵液离心)。各反应器分别在低温(20±1)℃培养箱和中温(37±1)℃水浴锅中运行。定期测定产气量、甲烷含量、pH值、VFAs,定期取样置于-80 ℃保存,用于微生物分析。
TS和VS按照标准方法测定[23],秸秆木质纤维素成分分析按照美国可再生能源实验室标准方法测定(LAP,NREL)[24]。C、H、N元素含量通过Vario EL(elementar analysensysteme gmbh,Hanau,Germany)元素分析仪测定,pH值通过便携式pH计测定(梅特勒-托利多FE28),测试前用pH值为4.00、7.00、10.01的标准缓冲溶液进行校准,VFAs浓度使用高效液相色谱仪(Model e2698,Waters,US)测定。色谱仪配有 Bio-RAD 色谱柱,温度设置为50 ℃,流动相为0.005 mM H2SO4,流速为0.5 mL/min。气体成分采用气相色谱(岛津 GC-2014 型)测定。
修正的Gompertz方程已经被广泛应用于批式厌氧消化过程的模拟分析,利用此方程对产甲烷潜力、最大产甲烷速率和延滞期进行模拟[25]。
式中为时刻单位VS底物的累积甲烷产量,mL/g;为最终累积VS甲烷产率,mL/g;R为日最大VS甲烷产率,mL/(g·d);e为自然对数常数,其值为2.713;为延滞期,d;为试验时间,d。
高通量测序用于分析发酵系统中微生物群落组成结构。样品提取DNA后,利用 Qubit4.0 DNA 检测试剂盒对基因组 DNA 精确定量,进行两轮PCR 扩增,对 DNA 纯化回收,经等量混合后进行高通量测序。测序后得到的有效序列采用RDP 分类算法进行分类学分析,通过识别古菌和细菌序列、物种丰富度,在不同生物分类水平进行群落结构的分析。
不同生物强化剂量对秸秆低温厌氧消化累积产甲烷率的影响如图1a所示,与不加强化菌系的R0相比,所有剂量的生物强化组产气性能均有不同程度的提升,当添加剂量不高于12%时,累积VS产甲烷率随菌系添加量增加而升高,与之相反,剂量高于12%时,随添加量增加而降低,这可能是由于添加的强化菌系过多,底物被菌群降解用于自身生长,消耗了部分产甲烷的底物。因此,在试验设置的剂量范围内,最佳剂量为12%,即R4,其累积VS产甲烷率最高,达134.1 mL/g,比R0提高2.35倍,达到中温组RM的66%,其余剂量的生物强化组累积产甲烷率从高到低依次为15%(R5)、9%(R3)、6%(R2)、18%(R6)、3%(R1),提高产甲烷率1.3~2.4倍,此外,除最低剂量3%的R1外,其余添加丙酸产甲烷菌系的试验组均比添加18% 的秸秆发酵液菌泥强化的RIn的产甲烷率高,提升了30%~54%,但3%(R1)在前15 d内产甲烷优于RIn,由此可见,添加丙酸产甲烷生物强化菌系进行针对性强化,可有效提升低温厌氧消化产甲烷性能。在此前利用中温丙酸产甲烷菌系强化牛粪与秸秆低温共发酵研究中,投加14%的最佳剂量下,累积VS产甲烷率提升至36.0 mL/g[22],不到中温产甲烷的40%,与之相比,本研究利用低温丙酸产甲烷菌系强化,可达到中温条件下产甲烷率的66%,效果更优。
注:R0:低温对照组,R1~R6:添加不同剂量生物强化菌系,R1:3%,R2:6%,R3:9%,R4:12%,R5:15%,R6:18%,RIn:添加18%秸秆发酵液离心菌泥,RM:中温对照组,下同。
从日产甲烷率(图1b)可以看出,所有生物强化组在试验的前18 d产气性能均比R0有所提升,菌群添加量越大,日产甲烷率越高,且达到最大产甲烷率需要的时间越短,R6在第3天内达到最大值,达到584.26 mL/(L·d),是R0的4.8 倍,是RIn的4.3倍,达到中温(RM)最大日产甲烷量的77%,这表明投加生物强化菌群可加快产甲烷进程,且强化体系的产气率高峰时间和菌群添加量呈正相关。
不同生物强化剂量对VFAs的影响如图2a所示,所有试验组VFAs均呈现先升高后下降的趋势,添加丙酸产甲烷菌群生物强化组VFAs浓度始终低于R0和RIn,R0和RIn的VFAs浓度在试验第12天内和9天内达到最大值,分别为9.6和6.0 g/L,RM的VFAs在第0天达到最大值5.22 g/L后一直下降,而生物强化组VFAs浓度最大范围处于0.89~4.5 g/L,较R0、RIn、RM组分别减少53.03%~90.71%、24.87%~85.14%、12.28%~83.82%,表明添加生物强化菌系可加快VFAs的降解,VFAs积累程度取决于菌系添加量,菌系添加剂量越高,VFAs积累程度越小。
试验过程中各组VFAs组分变化如图2b~2d所示,在整个发酵过程中,乙酸和丙酸是主要的挥发酸,同时检测到少量丁酸、异丁酸、戊酸、异戊酸。低剂量组R1和R2在第6天乙酸达到最大值,分别为2.33和1.74 g/L。高剂量组R3、R4、R5、R6的乙酸一直无明显积累,9 d内基本降解,浓度小于0.5 g/L。R0和RIn乙酸浓度分别在12 d和9 d内达到最大值,分别为4.43和2.94 g/L,RM最初就达到最大值2.7 g/L,迅速降解。额外添加菌群可促进乙酸降解产甲烷,但投加秸秆发酵液离心后的菌泥对乙酸降解速率和效率远远低于投加丙酸产甲烷菌群系。丙酸变化趋势与乙酸基本一致,高剂量组R3、R4、R5、R6丙酸无明显累积,基本呈下降趋势,在12 d内全部降解;R1和R2丙酸浓度分别在9 d内和6 d内达到最大值,分别为1.97和1.49 g/L,在20 d和15 d全部降解,丙酸浓度大于1 000 mg/L对产甲烷菌有抑制作用[20,26],这是低剂量生物强化后产甲烷率仍然不高的原因。R0丙酸浓度在12 d内达到最大值3.88 g/L,后期积累的丙酸一直无明显降解,导致pH降低及产甲烷率下降。RIn丙酸浓度在12 d达到最大值2.65 g/L,直至试验结束才全部降解,说明添加秸秆发酵液离心的菌泥可以缓解丙酸积累,但是依然不能解除酸抑制,RM初始丙酸浓度最高,达2.22 g/L,在12 d内就全部降解。从丙酸浓度来看,生物强化菌群剂量越高,降解丙酸能力越强,生物强化可极大地促进丙酸降解,解除低温消化酸抑制,从而提高产甲烷率,加快反应进程。这与本实验室前期利用丙酸产甲烷菌群强化不同原料中温厌氧发酵生物强化的结果类似,即均可有效降解丙酸及乙酸,避免酸抑制,从而提高产甲烷率[18-22]。
图2 低温生物强化对总挥发性脂肪酸浓度和各组分挥发酸浓度的影响
图3为不同菌系剂量添加对发酵体系内pH值的影响。各试验组都呈现先下降后上升的趋势,这是因为在试验反应初期发酵系统主要进行水解产酸,VFAs的积累导致pH值下降。后期升高说明系统内的VFAs被降解,未添加生物强化菌系组pH值比强化组波动大,表明:加入低温强化菌系可维持系统pH值稳定,并且可看出,在一定范围内,菌系剂量越高,pH值波动幅度越小,系统越稳定。R0、RIn与RM的pH值在试验初期呈现急剧下降的趋势,而R0直至第9天内下降到最低值6.5,说明低温抑制产甲烷微生物活性,导致挥发酸不能被及时利用,形成酸抑制,这是低温消化启动慢、产甲烷性能差的原因。
图3 低温生物强化对 pH值的影响
表2详细对比了不同菌系添加量对秸秆低温批式厌氧消化的生物强化效果,可以看出各剂量的生物强化均可提高累积产甲烷率,产甲烷增强倍数反映了累积产甲烷率的提升效果,菌系添加量为12% 的R4产甲烷增强倍数最高,较R0提高2.4倍,其他反应器增强倍数从大到小依次为R5、R2、R6、R3、R1,分别提升了2.24、2.01、1.98、1.91、1.27倍。因此,在甲烷增强倍数方面,12%的低温菌系剂量最佳。
表2 低温厌氧消化生物强化效果的统计分析
注:生物强化效率=(生物强化组产甲烷率-R0产甲烷率)/菌剂添加量;Ino是秸秆发酵液离心收集的菌泥,80为累积产甲烷量达到总产甲烷量80%所需的时间。
Note: Bioaugmentation efficiency = (methane yield of bioaugmented reactors- methane yield of R0) / Bioaugmentation seeds adding mass. Ino is the microbial sediment collected from stover digestate.80is the time required for cumulative methane production to reach 80% of total production.
然而,生物强化效率随菌系添加量先增加后降低,最大的生物强化效率在6%的剂量下获得,达到31.3 mL/g(以VSBS计),其次为R4,达到20.9 mL/g(以VSBS计),因此,从单位质量菌剂强化的效果考虑,6% g (VSBS/VSMS)剂量的R2生物强化效率最高。
80是累积产甲烷量达到总产甲烷量80%所需的时间,反映发酵体系底物甲烷化快慢的重要指标之一。80越短,表明产甲烷效率越高。从表看出,不同剂量的生物强化组的80均有所提前,比低温对照组缩短12~19 d。生物强化组80随菌系增加而缩短,R3、R4、R5的80与中温的80(12 d)相当,R6的80仅9 d,比中温的80提前3 d。此前利用中温丙酸产甲烷菌系强化牛粪与秸秆低温共发酵的80为42 d[22],说明投加低温丙酸产甲烷菌系的生物强化,显著缩短了80,大大加快低温厌氧消化产甲烷。
不同菌系添加量产甲烷动力学分析如表3所示。修正的Gompertz方程很好地模拟了不同菌系添加量对低温消化的影响,决定系数2均在0.95以上,说明拟合程度较高。延滞期表示产甲烷活性,可表示厌氧消化过程中微生物对底物的利用情况,添加产甲烷菌群系会缩短延滞期,菌系剂量越大,延滞期越短,R表示日最大产甲烷率,R随菌系添加量增加而提高,且添加18% 秸秆发酵液离心的菌泥对照组的和R低于所有添加丙酸产甲烷菌系组。说明生物强化可缩短低温消化延滞期和提高VS产甲烷速率。
表3 不同菌群添加量下的修正Gompertz模型的参数
2.5.1 对细菌群落结构的影响
接种物及各反应器内细菌在属水平的群落结构如图 4所示,低温接种物(P-Ino)和中温接种物(M-Ino)优势菌属有较大差异,说明温度影响微生物的群落组成,低温接种物优势水解菌属为(8.49%),(7.63%),(7.18%),(7.04%),(5.78%);中温接种物优势水解菌属为(17.51%),(9.00%),(6.68%),(5.92%)。其中是产氢产乙酸菌[27],中温优势菌属为纤维素降解菌,而低温接种物纤维素降解菌相对丰度较低,这是秸秆在低温和中温水解程度差异明显的主要原因。低温生物强化菌群(P-BS)优势菌属为(23.43%),(16.15%),(12.12%),(4.50%),(4.43%),(4.27%),(3.41%).是绿弯曲菌门中的主要属,在厌氧条件下参与碳水化合物发酵[28]。通过代谢丙酸,最终生成乙酸[29]。在低温消化组中所有反应器之间群落结构没有明显差异,与未生物强化组相比,前期生物强化组的相对丰度分别增加了1.47~8.77 倍,主要参与纤维素、淀粉的水解[30]。相对丰度后期提高4.19~10.79倍,属主要参与厌氧发酵产酸阶段,以大分子碳水化合物为底物,代谢产物为氢气和VFAs[31]。相对丰度提高2.35~4.05倍,主要功能为降解糖类基质为乙酸[32]。相对丰度提高0.46~2.12倍,主要参与氨基酸降解[33]。而添加秸秆发酵液离心的菌泥对菌群结构无显著影响。中温对照组中的水解菌属远高于低温试验组,因此秸秆在中温水解程度更彻底,产甲烷率高。以上结果表明添加生物强化菌群可以提高水解菌系的丰度,为秸秆转化为甲烷提供了更多的中间产物。
2.5.2 对古菌群落结构的影响
接种物及各反应器内古菌在属水平的群落结构如图 5所示。
注:M-Ino:中温接种物,P-Ino:低温接种物,P-BS:低温生物强化菌系;RIn:添加18%秸秆发酵液离心菌泥,下同。
图5 产甲烷古菌群落在属水平上的演替
低温接种物(P-Ino)和中温接种物(M-Ino)的古菌属群落结构差异不大,优势菌属均为乙酸型产甲烷菌和甲烷杆菌属,而低温生物强化菌系(PBS)的优势菌属为(69.17%)与(17.85%),为乙酸型产甲烷菌,将乙酸代谢为甲烷;是厌氧系统中常见的产甲烷菌属,能利用多种产甲烷基质,可通过3种代谢途径产甲烷(甲醇及甲胺类物质、乙酸、氢)[34]。在生物强化组内,随着菌群添加量的增加,的相对丰度逐渐上升,相对丰度从 55.23%依次上升至63.23%、64.93%、67.24%、71.62%、73.19%、 73.92%。强化系统中的相对丰度的增加,加快了乙酸的降解速率,增强了产甲烷古菌的代谢途径,这也是体系内产甲烷性能提升的主要原因。因此,投加低温生物强化菌群可以维持产酸、产甲烷阶段相平衡,避免中间产物酸的累积。秸秆发酵液离心的菌泥强化组(RIn)和对照组(R0) 相比产甲烷菌属的丰度并没有提高,生物强化体系的相对丰度均低于RIn和R0,且相对丰度随菌群添加量增加而降低,是低pH下的一种酸耐受菌[35],这也可以解释生物强化组缓解VFAs积累避免了pH值下降。中温组优势菌属也是19.80%~42.21%)和13.38%~27.12%),但丰度随消化时间而提高,这可说明中温条件更有利于其繁殖生存。
综上,添加生物强化菌群增加了与的相对丰度,加速了乙酸降解,提高产甲烷率。这与前期投加中温丙酸产甲烷菌系强化中温厌氧发酵的试验结果类似,即通过提高的相对丰度促进产甲烷[36-37]。
1)生物强化可促进秸秆低温厌氧消化,提高产甲烷率、缩短厌氧发酵时间,菌系添加量为6%时,单位VS菌系提升产甲烷率最高,达到31.3 mL/g;菌系添加量为12%时,促进产甲烷效果最佳,累积VS产甲烷率达到134.1 mL/g,提升产甲烷率2.35倍,菌系添加量为18%时,日产甲烷率达到584.26 mL/(L·d),是空白对照的4.8倍,达到中温的77%,强化体系的产气率高峰时间和菌群添加量呈正相关,且最大产甲烷率对应的时间越短,80缩短12~19 d,与中温厌氧消化时间相当。
2)生物强化可促进秸秆低温厌氧消化体系内挥发性脂肪酸的降解,尤其乙酸和丙酸,高剂量的生物强化体系(9%、12%、15%、18%)中乙酸和丙酸无明显积累;低剂量组(3%、6%)乙酸和丙酸稍有累积;而未生物强化组乙酸和丙酸积累达到4.43和3.88 g/L,严重抑制产甲烷,导致产甲烷率较低。生物强化加快挥发酸降解,避免酸抑制,提高甲烷产率。
3)修正Gompertz方程可很好地模拟添加产甲烷菌群系对秸秆的厌氧消化的影响,决定系数均在0.95以上,随生物强化菌系添加量的增加,延滞期缩短,单位VS产甲烷率提高。添加产甲烷菌群系生物强化低温消化可有效缩短延滞期和提高甲烷产率。
4)低温生物强化增加了产甲烷古菌与的相对丰度,从而提高了低温秸秆产甲烷率;此外,生物强化还可提高水解细菌的相对丰度,促进秸秆水解及甲烷转化进程。
[1] 奚永兰,刘洋,高娣,等. 农村生活垃圾厌氧发酵产沼气潜力研究[J]. 农业工程学报,2020,36(23):222-228. XI Yonglan, LIU Yang, GAO Di, 2et al. Potential of biogas produced from anaerobic fermentation of rural household wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 222-228. (in Chinese with English abstract)
[2] MU L, ZHANG L, ZHU K, et al. Semi-continuous anaerobic digestion of extruded OFMSW: Process performance and energetics evaluation[J]. Bioresource Technology, 2018, 247: 103-115.
[3] 李金平,曹岗林,曹忠耀,等. 兰州太阳能与发电余热增温沼气工程的性能研究[J]. 中国沼气,2017,35(2):90-95. LI Jinping, CAO Ganglin, CAO Zhongyao, et al. Performance of biogas project increasing temperature by solar energy and waste heat from power generation[J]. China Biogas, 2017, 35(2): 90-95. (in Chinese with English abstract)
[4] 丛宏斌,孟海波,于佳动,等. “绿色”引领下东北地区秸秆产业发展长效机制解析[J]. 农业工程学报,2021,37(13):314-321. CONG Hongbin, MENG Haibo, YU Jiadong, et al. Analysis of long-term mechanism for development of straw industry in northeast China under guidance of “Green-concept”[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 314-321. (in Chinese with English abstract)
[5] 朱瑞清,牛永艳,毛婷,等. 低温厌氧发酵对奶牛养殖废水沉降特征的影响[J]. 农业工程学报,37(5):224-230. ZHU Ruiqing, NIU Yongyan, MAO Ting, et al. Influence of low-temperature anaerobic fermentation on sedimentation characteristics of dairy wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 224-230. (in Chinese with English abstract)
[6] DEV S, SAHA S, KURADE M B, et al. Perspective on anaerobic digestion for biomethanation in cold environments[J]. Renewable & Sustainable Energy Reviews, 2019, 103: 85-95.
[7] AKILA G, CHANDRA T S. Performance of an UASB reactor treating synthetic wastewater at low-temperature using cold-adapted seed slurry[J]. Process biochemistry, 2007, 42(3): 466-471.
[8] SAADY N M C, MASSé D I. Psychrophilic anaerobic digestion of lignocellulosic biomass: A characterization study[J]. Bioresource Technology, 2013, 142: 663-671.
[9] MARTI-HERRERO J, SORIA-CASTELLON G, DIAZ-DE-BASURTO A, et al. Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste[J]. Renewable Energy, 2019, 133: 676-684.
[10] ZHANG J, ZHANG R, WANG H, et al. Direct interspecies electron transfer stimulated by granular activated carbon enhances anaerobic methanation efficiency from typical kitchen waste lipid-rapeseed oil[J]. Science of the Total Environment, 2020, 704: 1-8.
[11] LIN R, CHENG J, DING L, et al. Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges[J]. Chemical Engineering Journal, 2018, 350: 681-691.
[12] WEI S, ZHANG H, CAI X, et al. Psychrophilic anaerobic co-digestion of highland barley straw with two animal manures at high altitude for enhancing biogas production[J]. Energy Conversion and Management, 2014, 88: 40-48.
[13] LIU D, ZHANG L, CHEN S, et al. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 ℃[J]. Water Research, 2016, 99: 281-287.
[14] ZHOU H, LI X, XU G, et al. Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature[J]. Science of the Total Environment, 2018, 643: 225-237.
[15] MA H, ZHAO Y, YANG K, et al. Application oriented bioaugmentation processes: Mechanism, performance improvement and scale-up[J]. Bioresource Technology, 2021, 344(PB): 126192.
[16] GAO D, ZHAO H, WANG L, et al. Current and emerging trends in bioaugmentation of organic contaminated soils: A review[J]. Journal of Environmental Management, 2022, 320: 115799.
[17] LI L, LI Y, SUN Y, et al. Effect of bioaugmentation on the microbial community and mono-digestion performance of Pennisetum hybrid[J]. Waste Management, 2018, 78: 741-749.
[18] HE L, LI L, LI Y, et al. Bioaugmentation with methanogenic culture to improve methane production from chicken manure in batch anaerobic digestion[J]. Chemosphere, 2022, 303: 135127.
[19] LI Y, WANG C, XU X, et al. Bioaugmentation with a propionate-degrading methanogenic culture to improve methane production from chicken manure[J]. Bioresource technology, 2021, 346: 126607.
[20] JIANG J, LI L, LI Y, et al. Bioaugmentation to enhance anaerobic digestion of food waste: Dosage, frequency and economic analysis[J]. Bioresource Technology, 2020, 307: 123256.
[21] YAN M, WANG C, LI Y, et al. Effect of bioaugmentation on psychrotrophic anaerobic digestion: Bioreactor performance, micriobial community, and cellular metabolic response[J]. Chemical Engineering Journal, 2023, 455: 140173.
[22] XU X, SUN Y, SUN Y, et al. Bioaugmentation improves batch psychrophilic anaerobic co-digestion of cattle manure and corn straw[J]. Bioresource Technology, 2022, 343: 126118.
[23] LUCJAN P. Standard methods for the examination of water and wastewater, 18th edition: Arnold E. Greenberd, Lenore S. Clesceri, Andrew D. Eaton (Editors) Water Environment Federation, Alexandria, USA, 1992; 1025 pp; US$120 (Hardcover); ISBN 0-87553-207-1[J]. Science of the Total Environment, 1994, 142(3): 227-228.
[24] SLUITER J B, RUIZ R O, SCARLATA C J, et al. Compositional analysis of lignocellulosic feedstocks. 1. review and description of methods[J]. Journal of Agricultural and Food Chemistry, 2010, 58(16): 9043-9053.
[25] 徐文倩,董红敏,尚斌,等. 典型畜禽粪便厌氧发酵产甲烷潜力试验与计算[J]. 农业工程学报,2021,37(14):228-234. XU Wenqian, DONG Hongmin, SHANG Bin, et al. Experiment and calculation on the biochemical methane potential of typical livestock and poultry manure in anaerobic digestion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(14): 228-234. (in Chinese with English abstract)
[26] XING L, WANG Z, GU M, et al. Coupled effects of ferroferric oxide supplement and ethanol co-metabolism on the methanogenic oxidation of propionate[J]. Science of the Total Environment, 2020, 723: 137992.
[27] 李建政,孙倩,刘枫,等. 一种产氢产乙酸菌互营共培养体的筛选及其群落结构解析[J]. 科技导报,2009,27(16):78-82.
[28] WANG H, CHEN N, FENG C, et al. Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: Performance, microbial behavior and dissolved organic matter evolution[J]. Chemosphere, 2020, 253: 126693.
[29] LOUBINOUX J, VALENTE F M A, PEREIRA I A C, et al. Reclassification of the only species of the genus Desulfomonas, Desuffomonas pigra, as Desulfovibrio piger comb. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52: 1305-1308.
[30] BARRAGáN-TRINIDAD M, CARRILLO-REYES J, BUITRóN G. Hydrolysis of microalgal biomass using ruminal microorganisms as a pretreatment to increase methane recovery[J]. Bioresource Technology, 2017, 244: 100-107.
[31] LIU Z, ZHANG C, WANG L, et al. Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community[J]. Bioresource Technology, 2015, 175: 152-159.
[32] FENG D, XIA A, LIAO Q, et al. Carbon cloth facilitates semi-continuous anaerobic digestion of organic wastewater rich in volatile fatty acids from dark fermentation[J]. Environmental Pollution, 2021, 272: 116030.
[33] WANG Z, ZHANG C, WATSON J, et al. Adsorption or direct interspecies electron transfer? A comprehensive investigation of the role of biochar in anaerobic digestion of hydrothermal liquefaction aqueous phase[J]. Chemical Engineering Journal, 2022, 435: 135078.
[34] CONKLIN A, STENSEL H D, FERGUSON J. Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion[J]. Water Environment Research, 2006, 78(5): 486-496.
[35] LIU Y, B W W. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 171-189.
[36] LI Y, LI L, SUN Y, et al. Bioaugmentation strategy for enhancing anaerobic digestion of high C/N ratio feedstock with methanogenic enrichment culture[J]. Bioresource Technology, 2018, 261: 188-195.
[37] LI Y, YANG G, LI L, et al. Bioaugmentation for overloaded anaerobic digestion recovery with acid-tolerant methanogenic enrichment[J]. Waste Management, 2018, 79: 744-751.
Bioaugmentation of psychrophilic methanogenic microbial consortia on psychrophilic anaerobic digestion of maize stovers
ZHANG Xinjie1,2,3,4, SUN Yongming1,2,3, YAN Miao2,3, LI Jinping1,4, LI Ying2,3※
(1.,,730050,;2.,,510640,; 3.,,510640,; 4.,730050,)
A large number of maize stover can be generated per year in recent years. Sustainable treatments of maize stover can be expected to produce the renewable energy. Among them, anaerobic digestion is a friendly biotechnology to recover the renewable energy from maize stover. Especially, the psychrophilic anaerobic digestion can only require less energy input, compared with the commonly-used mesophilic and thermophilic digestors. However, a psychrophilic environment can inhibit the microbial activity, causing the low efficiency of methane production. In this study, the bioaugmentation of psychrophilic propionate-degrading consortia (the mixture of propionic-degrading consortia and acetogenic methanogen) was conducted to boost the anaerobic digestion of corn straw in psychrophilic batch reactors, with the different dosages of 3%, 6%, 9%, 12%, 15%, and 18% at low temperature (20 ℃). The concentrated indigenous inoculum with the dosage of 18% was introduced as the control. The reactor performance, microbial metabolites, and microbial community dynamics were analyzed to investigate the optimum dosage and mechanism. The results showed that the bioaugmentation consortia was improve the methane production rate under a psychrophilic anaerobic environment, as evidenced by 1.27 to 2.24 times increase in the bioaugmented groups, compared with the control (without bioaugmentation). The bioaugmentation dosage in the range of 3% to 12% was positively correlated with the methane yields. The optimal dose was 12%, with the methane yields of 134.1 mL/g VS. The accumulative methane yield was 2.35 times higher than that of the control. By contrast, there was no increase in the methane yields within the higher bioaugmentation dosage (i.e., 15%-18%). The modified Gompertz model showed that the concentrated indigenous inoculum was reduced the lag phase from 3.501 to 12.509 days, indicating the necessity of bioaugmentation with the key microbial consortia to boost the methane yields. Bioaugmentation inocula with the propionate-degrading consortia was shorten the lag phase from 0.716 to 12.509 days, whereas, there was the increase in the maximum methane production rate from 2.445 to 17.929 mL CH4/(gVS·d). Meanwhile, the psychrophilic environment was caused the acetate accumulation up to 4.43 g/L. At the same time, the propionate concentrations were kept at 3.88 g/L in the control reactor in the whole experimental process. Conversely, the bioaugmentation with psychrotrophic propionate-degrading consortia was accelerated the VFAs degradations, especially the acetate and propionate, which was 53.03%-90.71% less than that of the control reactor. Moreover, the acetate and propionate were fully degraded within the first 9 days in the bioaugmented reactors with 9%-15% dosage, indicating the important role of bioaugmented consortia in the scavenging propionate and acetate. Microbial analysis showed that the bioaugmentation increased the relative abundance of taxa (e.g., Proteocatella, Smithella, Peptococcaceae) for the hydrolysis and acetogenesis process. The dominant methanogens in the bioaugmented reactors were represented by acetoclastic methanogens (i.e., Methanothrix and Methanosarcina) and hydrogenotrophic methanogen (Methanobrevibacter), indicating the key contributions to increase the methane yield under psychrotrophic environment. Consequently, the bioaugmentation consortia can generate a domino effect, where acetate levels were reduced first and other VFAs degradation became thermodynamics feasible, leading to the balance between VFAs degradation and methane production. This finding can provide the evidence and guidance to improve the psychrophilic anaerobic digestion through bioaugmentation.
methane; maize stover; psychrophilic anaerobic digestion; bioaugmentation; microbial community
10.11975/j.issn.1002-6819.202211136
S21;TK6
A
1002-6819(2023)-06-0186-08
张新杰,孙永明,闫淼,等. 低温产甲烷菌群对玉米秸秆低温厌氧消化的生物强化作用[J]. 农业工程学报,2023,39(6):186-193.doi:10.11975/j.issn.1002-6819.202211136 http://www.tcsae.org
ZHANG Xinjie, SUN Yongming, YAN Miao, et al. Bioaugmentation of psychrophilic methanogenic microbial consortia on psychrophilic anaerobic digestion of maize stovers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(6): 186-193. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202211136 http://www.tcsae.org
2022-11-15
2023-03-08
中国科学院战略性先导科技专项(XDA21050400);国家自然科学基金面上项目(52170143);广东省自然科学基金面上项目(2021A1515012082);中国科学院青年创新促进会
张新杰,研究方向为低温厌氧发酵与生物强化技术。Email:zhangxinjie1222@163.com
李颖,博士,研究员,研究方向为有机固体废弃物生物处理及资源化利用。Email:liying@ms.giec.ac.cn