夏振尧,闫茹冰,张 伦,张千恒,4,朱志恩,董欣慧,向 瑞,代 运,肖 海,2
狗牙根根系抗拉性能对水淹时长的响应
夏振尧1,2,3,闫茹冰1,张 伦1,张千恒1,4,朱志恩1,董欣慧1,向 瑞1,代 运1,肖 海1,2※
(1. 三峡库区地质灾害教育部重点实验室,宜昌,443002;2. 三峡大学土木与建筑学院,宜昌,443002;3. 三峡库区生态环境教育部工程研究中心,宜昌 443002;4. 葛洲坝集团交通投资有限公司,武汉,430000)
为明确水淹胁迫下植物根系对水淹时长的响应特征,该研究以三峡库区消落带优势植物狗牙根根系为研究对象,以未水淹为对照,分析不同水淹时长下(0,15,30,60,90,120,150和180 d)狗牙根根重密度、根系活力及抗拉性能的变化规律,明确根系抗拉性能对水淹时长的响应规律。结果表明:随着时间的增加,对照组根重密度和根系活力基本无明显变化,而淹没组根重密度与根系活力均随水淹时长增加呈先急剧减小后缓慢减小的变化规律,水淹初期(15 d)减小量分别占根重密度和根系活力总减小量的65.15%和75.86%。水淹环境会明显降低狗牙根根系抗拉性能,根系最大抗拉力和抗拉强度均随水淹时长的增加而下降,180 d水淹分别造成根系抗拉系数和抗拉强度系数减小了59.46%和59.48%。不同直径根系对水淹的响应程度有所不同,根系最大抗拉力下降程度随其直径的增加而增加,0.6~0.7 mm直径狗牙根根系最大抗拉力下降幅度最大,达7.56 N,抗拉强度下降程度则随根系直径的减小而增加,0.1~0.2 mm直径狗牙根根系抗拉强度下降幅度最大,达36.42 MPa。因此,水淹显著降低狗牙根根重密度、根系活力和抗拉性能(<0.05),根系活力能够较好的解释其抗拉性能的变化。研究结果对进一步探究水淹胁迫下根系固土机理具有重要科学意义。
根系;抗拉性能;单根抗拉;水淹环境;根系活力;狗牙根;消落带
植物是防治水土流失的重要积极因素,其根系具有加筋护坡固土作用[1],可将土体所受剪应力转变为自身所受拉应力从而增强土体抗剪强度。根系抗拉力是反映根系固土抗蚀能力的重要参数[2],其抗拉强度也可作为评判根系固土能力的有效指标[3]。
植物根系抗拉性能受到自身性质(直径、含水率、成分等)和外界环境因素(火烧、除草剂、损伤等)的影响[4]。大量研究表明根系抗拉力和抗拉强度随根系直径增加分别呈现幂函数的增加和减少[5]。根系含水率增加会降低细胞壁有机聚合物之间的键强度,从而减小根系抗拉强度[6-7]。SU等[8]研究表明根系抗拉性能与其成分密切相关,纤维素和木质素与根系抗拉强度呈正相关关系。此外,KAMCHOOM等[9]研究发现火烧与喷洒除草剂处理会改变根系成分组成,使得纤维素和木质素快速下降,进而造成根系抗拉强度降低。苏日娜[10]研究表明损伤力越大,沙棘和杨柴根系愈伤后抗拉强度越小。王博[11]发现持续拉拔破坏对灌木根系组织、细胞产生极大破坏,形成的机械损伤对灌木根系活性的抑制作用显著大于瞬时拉拔破坏,且受损自修复后根系生长速率和力学性能均明显变小。
消落带是连接水陆生态系统的交错、过渡区域,兼具水域和陆地两重属性,也是生态环境比较脆弱的敏感地带和易污染地带,其原生植物会因持续水淹或交替水淹环境而影响其生理特征,甚至导致其死亡[12]。水淹环境明显改变植物生境,而植物也通过自身改变以适应水淹环境,研究表明植物对水淹环境的响应策略主要分为“静止型”和“逃避型”2类[13]。其中,“逃避型”植物通过茎节间、叶片和叶柄等器官组织的剧烈伸长以逃避水淹环境,增大与气体和光照环境的接触,从而减轻水淹对植物的胁迫,而“静止型”植物则通过降低自身能量消耗使自身在水淹胁迫中能够更长期的存活。消落带植物为适应水淹环境而做出的生理生态响应,也势必会影响其根系力学性能,但目前关于植物根系抗拉性能对水淹的响应尚不清楚。因此,本研究以三峡库区消落带原生优势植物狗牙根根系为研究对象,以未水淹为对照,通过模拟水淹试验系统分析水淹时长对狗牙根根系抗拉性能的影响,为进一步探究水淹环境下根系固土机理,以期为三峡库区消落带植被恢复、水土治理以及生态环境的保护提供理论依据。
试验所用紫色土取自位于三峡库区的湖北省宜昌市秭归县水田坝乡(110°38′~110°44′E,30°21′~30°10′N),为三峡库区消落带代表性土壤类型。将所采集的土壤运至三峡大学地质灾害与防治中心风干后过5 mm筛并清除根系等杂质后备用。烘干法测得土壤含水率为15.0%,环刀法测得土壤容重为1.35 g/cm3,电位法测得土壤pH值为6.80(水土比为5∶1),液塑限联合测定法测得液限和塑限分别为33.70%和19.70%,筛分法测得土壤颗粒级配中>2.00、>0.50~2.00、>0.25~0.50、0.075~0.25和<0.075 mm颗粒分别占24.35%、40.34%、14.46%、12.45%和8.40%。
狗牙根()为禾本科多年生低矮草本植物,根系发达,在水淹环境中具有快速恢复生长和迅速繁殖的能力[14],被认为是三峡消落带分布最广泛的植物种类,也是目前消落带各高程的优势种群[15]。
将风干过筛后的土壤与2019年8月按照野外自然容重铺填于面积约为60 m2的试验场地,随后将狗牙根种子按照15 g/m2均匀撒播于土壤表面并开始养护。种子萌发期早晚进行浇水养护,萌芽后每3~5 d浇水养护一次,2个月后自然养护,期间及时清除样地内杂草以避免杂草过多挤压狗牙根生存情况。水淹试验开始前,狗牙根已经生长2 a以上。
三峡水库采用“蓄清排浑”运行方式,一般1月至5月为水位消退期,水位从175 m缓慢下降至145 m,5月至9月份为低水位期,除降雨影响外水位基本维持在145 m,9月至10月为水位回升期,水位从145 m逐渐回升至175 m,11月至次年1月底为满库运行期,水位175 m[16]。库区消落带区域大部分水淹持续时间为6个月以下,因此本研究设置0,15,30,60,90,120,150和180 d共8个水淹时长以研究水淹时长对狗牙根根系性能的影响。于2021年9月开始将狗牙根试样(长×宽×高为30 cm×30 cm×10 cm)淹没于深度为60 cm水箱中(实际淹没深度50 cm),进行水淹处理(submersion group,SG)。水淹期间使用黑布覆盖遮挡水箱上部和四周以模拟消落带植物水淹后无光的状态,待达到设计水淹时长时,随机取出试样用于后续分析。同时,另一组试样正常置于室外,不进行水淹处理作为对照(control,CK),并在相应水淹时长时随机取出试样用于分析。
本研究通过分析根重密度和根系活力变化以分别描述水淹对根系整体和根系状态的影响。使用自制取样盒(长、宽、高均为10 cm)在所选取的试样中取样,然后采用水洗法将取样盒中的根系获取并置于60 ℃烘箱中烘干并称量,用于计算根重密度和根系含水率。经测,CK组根系含水率为94.55%±3.33%,SG组根系含水率为95.34%±2.89%,SG组根系含水率略大于CK组,但两者无显著性差异(>0.05)。同时,将试样中剩余根系全部洗出用于测定根系活力和抗拉性能。根系活力采用氯化三苯基四氮唑法(TTC—脱氢酶还原法)[17]测定,根系抗拉性能采用量程100 N、精度为0.50%的艾德堡数显推拉计HP-100测定。在CK组和SG组中随机剪取大小不一、顺直且直径均匀、完整无损的根段各30根(长度为(100±5) mm)用于单根抗拉试验。使用游标卡尺测量根系两端及中间部分直径,以此计算出平均直径作为单根直径。随后将测量直径的单根放入自封袋并编号,放入冰箱内保鲜储存,所有拉拔试验于24 h内完成以避免根系脱水对试验结果造成影响。试验过程中抗拉试验速率为10.0 mm/min,所有靠近钳口部分因夹断或者根皮脱落等原因造成根系断裂的试验均视为失败,被拉断部位在中间1/3段部位时视为成功。
根重密度是指单位体积土壤中根系的质量,可按式(1)计算。
式中为根重密度,g/m3;为根系干质量,g;为试样体积,m3。
根系活力是指根系吸收和合成营养成分以及氧化还原的能力,其直接影响植物的生长发育,是植物生长发育的重要生理指标之一,按式(2)计算。
式中为根系活力,µg/(g·h);TTF为氯化三苯基四氮唑还原量,µg;W为根鲜质量,g,为时间,h。
根系抗拉强度是指根系抵抗外部轴向拉伸作用时的最大能力,即根系最大负载力与其面积之比,是评估植物力学固坡效果的重要指标,按式(3)计算。
式中T为根系抗拉强度,MPa;F为最大抗拉力,N;为根系直径,mm;
采用Excel进行相关数据处理,通过SPSS.22.0分析显著性,采用Origin2019进行图形绘制与处理。
CK组狗牙根根重密度随时间增加整体无明显变化,其根系活力则呈现小幅度波动;而SG组根重密度和根系活力均随水淹时长的增加呈现先减小后缓慢波动的变化规律(图1)。CK组在不同时间下狗牙根根重密度基本无显著性差异(>0.05),根系活力则表现为前60 d显著高于90~180 d;而各水淹时长下淹没组根重密度和根系活力均显著小于刚开始水淹。与刚开始水淹相比,水淹180 d根重密度与根系活力分别减少了28.42%和55.80%,根系活力减少幅度远大于根重密度的减少幅度,表明水淹对根系活力的影响更大。进一步分析发现水淹初期(15 d)根重密度和根系活力减少量分别占总减小量的65.15%和75.86%,表明水淹初期对根系的影响最大,随后根系逐渐适应水淹环境,水淹对根系的影响减小。与CK组相比,除第0天外各水淹时长下SG组根重密度和根系活力均出现显著(0.05)减小,说明水淹明显影响狗牙根根系性质。
CK组在第0,15,30,60,90,120,150和180天时长下根系最大抗拉力范围分别为1.36~12.62,1.69~12.98,1.33~10.17,1.24~12.40,0.98~10.79,0.50~11.81,0.87~10.96和0.53~10.35 N,表明试验周期内CK组根系最大抗拉力整体变化不大(表1)。SG组狗牙根根系最大抗拉力随水淹时长的增加下降明显,在第0,15,30,60,90,120,150和180天水淹时长下根系最大抗拉力范围分别为1.36~12.62,0.80~6.94,0.46~9.33,0.72~5.82,0.20~4.79,0.50~5.31,0.37~4.46和0.33~4.85 N,表明水淹显著影响根系最大抗拉力。此外,同一时长下,水淹条件下根系最大抗拉力整体小于未水淹的对照组,同样说明水淹环境会减小根系最大抗拉力。
相同条件下狗牙根根系最大抗拉力随根系直径呈幂函数增加(式(4))(<0.01)[18],拟合结果见表1。
注:不同大写字母表示同一时间不同处理差异显著(<0.05);不同小写字母表示同一处理不同时间差异显著(<0.05),CK为对照组,SG为淹没组。
Note: Different capital letters indicate the significance differences of different processing methods at the same time (<0.05); Different lower case letters indicate the significance differences of different test time with the same processing methods (<0.05); CK is the control group and SG is the submerged group.
图1 水淹时长对狗牙根根重密度与根系活力的影响
Fig.1 Effects of submersion duration on root density and root activity of
表1 根系直径与狗牙根最大抗拉力拟合结果
CK组抗拉力系数随着水淹时长的增加呈现先缓慢增大后缓慢减小至波动稳定的趋势,而SG组抗拉力系数则随水淹时长的增大则呈现先急剧减小后缓慢减小的变化趋势,均与其根系活力变化趋势基本一致。对于淹没组,相比第0 天,水淹时长为15、30、60、90、120、150和180 d时,根系的抗拉力系数分别减小了38.42%、42.86%、58.27%、52.48%、55.95%、57.03%和59.46%,水淹初期减小量占总减小量的64.61%,表明水淹前期对根系最大抗拉力影响最大,随后影响减弱。CK组和SG组的抗拉力幂系数随着时间变化而波动变化,分别集中在1.46~1.80和1.36~1.73,CK组略大于SG组,表明水淹胁迫略微减小根系抗拉力随根系直径增大的增加速率。
CK组在第0、15、30、60、90、120、150和180天,根系的抗拉强度分别为30.73~78.86,28.04~70.72,28.93~55.95,28.13~88.32,24.17~36.45,24.61~52.32,26.33~53.99和24.86~50.95 MPa,表明试验周期内,CK组根系抗拉强度随水淹时长增加略有减小(表 2)。SG组狗牙根根系抗拉强度随水淹时长的增加也出现明显下降,在水淹第0、15、30、60、90、120、150和180天,根系的抗拉强度范围分别为30.73~78.86,17.68~68.97,9.75~42.39,12.04~39.73,6.77~30.02,11.34~40.10,10.59~19.43和9.89~29.63 MPa,表明水淹明显影响根系抗拉强度。各时长下SG组狗牙根根系抗拉强度均明显小于CK组,由此可知,水淹环境会降低狗牙根根系抗拉强度。
狗牙根根系抗拉强度与直径之间呈幂函数负相关关系[19](式(5)),拟合结果见表2。
表2 直径与狗牙根抗拉强度拟合结果
式中T为抗拉强度,MPa;为抗拉强度系数,表征根系直径为1时的抗拉强度;为抗拉强度幂系数,表征根系抗拉强度随根系直径增大的减小速率,其值越小,表示减小速率越快。
CK组抗拉强度系数随着时间的增加呈现先缓慢增大后缓慢减小至波动稳定的趋势,而SG组抗拉强度系数则随水淹时长的增大则呈现先急剧减小后缓慢减小的变化趋势,均与其根系活力变化趋势基本一致。相比第0天,水淹时长为15、30、60、90、120、150和180 d,根系的抗拉强度系数值分别减少了38.45%、42.87%、58.26%、52.50%、55.95%、55.95%和59.48%,水淹初期的减小量占值总减小量的64.64%,表明水淹初期对根系抗拉强度影响最大,之后影响减弱。CK组和SG组抗拉强度幂系数随着水淹时长的增加均呈波动变化,分别集中在-0.10~-0.54和-0.27~-0.64,SG组略大于CK组,表明水淹胁迫略微增大根系抗拉强度随直径增大而减小的速率。
不同时长下CK组各径级下狗牙根根系平均最大抗拉力变化不大,大致呈现先小幅度增加后波动至稳定的变化趋势,而SG组各径级狗牙根根系平均最大抗拉力均呈现先在水淹初期快速减小,后期波动稳定的变化规律(图2)。水淹对不同径级狗牙根根系最大抗力的影响程度存在差异,水淹180 d时SG组0.1~0.2,>0.2~0.3,>0.3~0.4,>0.4~0.5,>0.5~0.6和>0.6~0.7 mm径级的狗牙根根系经水淹后平均最大抗拉力较第0天分别减小了1.02,1.64,0.95,3.50,4.49和7.56 N,说明根系最大抗拉力下降程度随其直径的增加而增加。
图2 水淹时长对各直径级狗牙根最大抗拉力的影响
随着时间的增加,CK组各径级根系平均抗拉强度均呈现波动稳定的变化规律,其中小直径(<0.3)波动性更大,而SG组各径级根系平均抗拉强度均呈现水淹初期快速减小,后期稳定波动的变化规律(图3)。水淹对不同径级根系抗拉强度的影响程度不一样,与第0天相比,第180天SG组0.1~0.2、>0.2~0.3、>0.3~0.4、>0.4~0.5、>0.5~0.6和>0.6~0.7 mm径级狗牙根根系经水淹后平均抗拉强度分别下降了36.42、34.07、10.44、20.96、20.39和20.95 MPa,表明根系抗拉强度下降程度随着根系直径的减小而增加。
图3 水淹时长对各直径级狗牙根抗拉强度的影响
CK组根重密度和根系活力在试验期内分别呈现稳定和先增加后减小波动稳定的变化规律,这可能与季节变化相关。CK组根系活力与根重密度前期因植物的生长发育而增加,进入秋冬季后又因气温骤降,因而缓慢降低,待进入春季气温回升后根系活力与根重密度略有提升。与CK组相比,水淹显著减小根重密度和根系活力,且随水淹时长增加,狗牙根根重密度和根系活力均呈现先快速减小后缓慢减小,与SAEKI等[20]研究的结果一致。水淹环境下,一方面供氧不足和缺氧会诱发狗牙根体内酒精发酵产生乙醇,过量的乙醇积累会进一步诱发植物产生酸毒症[21],继而抑制狗牙根的氧化还原能力,从而导致狗牙根的根系活力降低以及初生根的死亡。试验过程中观察发现水淹15 d后靠近地面部分的根系逐渐变黑,至水淹180 d后根系出现大面积变黑情况。另一方面,植物厌氧代谢会消耗大量的碳水化合物[22],使根系碳水化合物含量显著降低,进而导致根重密度的减小。与刚开始水淹相比,水淹初期根重密度和根系活力降低值分别占整个水淹期降低值的65.15%和75.86%,之后根系为适应水淹环境做出相应自我调整,如水淹30 d后开始生成不定根以增大根系与氧气的接触面积,水淹60 d时可以观察到发育良好的不定根(图4)。植物根系通过有氧呼吸增强根系氧化还原能力[23],提高对水淹的适应性,但根系内淀粉及可溶性糖的减少会促使根系继续降低自身活力以适应长期水淹环境[24]。
a. 水淹30 d根系形态 a. Root morphology in 30 d of submersionb. 水淹60 d根系形态 b. Root morphology in 60 d of submersion
狗牙根根系抗拉力与抗拉强度随水淹时长的增加而持续减小,这可能是由于持续水淹环境会造成根系受损甚至变黑腐烂,受损根系中的组织与细胞遭受严重破坏,进而导致其抗拉性能的削弱[25]。狗牙根根系抗拉力和抗拉强度随着直径的增大分别呈幂函数增大和减小,这与国内外学者研究基本一致[26]。试验中SG组的拟合系数明显小于CK组,表明水淹显著影响狗牙根根系抗拉力及抗拉强度与直径的关系。随着水淹时长的增加,CK组和SG组的抗拉力系数和抗拉强度系数与根系活力变化趋势基本一致,而相应的幂系数则无明显变化规律。为量化根系活力对上述系数的影响,回归分析表明狗牙根抗拉力系数和抗拉强度系数与根系活力呈现极显著对数相关(<0.01),而相应幂系数则无显著性相关关系(>0.05)(图5),这可能是由于水淹环境下根系抗拉性能的下降与其根系活力的变化相关,并且根系活力主要通过显著影响根系最大抗拉力和抗拉强度与根系直径关系进一步影响根系抗拉性能。
在不同水淹时长下,各径级根系对水淹环境的响应各不同,狗牙根根系直径越大,根系最大抗拉力下降的越明显,而直径越小,根系抗拉强度下降的越明显。根系直径越大,其中储存的能量物质越多,相应日常生活所需消耗越大[27],而水淹环境下未提供足够能量,大根径根系相较小根径根系进行的无氧活动更多,产生更多的毒害物质造成大根径根系氧化还原能力降低更快,因此根系直径越大,根系最大抗拉力下降越快。此外,不同直径级根系抗拉强度下降程度差异可能与根系中纤维含量有关[28],根系韧皮部纤维为吸收水分的活细胞,低级径单根在含水量增加至30%左右的过程中,韧皮部纤维会吸收水分,细胞变得充盈使其韧性降低,更加容易被拉断[29]。而根径小的根系其韧皮部细胞较少,少量水份即可使细胞达到饱和,过多的水分使纤维变得脆弱,抗拉强度随含水量增大而减小[30]。因而根系直径越小,抗拉强度下降的越快。
图5 根系活力与抗拉力、抗拉强度系数与幂系数的关系
值得注意的是,根系含水率对根系力学性能影响显著[31]。ZHANG等[32]研究证明草本植物根系抗拉强度随含水量的增加呈线性下降,HALES等[33]在木本植物试验过程中同样发现了类似规律。根系中水分的积累会破坏细胞壁中半纤维素、纤维素和木质素复合物之间的氢键,使根系内部微纤丝、微晶和纤维之间的距离变大[34],导致有机聚合物间结合强度降低,进而造成根系抗拉性能的下降。然而,本研究中SG组根系含水率虽然略大于CK组根系含水率,但两组之间无显著性差异(>0.05),因此可认为根系含水率对本研究结果的影响有限。
此外,除水淹胁迫外,库水周期性浸泡条件下的消落带土壤,其物理、化学特性均会发生变化,势必也会对植物及根系的生长产生影响,因周期性浸泡产生的土壤理化特性变化进而导致的植物根系力学特性变化贡献有待进一步研究。
1)水淹环境下狗牙根根重密度与根系活力随淹没时间增加呈现先急剧降低后持续降低的变化规律,水淹初期减小量分别占根重密度总减小量的65.15%、根系活力总减小量的75.86%。
2)水淹环境会显著降低狗牙根抗拉性能,根径与根系最大抗拉力系数和抗拉强度系数均随水淹时长的增加而下降,水淹初期抗拉力系数和抗拉强度系数的减少量分别占总减小量的64.61%和64.64%。
3)不同直径根系面对水淹环境的响应程度不同,0.6~0.7 mm径级的狗牙根根系最大抗拉力下降幅度最大,达7.56 N,0.1~0.2 mm径级的狗牙根根系抗拉强度下降幅度最大,达36.42 MPa。
4)根系活力与抗拉力系数和抗拉强度系数具有良好的对数拟合关系,水淹环境造成的根系活力降低,进一步导致根系抗拉性能的下降。
[1] 宋维峰,陈丽华,刘秀萍. 林木根系固土的理论基础[J]. 水土保持通报,2008,28(6):180-186. SONG Weifeng, CHEN Lihua, LIU Xiuping. Review of theories of soil reinforcement by root system in forest[J]. Bulletin of Soil and Water Conservation, 2008, 28(6): 180-186. (in Chinese with English abstract)
[2] 徐文秀,杨玲,鲍玉海,等. 大型水库消落带2种典型耐淹草本植物单根抗拉力学特性[J]. 水土保持研究,2020,27(5):259-264,272. XU Wenxiu, YANG Ling, BAO Yuhai, et al. Tensile mechanical properties single root of two typical flood-tolerant herbs in the reservoir riparian zone[J]. Research of Soil and Water Conservation, 2020, 27(5): 259-264, 272. (in Chinese with English abstract)
[3] YAN Z, SONG Y, JIANG P, et al. Mechanical analysis of interaction between plant roots and rock and soil mass in slope vegetation[J]. Applied Mathematics and Mechanics, 2010, 31(5): 617-622.
[4] 雷相科,张雪彪,杨启红,等. 植物根系抗拉力学性能研究进展[J]. 浙江农林大学学报,2016,33(4):703-711. LEI Xiangke, ZHANG Xuebiao, YANG Qihong, et al. Research progress on the tensile mechanical properties of plant roots[J]. Journal of Zhejiang A & F University, 2016, 33(4): 703-711. (in Chinese with English abstract)
[5] 李可,朱海丽,宋路,等青藏高原两种典型植物根系抗拉特性与其微观结构的关系[J]. 水土保持研究,2018,25(2):240-249. LI Ke, ZHU Haili, SONG Lu, et al. Relationship between tensile properties and microstructure of two typical plant roots in the Qinghai-Tibet Plateau[J]. Research of Soil and Water Conservation, 2018, 25(2): 240-249. (in Chinese with English abstract)
[6] MAHANNOPKUL K, JOTISANKASA A. Influence of root suction on tensile strength ofroots and its implication on bioslope stabilization[J]. Journal of Mountain Science, 2019, 16(2): 275-284.
[7] HALES T C, MINIAT C F. Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability[J]. Earth Surface Processes and Land forms, 2017, 42(5): 803-813.
[8] SU X M, ZHOU Z C, LIU J E, et al. The role of roots traits of climax community species to shear strength in the Loess Hilly Region, China[J]. Soil & Tillage Research, 2022, 221: 105417.
[9] KAMCHOOM V, BOLDRIN D, LEUNG A K, et al. Biomechanical properties of the growing and decaying roots of[J]. Plant and Soil, 2022, 471(1): 193-210.
[10] 苏日娜. 干旱区两种水土保持植物根系力学特性的比较[D]. 呼和浩特:内蒙古农业大学,2020.
SU Rina. Comparison of Root Mechanical Properties of Two Soil and Water Conservation Plants in Arid Area[D]. Hohho: Inner Mongolia Agricultural University, 2020.
[11] 王博. 半干旱区水土保持灌木根系拉拔损伤后的自修复机制[D]. 呼和浩特:内蒙古农业大学,2019.
WANG Bo. Mechanisms of Self-Healing After Drawing Damaged of Soil and Water Conservation Shrub Roots in Semi-Arid Areas[D]. Hohho: Inner Mongolia Agricultural University, 2019.
[12] BAO Y, TANG Q, HE X, et al. Soil erosion in the riparian zone of the Three Gorges Reservoir[J]. Hydrology Research, 2015, 46(2): 212-221.
[13] 杨玲,刘玲,胡馨月,等. 水淹胁迫对小蓬草()的形态结构与生理生化特性的影响[J]. 生态科学,2020,39(5):134-141. YANG Ling, LIU Ling, HU Xinyue, et al. Effects of flooding stress on the morphological structure, physiological and biochemical characteristics of[J]. Ecological Science, 2020, 39(5): 134-141. (in Chinese with English abstract)
[14] 王强,袁兴中,刘红,等. 三峡水库初期蓄水对消落带植被及物种多样性的影响[J]. 自然资源学报,2011,26(10):1680-1693. WANG Qiang, YUAN Xingzhong, LIU Hong, et al. Effect of initial impoundment on the vegetation and species diversity in water-level fluctuation zone of the Three Gorges Reservoir[J]. Journal of Natural Resources, 2011, 26(10): 1680-1693. (in Chinese with English abstract)
[15] 王晓锋,刘婷婷,龚小杰,等. 三峡库区消落带典型植物根际土壤磷形态特征[J]. 生态学报,2020,40(4):1342-1356. WANG Xiaofeng, LIU Tingting, GONG Xiaojie, et al. Phosphorus forms in rhizosphere soils of four typical plants in the littoral zone of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2020, 40(4): 1342-1356. (in Chinese with English abstract)
[16] 罗先启,葛修润. 滑坡模型试验理论及其应用[M]. 北京:中国水利水电出版社,2008.
[17] LI J, Xu X, LIN G, et al. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain[J]. Science of the Total Environment, 2018, 643: 367-377.
[18] BISCHETTI G B, CHIARADIA E A, SIMONATO T, et al. Root strength and root area ratio of forest species in Lombardy(Northern Italy)[J]. Plant Soil, 2005, 278(1/2): 11-22.
[19] 洪苗苗,汪霞,赵云飞,等. 浅层滑坡多发区典型植被恢复树种根系对土壤抗剪强度影响[J]. 山地学报,2018,36(1):107-115. HONG Miaomiao, WANG Xia, ZHAO Yunfei, et al. The effect of root system of typical vegetation restoration tree species on soil shear strength in shallow landslide prone areas[J]. Mountain Research, 2018, 36(1): 107-115 (in Chinese with English abstract)
[20] SAEKI A, IWASAKI N. The submergence of the graft union causes the death of grafted mango trees () under flooding[J]. Agronomy, 2020, 10(8): 1121.
[21] 丁林,王文娟,吴婕,等. 不同喷灌定额下垄作沟播油葵根系生长及分布特征[J]. 节水灌溉,2022(2):28-33. DING Lin, WANG Wenjuan, WU Jie, et al. Root growth and distribution characteristics of ridge and furrow planting oil sunflower under different sprinkler irrigation quota[J]. Water Saving Irrigation, 2022(2): 28-33. (in Chinese with English abstract)
[22] 李彦杰,刘仁华,杨俊年,等. 水淹胁迫下三峡库区野生狗牙根根系酶活性变化[J]. 水土保持研究,2014(3):288-292. LI Yanjie, LIU Renhua, YANG Junnian, et al. Dynamics of enzyme activities ofroots from hydro-fluctuation belt in the Three Gorges Reservoir Area during flooding[J]. Research of Soil and Water Conservation, 2014(3): 288-292. (in Chinese with English abstract)
[23] 马利民,唐燕萍,张明,等. 三峡库区消落区几种两栖植物的适生性评价[J]. 生态学报,2009,29(4):1885-1892. MA Limin, TANG Yanping, ZHANG Ming, et al. Evaluation of adaptability of plants in water-fluctuation-zone of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2009, 29(4): 1885-1892. (in Chinese with English abstract)
[24] 李秋华,刘送平,支崇远,等. 三种水库消落带草本植物对完全水淹的适应机制研究[J]. 热带亚热带植物学报,2013,21(5):459-465. LI Qiuhua, LIU Songping, ZHI Chongyuan. et al. Adaptation mechanism of three herbs in the water-level-fluctuation-zone of reservoir to complete submergence[J]. Journal of Tropical and Subtropical Botany, 2013, 21(5): 459-465. (in Chinese with English abstract)
[25] 王博,刘静,李有芳,等. 不同损伤条件下沙柳直根力学特性的自修复差异[J]. 生态学杂志,2018,37(12):3549-3555. WANG Bo, LIU Jing, LI Youfang, et al. Self-healing of mechanical properties ofstraight roots under different damage conditions[J]. Chinese Journal of Ecology, 2018, 37(12): 3549-3555. (in Chinese with English abstract)
[26] 肖海,张千恒,夏振尧,等. 拉拔作用下护坡植物香根草根系的力学性能[J]. 农业工程学报,2022,38(11):91-97. XIAO Hai, ZHANG Qianheng, XIA Zhenyao, et al. Characteristic of mechanical properties and failure types ofroot under tensile and pullout conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 91-97. (in Chinese with English abstract)
[27] 柳家荣,屠礼传,徐如强,等. 芝麻的耐涝性与基因型及根系活力的关系[J]. 华北农学报,1993,8(3):82-86. LIU Jiarong, TU Lichuan, XU Ruqiang, et al. The relationship between the waterlogging resistance and the genotypes and the vigor of root system in sesame[J]. Acta Agriculturae Boreali-Sinica, 1993, 8(3): 82-86. (in Chinese with English abstract)
[28] 蒋坤云. 植物根系抗拉特性的单根微观结构作用机制[D]. 北京:北京林业大学,2013. JIANG Kunyun. Mechanism of the Microstructure of a Single Root to the Tensile Properties of Plant Root System[D]. Beijing: Beijing Forestry University, 2013.
[29] 朱海丽,胡夏嵩,毛小青,等. 护坡植物根系力学特性与其解剖结构关系[J]. 农业工程学报,2009,25(5):40-46. ZHU Haili, HU Xiasong, MAO Xiaoqing, et al. Relationship between mechanical characteristics and anatomical structures of slope protection plant root[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 40-46. (in Chinese with English abstract)
[30] 蒋坤云,陈丽华,盖小刚,等. 华北护坡阔叶树种根系抗拉性能与其微观结构的关系[J]. 农业工程学报,2013,29(3):115-123. JIANG Kunyun, CHEN Lihua, GE Xiaogang, et al. Relationship between tensile properties and microstructures of three different broadleaf tree roots in North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 115-123. (in Chinese with English abstract)
[31] MAHANNOPKUL K, JOTISANKASA A. Influence of root suction on tensile strength ofroots and its implication on bioslope stabilization[J]. Journal of Mountain Science, 2019, 16(2): 275-284.
[32] ZHANG C, XIA Z, JING J, et al. Root moisture content influence on root tensile tests of herbaceous plants[J]. Catena, 2019, 172: 140-147.
[33] HALES T C, MINIAT C F. Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability[J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2017, 42(5): 803-813.
[34] 刘鹏飞. 4种植物侧根分支处抗折力学特性的研究[D]. 呼和浩特:内蒙古农业大学,2016.
LIU Pengfei. The Anti-Fracture Mechanical Characteristicsof Four Kinds of Lateral-Root Branches[D]. Hohho: Inner Mongolia Agricultural University, 2016.
[35] 周紫璇,陆颖,钟荣华,等. 大坝运行对水库消落带土壤环境影响研究进展[J]. 水文,2019,39(1):15-19. ZHOU Zixuan, LU Ying, ZHONG Ronghua, et al. Research progress on soil environment of water-level fluctuation zone affected by dam operation[J]. Journal of China Hydrology, 2019, 39(1): 15-19. (in Chinese with English abstract)
Response of tensile properties inroot to submersion duration
XIA Zhenyao1,2,3, YAN Rubing1, ZHANG Lun1, ZHANG Qianheng1,4, ZHU Zhi’en1, DONG Xinhui1, XIANG Rui1, DAI Yun1, XIAO Hai1,2※
(1.,,443002,;2.,,443002,; 3.-,,443002,; 4..,.,430000)
Plants can significantly alter the physiological and ecological characteristics to adapt to the continuous submersion in the water-level fluctuation zone, thus leading to the performance of root on soil reinforcement. However, it is still unclear on the effects of submersion duration on the tensile properties of plant roots. In this study, the dominant plant in the water-level fluctuation zone of the Three Gorges reservoir area,, was selected as the research object. The seeds were sown at 15 g/m2on a purple soil field in August 2019, and the maintenance was then conducted more than two years before the beginning of the submersion test. Samples were taken in September 2021 and then submersed in the water tank with a submerged depth of 50 cm. Among them, the water tank was covered with the black cloth to simulate the dark condition during submersion. The unsubmerged condition was used as the control. The root weight density, root activity, and tensile properties were analyzed under eight submersion durations (0, 15, 30, 60, 90, 120, 150, and 180 d), in order to evaluate the response of tensile properties ofroot to submersion duration. The results indicated that there was a rapid decrease in the root weight density and root activity, followed by a slow but continuous decline with the increasing of submersion duration in the submersion group, compared with the control. The root weight density and root activity decreased by 28.42%, and 55.80%, respectively, for the submersion duration 180 d, compared with at the beginning of the submersion test. The root weight density and root activity decrease in the initial stage of submersion (15 d), accounting for 65.15% and 75.86% of the total decrement, respectively. Meanwhile, the maximum tensile strength of the root was closely related to the root diameter with the power function. The tensile force and tensile strength coefficientdecreased with the increase of submersion duration, while the tensile force and tensile strength power coefficientshowed no outstanding change. The tensile force and tensile strength coefficientfor the relation of root diameter with the maximum tensile strength and tensile strength decreased by 38.42%, 42.86%, 58.27%, 52.48%, 55.95%, 57.03%, 59.46%, and 38.45%, 42.87%, 58.26%, 52.50%, 55.95%, 55.95%, and 59.48%, respectively for the submersion duration15, 30, 60, 90, 120, 150, and 180 d, compared with at the beginning of the submersion test. The initial stage of submersion accounted for 64.61% and 64.64% of the total decrement of fitting tensile force and tensile strength coefficientand, respectively. The response degree of root tensile properties to the submersion also varied with the root diameter. Specifically, the decrement of the maximum tensile strength increased with the increase of root diameter, while the decrement of tensile strength increased with the decrease of root diameter. Moreover, the tensile force and tensile strength coefficientfor the relation of root diameter with the maximum tensile strength and tensile strength shared a significant logarithmic relationship with the root activity. Therefore, the submersion environment significantly reduced the root weight density, root activity, and tensile properties. The root activity can be expected to better explain the changes in the tensile properties. The finding can be of great significance to explore the plant root on soil reinforcement under a submersion environment in the water-level fluctuation zone.
root; tensile properties; single root tensile strength; submersion environment; root activity;root; water-level fluctuation zone
10.11975/j.issn.1002-6819.202212097
S157.9
A
1002-6819(2023)-06-0103-08
夏振尧,闫茹冰,张伦,等. 狗牙根根系抗拉性能对水淹时长的响应[J]. 农业工程学报,2023,39(6):103-110.doi:10.11975/j.issn.1002-6819.202212097 http://www.tcsae.org
XIA Zhenyao, YAN Rubing, ZHANG Lun, et al. Response of tensile properties inroot to submersion duration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(6): 103-110. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202212097 http://www.tcsae.org
2022-12-13
2023-02-11
国家自然科学基金联合基金重点支持项目(U21A2031;U2040207);“土木工程防灾减灾湖北省引智创新示范基地”项目(2021EJD026);中国三峡建设管理有限公司科研项目(BHT/0869)
夏振尧,博士,教授,博士生导师。研究方向为生物岩土水土治理。Email:xzy_yc@126.com
肖海,博士,副教授,博士生导师。研究方向为生物岩土水土治理。Email:oceanshawctgu@163.com