具有质量涨落的双分数阶耦合振子系统的随机共振

2023-04-29 15:07:11夏伟任芮彬罗懋康邓科
关键词:共振阻尼峰值

夏伟 任芮彬 罗懋康 邓科

本文对具有质量涨落的双分数阶耦合振子系统的随机共振(Stochastic Resonance,SR)进行了研究.利用Shapiro-Loginov公式和Laplace变换求得系统输出振幅增益(Output Amplitude Gain,OAG)的解析式后,本文研究了不同参数对OAG共振行为的影响.数值模拟结果显示,OAG随噪声强度、信号频率、阻尼系数的变化出现随机共振.此外分数阶和耦合系数对OAG的随机共振也有影响.

分数阶耦合振子; 质量涨落; 随机共振

O29A2023.021002

收稿日期: 2022-05-06

基金项目: 国家重点研发计划(2020YFA0714000)

作者简介: 夏伟(1998-), 男, 安徽合肥人, 硕士研究生, 主要研究方向为智能系统和数学信息技术.E-mail: 1876555393@qq.com

通讯作者: 邓科.E-mail: dk_83@126.com

Stochastic resonance of a double fractional coupled oscillator system with mass fluctuation

XIA Wei1, REN Rui-Bin2, LUO Mao-Kang1, DENG Ke1

(1.School of Mathematics, Sichuan University, Chengdu 610064, China;

2.College of Mathematics, Southwest Jiaotong University, Chengdu 611756, China)

This paper explores the stochastic resonance (SR) of a coupled fractional  oscillator system with mass fluctuation. The Shapiro-Loginov formula and Laplace transform are applied to obtain the analytical expression of the output amplitude gain (OAG) of the system, and the dependence of OAG on system parameters are studied. Numerical simulation shows that SR can be induced by  the strength of noise, signal frequercy, fractional order, damping intensity, and the fractional order and coupling parameters have an impact on the SR of OAG as well.

Fractional coupled oscillator; Mass fluctuation; Stochastic resonance

1 引 言

近年来,人们发现,在随机非线性系统中当输入信号、噪声以及系统的非线性条件之间存在某种匹配时,系统的稳态响应振幅会显著增大.这一现象因与传统共振现象相似而被称为随机共振(Stochastic Resonance,SR)[1,2].长期以来,对SR现象的研究广受关注,其结果也被应用于物理、生物、工程技术等众多领域[3-9].

在黏弹性介质中,粒子的运动受其历史运动的影响,此时用分数阶导数代替Langevin方程中的整数阶导数是适当的.Soika等[10]研究了双态随机噪声和三态随机噪声驱动的分数阶线性Langevin方程,发现系统出现SR.钟苏川等[11]研究了一个带有固有频率涨落的双分数阶Langevin方程,发现随着外部信号频率、系统参数和噪声参数的变化,系统的输出振幅出现非单调变化.

另一方面,很多系统是相互耦合的.蔚涛等[12]在一个双粒子耦合的分数阶振子系统中引入质量涨落,研究了系统的随机共振.Vishwamittar等[13]研究了一个双粒子耦合的双分数阶Langevin系统,并在系统固有频率和耦合参数中考虑外噪声的影响,发现系统固有频率以及耦合参数的变化会使系统输出振幅增益(Output Amplitude Gain,OAG)出现SR.值得注意的是,粒子往往具有一定的吸附能力,会随机地吸附周围的粒子或分解出粒子,导致其质量的波动[14,15].Gitterman和Shapiro[16]在线性振子中引入质量涨落来模拟随机质量,并发现了SR现象.

据我们了解,现有的研究大多考虑单分数阶Langevin方程中质量涨落[17,18],阻尼涨落[19,20],固有频率涨落[21-23]以及是否存在时延等[24-27],双分数阶耦合振子系统中当粒子出现质量涨落的演化行为还没有被研究过.本文基于双分数阶Langevin方程来构建双粒子耦合系统[28,29]存在质量波动的研究其共振行为.

本文结构如下:第二节介绍模型并求解系统的OAG.在第三节中我们进行模拟仿真,观察随机共振现象. 第四节为总结.

3 数值结果与分析

3.1 随机噪声强度对OAG的作用

首先对我们研究OAG对噪声强度σ2的依赖.

从图1a,1b可以看出,在α值从1.4增加到1.8的过程中,随着噪声强度的增加OAG出现SR,且α越大OAG峰值出现越早,即出现在低噪声强度时.随着α的减小,OAG峰值对应的噪声强度变大.然而,当α取值低于1.6之后OAG达到峰值时的噪声强度虽然仍在增加,但OAG的最大峰值开始逐渐变大.在图1c,1d中,当β值逐渐增加时,OAG同样出现SR,β值越小OAG峰值出现越早,且随着β取值的增大OAG达到峰值时的噪声强度越大.当β取值高于0.75后,OAG达到峰值时的噪声强度虽然仍在增加但OAG的最大峰值开始逐渐变大.综上,当分数阶导数α,β分别向2,0靠近时,OAG达到峰值时的噪声强度变小,峰值较大;当α,β均向1靠近时,虽然系统OAG达到峰值时的噪声强度在增加但OAG的最大峰值出现先减后增,且增加后的OAG峰值可能会高于当α,β分别向2,0靠近时的峰值.

然后,我们对OAG在不同a,b取值下对噪声强度的依赖进行研究.从图2可以看到,OAG随噪声强度增加出现SR.由图2a,2b可以看出,随a增加,SR峰值出现时的噪声强度不断减小,峰值强度逐渐变大.由图2a,2c可以观察到,当OAG的SR达到峰值时噪声强度大致在2左右由图2b,2d可以发现,随着b的增加,OAG达到峰值时的外噪声强度仍然是逐渐减小的趋势,而OAG峰值则随b的增加先增后减,当参数b取值介于0.2~0.3之间时OAG达到最大值.

图3示出了耦合系数ε1,ε2对OAG共振行为的影响.可以看到,随着噪声强度的增加,OAG先增后减,随机共振出现.此外,随耦合系数的变化,OAG的变化趋势不变,均在噪声强度增加至2左右时达到峰值,且随着耦合系数的增加OAG的峰值不断减小,可见粒子越活跃OAG峰值越大.

接下来我们研究阻尼系数对OAG的影响.从图4中我们可以看到,随着噪声强度的增加,OAG先增后减,出现SR,OAG在噪声强度取值在2左右时达到最大,之后随噪声强度的增加迅速减小.阻尼系数部分刻画了黏性介质中粒子所受到的阻尼的大小.由OAG峰值的变化可以看到,阻尼参数越小,OAG的越大,与耦合系数对OAG的影响相同.

3.2 信号频率对OAG的作用

在这一部分,我们研究信号频率的对OAG的作用.同样,我们首先在分数阶导数取不同值的情况下研究OAG的共振行为.

从图5中我们观察到,随着频率的增加,OAG先增后减,SR出现.从图5a,5c.可以观察到,随着α不断向2靠近,OAG的峰值越来越大,达到峰值时的频率不断增加,当α取值为1.9时,OAG达到峰值,此时的频率也最大,约为0.6.其次,由图5b,5d可以看到,随着β的增加,β取值越靠近1时OAG的峰值越大,频率值越低,当β取值为0.9时OAG的峰值达到最大,频率达到最小,约为0.6.可见,当分数阶α,β分别趋向于2和1时,OAG表现出越来越明显的SR,同时OAG达到峰值时的频率取值分别呈现出越来越大和越来越小的趋势,最终均稳定在0.6左右.

下面我们研究噪声强度a,b对OAG的共振行为影响.从图6中我们可以看出,随噪声强度增大,OAG峰值逐渐减小,与一般所认为的外噪声会干扰系统输出的预期一致,当噪声强度增加至一定数值时系统增益消失.因此,在一定范围内,噪声不但不会降低OAG,反而会使OAG的峰值得到提升,即随机共振.

然后我们研究耦合系数对OAG随机共振的作用.从图7中我们可以观察到,随着驱动频率的增加,OAG先增后减,随机共振出现.进一步观察可以看到,随着耦合系数的增加,随机共振的峰值不断降低.从图7a,7c可以看出,当耦合系数ε1逐渐增大时,OAG不断减小,随机共振峰值出现时的频率缓慢增加,向0.6靠近.从图7b,7d可以看出,随着耦合系数ε2的增加,随机共振峰值同样逐渐降低,共振峰值出现时的频率缓慢降低,也向0.6靠近.所以我们认为,在系统参数固定的前提下,可能存在一个最优频率,使OAG达到最大.

最后我们研究阻尼系数对OAG共振的影响.从图8中我们可以看出,随着驱动频率增长,OAG先增后减,随机共振出现.此外,当阻尼系数γ1,γ2逐渐增加时,系统的随机共振峰值逐渐减小.其原因是当耦合系数、阻尼系数增加时,粒子的活跃度降低,导致随机共振峰值降低.另外我们还可以看到,当阻尼系数增加时,OAG达到峰值时的频率同样在逐渐向0.6靠近,即可能存在一个最优频率使(系统参数固定时)OAG达到最优.

4 结 论

本文对一个具有质量涨落的双分数阶耦合振子系统的随机共振进行了研究.结果显示,当系统参数固定时,随着噪声强度、信号频率的变化,系统OAG表现出丰富的SR行为.我们预期所得结果对实际应用可能具有指导意义.

参考文献:

[1] Lanzara E, Mantegna R N, Spagnolo B, et al.Experimental study of a nonlinear system in the presence of noise:the stochastic resonance [J].Am J Phys, 1997, 65: 341.

[2] Wio H S, Lindenberg K.Noise induced phenomena: a sampler [J].Amer Inst Phys, 2003, 658: 1.

[3] Das M, Kantz H.Stochastic resonance and hysteresis in climate with state-dependent fluctuations [J].Phys Rev E, 2020, 101: 62.

[4] Rufener K S, Kauk J, Ruhnau P, et al.Inconsistent effects of stochastic resonance on human auditory processing [J].Sci Rep-Uk, 2020, 10: 6419.

[5] Benzi R.Stochastic resonance: from climate to biology [J].Nonlinear Proc Geoph, 2010, 17: 431.

[6] Barik D, Ghosh P K, Ray D S.Langevin dynamics with dichotomous noise;direct simulation and applications [J].J Stat Mech-Theory E, 2006, 3: 03010.

[7] Jiang S Q, Guo F, Zhou Y R, et al.Parameter-induced stochastic resonance in an over-damped linear system [J].Physica A, 2007, 375: 483.

[8] Guo F, Wang X Y, Qin M Y.Resonance phenomenon for a nonlinear system with fractional derivative subject to multiplicative and additive noise [J].Physica A, 2021, 562: 125.

[9] 钟苏川, 高仕龙, 马洪, 等.线性过阻尼分数阶Langevin方程的共振行为 [J].物理学报, 2012, 61: 170501.

[10] Soika E, Mankin R.Response of a fractional oscillator to multiplicative trichotomous noise [J].Wseas Trans Biol Biomed, 2010, 7: 21.

[11] Zhong S C, Ma Hong, Peng H, et al.Stochastic resonance in a harmonic oscillator with fractional-order external and intrinsic dampings [J].Nonlinear Dynam, 2015, 82: 535.

[12] Yu T, Zhang L, Zhong S C, et al.The resonance behavior in two coupled harmonic oscillators with fluctuating mass [J].Nonlinear Dynam, 2019, 96: 1735.

[13] Vishwamittar, Batra P, Chopra R.Stochastic resonance in two coupled fractional oscillators with potential and coupling parameters subjected to quadratic asymmetric dichotomous noise [J].Physica A, 2021, 561: 125148.

[14] You P L, Lin L F, Wang H Q.Cooperative mechanism of generalized stochastic resonance in a time-delayed fractional oscillator with random fluctuations on both mass and damping [J].Chaos Solition Fract, 2020, 135: 109789.

[15] 蔚涛, 张路, 罗懋康.具有涨落质量的线性谐振子的共振行为 [J].物理学报, 2013, 62: 120504.

[16] Gitterman M, Shapiro I.Stochastic resonance in a harmonic oscillator with random mass subject to asymmetric dichotomous noise [J].J Stat Phys, 2011, 144: 139.

[17] Yang S, Deng M, Ren R B.Stochastic resonance of fractional-order Langevin equation driven by periodic modulated noise with mass fluctuation [J].Adv Differ Equ-Ny, 2020, 2020: 81.

[18] Gitterman M.Stochastic oscillator with random mass: New type of Brownian motion [J].Physica A, 2014, 395: 11.

[19] Huang X P, Lin L F, Wang H Q.Generalized stochastic resonance for a fractional noisy oscillator with random mass and random damping [J].J Stat Phys, 2020, 178: 1201.

[20] He L F, Wu X, Zhang G.Stochastic resonance in coupled fractional-order linear harmonic oscillators with damping fluctuation [J].Physica A, 2020, 545: 123345.

[21] Ren R B, Luo M K, Deng K.Stochastic resonance in a fractional oscillator subjected to multiplicative trichotomous noise [J].Nonlinear Dynam, 2017, 90: 379.

[22] Tu Z, Zhao D Z, Qiu F, et al.Stochastic resonance in coupled underdamped harmonic oscillators with fluctuating frequency driven by dichotomous noise [J].J Stat Phys, 2020, 179: 247.

[23] Zhang G, Wang H, Zhang T Q.Stochastic resonance research on under-damped nonlinear frequency fluctuation for coupled fractional-order harmonic oscillators [J].Results Phys, 2020, 17: 103158.

[24] Wadop Ngouongo Y J, Djolieu Funaye M, Djuidjé Kenmoé G, et al.Stochastic resonance in deformable potential with time-delayed feedback [J].Phil T R Soc A, 2021, 379: 20200234.

[25] Tian Y, He G T, Liu Z B, et al.The impact of memory effect on resonance behavior in a fractional oscillator with small time delay [J].Physica A, 2021, 563: 125383.

[26] Ren R B, Deng K.Noise and periodic signal induced stochastic resonance in a Langevin equation with random mass and frequency [J].Physica A, 2019, 523: 145.

[27] Burov S, Gitterman M.Noisy oscillator: Random mass and random damping [J].Phys Rev E, 2016, 94: 052144.

[28] Yu T, Zhang L, Ji Y D, et al.Stochastic resonance of two coupled fractional harmonic oscillators with fluctuating mass [J].Commun Nonlinear Sci, 2019, 72: 26.

[29] Zhang L, Xu L, Yu T, et al.Collective behavior of a nearest neighbor coupled system in a dichotomous fluctuating potential [J].Commun Nonlinear Sci, 2021, 93: 105499.

[30] Caputo M.Linear models of dissipation whose Q is almost frequency independent-II [J].Geophys J Int, 1967, 13: 529.

[31] Shapiro V E, Loginov V M."Formulae of differentiation" and their use for solving stochastic Equations [J].Physica A, 1978, 91: 563.

[32] Soika E, Mankin R, Ainsaar A.Resonant behavior of a fractional oscillator with fluctuating frequency [J].Phys Rev E, 2010, 81: 011141.

猜你喜欢
共振阻尼峰值
“四单”联动打造适龄儿童队前教育峰值体验
少先队活动(2022年9期)2022-11-23 06:55:52
N维不可压无阻尼Oldroyd-B模型的最优衰减
关于具有阻尼项的扩散方程
具有非线性阻尼的Navier-Stokes-Voigt方程的拉回吸引子
安然 与时代同频共振
选硬人打硬仗——紫阳县党建与脱贫同频共振
当代陕西(2018年12期)2018-08-04 05:49:22
CTA 中纺院+ 化纤联盟 强强联合 科技共振
宽占空比峰值电流型准PWM/PFM混合控制
具阻尼项的Boussinesq型方程的长时间行为
基于峰值反馈的电流型PFM控制方法