邱敏 林宗兵 谭千蓉
References:
[1] Theisinger L. Bemerkung über die harmonische Reihe [J]. Monatsh Math Phys, 1915, 26: 132.
[2] Nagell T. Eine eigenschaft gewisser summen [J]. Skr Norske Vid Akad Kristiania, 1923, 13: 10.
[3] Erds P, Niven I. Some properties of partial sums of the harmonic series [J]. Bull Amer Math Soc, 1946, 52: 248.
[4] Chen Y G, Tang M. On the elementary symmetric functions of 1, 1/2, …, 1/n [J]. Amer Math Monthly, 2012, 119: 862.
[5] Hong S F, Wang C L. The elementary symmetric functions of reciprocal arithmetic progressions [J]. Acta Math Hungari, 2014, 144: 196.
[6] Feng Y L, Hong S F, Jiang X, et al. A generalization of a theorem of Nagell [J]. Acta Math Hungar, 2019, 157: 522.
[7] Wang C L, Hong S F. On the integrality of the elementary symmetric functions of 1, 1/3, …,1/(2n-1) [J]. Math Slovaca, 2015, 65: 957.
[8] Luo Y Y, Hong S F, Qian G Y, et al.The elementary symmetric functions of a reciprocal polynomial sequence [J]. C R Math Acad Sci Paris, 2014, 352: 269.
[9] Feng Y L, Zhao W. On the integrality of the second elementary symmetric function of 1,1/3s1,…,1/(2n-1)sn-1 [J]. J Sichuan Univ: Nat Sci Ed, 2020, 57: 431.
[10] Wolstenholm J. On certain properties of prime numbers [J]. Quart J Pure Appl Math, 1862, 5: 35.
[11] Eswarathasan A, Levine E. p-integral harmonic numbers [J]. Discrete Math, 1991, 91: 249.
[12] Boyd D. A p-adic study of the partial sums of the harmonic series [J]. Experiment Math, 1994, 3: 287.
[13] Kamano K. On 3-adic valuations of generalized harmonic numbers [J]. Integers, 2012, 12: 311.
[14] Sanna C. On the p-adic valuation of harmonic numbers [J]. J Number Theory, 2016, 166: 41.
[15] Sun Q, Hong S F. A p-adic proof of Wolstenholm's Theorem and its generalizations [J]. J Sichuan Univ: Nat Sci Ed, 1999, 36: 840.
[16] Wu B L, Chen Y G. On certain properties of harmonic numbers [J]. J Number Theory, 2017, 175: 66.
[17] Leonetti P, Sanna C. On the p-adic valuation of Stirling numbers of the first kind [J]. Acta Math Hungari, 2017, 151: 217.
[18] Lengyel T. On p-adic properties of the Stirling numbers of the first kind [J]. J Number Theory, 2015, 148: 73.
[19] Komatsu T, Young P. Exact p-adic valuations of Stirling numbers of the first kind [J]. J Number Theory, 2017, 177: 20.
[20] Qiu M, Hong S F. 2-adic valuations of Stirling numbers of the first kind [J]. Int J Number Theory, 2019, 15: 1827.
[21] Hong S F, Qiu M. On the p-adic properties of Stirling numbers of the first kind [J]. Acta Math Hungari, 2020, 161: 366.
[22] Qiu M, Feng Y L, Hong S F. 3-Adic valuations of Stirling numbers of the first kind [EB/OL]. [2022-11-30]. https://arxiv.org/abs/2109.13458.
[23] Feng Y L, Qiu M. Some results on p-adic valuations of Stirling numbers of the second kind [J]. AIMS Math, 2020, 5: 4168.
[24] Hong S F. On the p-adic behaviors of Stirling numbers of the first and second kinds [J]. RIMS Kokyuroku Bessatsu, 2020, 2162: 104.
[25] Hong S F, Zhao J R, Zhao W. The 2-adic valuations of Stirling numbers of the second kind [J]. Int J Number Theory, 2012, 8: 1057.
[26] Hong S F, Zhao J R, Zhao W. The universal Kummer congruences [J]. J Aust Math Soc, 2013, 94: 106.
[27] Zhao J R, Hong S F, Zhao W. Divisibility by 2 of Stirling numbers of the second kind and their differences [J]. J Number Theory, 2014, 140: 324.
[28] Zhao W, Qiu M. Some new results on the p-adic valuations of Stirling numbers of the second kind [J]. J Sichuan Univ: Nat Sci Ed, 2020, 57: 865.
[29] Zhao W, Zhao J R, Hong S F. The 2-adic valuations of differences of Stirling numbers of the second kind [J]. J Number Theory, 2015, 153: 309.
[30] Koblitz N. p-adic numbers, p-adic analysis and zeta-functions [M]. New York: Springer-Verlag, 1984.