卢霖 张超
本文利用Painlevé变换法构造了广义Benjamin-Bona-Mahony(BBM)方程的冲击波解,同时用G′/G-展开法构造了方程的冲击波解和有理解. 两种方法的比较结果显示,用Painlevé变换法直观简便.
Benjamin-Bona-Mahony方程; 冲击波解; Painlevé变换法; G′/G-展开法
O175.29A2023.011005
收稿日期: 2022-04-24
基金项目: 湖南省教育厅青年项目(22B0886); 湖南省自然科学基金(2017JJ3044); 湖南省自然科学基金(2018JJ2073); 湖南省教育厅重点项目(21A0576)
作者简介: 卢霖(1987-), 男, 安徽阜南人, 博士, 主要研究方向为微分方程与动力系统.
通讯作者: 张超.E-mail: flyheartzc@21cn.com
Kink solutions for the generalized Benjamin-Bona-Mahony equation constructed by Painlevés transformation method
LU Lin1, ZHANG Chao2
(1. School of Mathematics and Statistics, Hunan First Normal University, Changsha 410205, China;
2. Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan 411201, China)
By using the Painlevés transformation method, we construct the kink solutions for the generalized Benjamin-Bona-Mahony (BBM) equation. Meanwhile, by using the G′/G-expansion method, we construct the kink solution and rational solution for the equation. The cornparison of the two methods shows that the Painlevés transformation method is intuitive and effective.
Benjamin-Bona-Mahony equation; Kink solution; Painlevés transformation method; G′/G-expansion method
(2010 MSC 35R11, 83C15)
1 引 言
Benjamin-Bona-Mahony (BBM)方程
ut+ux+uux-uxxt=0
常被用来近似地描述某些非线性色散系统中长波的单向传播. BBM方程存在孤波解,孤子或孤波是色散和非线性之间微妙平衡的结果.BBM方程的精确解在数学、物理及工程应用等领域有重要应用. 已有许多方法可以构造其精确解,如首次积分法,F-展开法,改进的扩展tanh函数法,雅可比椭圆函数法,修正的简单方程法,李对称法,Painlevé展开法,He半逆变分法,同伦扰动法,tanh函数法,正余弦法,指数函数法,sine-Gordon展开法,Hirota双线性变换法等[1-28].
本文考虑广义BBM方程
5 结 论
本文利用Painlevé变换方法构造了广义BBM方程(1)的冲击波解. 利用G′/G-展开方法,本文也构造了方程的冲击波解和有理解. 由于G′/G-展开方法等价于扩展的tanh-函数方法[28],该冲击波解也可以用扩展的tanh-函数方法构造. 结果表明,利用Painlevé变换法获得冲击波解简便有效.
参考文献:
[1] Sahadevan R. Painlevé expansion and exact solution for nonlinear evolution equations [J]. Theor Math Phys, 1994, 99: 776.
[2] Martel Y, Merle F, Mizumachi T. Description of the inelastic collision of two solitary waves for the BBM equation [J]. Arch Ration Mech An, 2010, 196: 517
[3] Tao Z L. A note on thevariational approach to the Benjamin-Bona-Mahony equation using He′s semi-inverse method [J]. Int J Comput Math, 2010, 87: 1752.
[4] Abbasbandy S, Shirzadi A. The first integral method for modified Benjamin-Bona-Mahony equation [J]. Commun Nonlinear Sci, 2010, 15: 1759.
[5] Da I, Korkmaz A, Saka B. Cosine expansion-based differential quadrature algorithm for numerical solution of the RLW equation [J]. Numer Meth Part D E, 2010, 26: 544.
[6] Cesar A, Gómez S, Salas A H, et al. New periodic and soliton solutions for the generalized BBM and Burgers-BBM equations [J]. Appl Math Comput, 2010, 217: 1430.
[7] Wazwaz A M, Helal M A. Nonlinear variants of the BBM equation with compact and non-compact physical structures [J]. Chaos Soliton Fract, 2005, 26: 767.
[8] Johnpillai A G, Kara A H, Biswas A. Symmetry reduction, exactgroup-invariant solutions and conservation laws of the Benjamin-Bona-Mahoney equation [J]. Appl Math Lett, 2013, 26: 376.
[9] Yokus A, Sulaiman T A, Bulut H. On the analytical and numerical solutions of the Benjamin-Bona-Mahony equation [J]. Opt Quant Electron, 2018, 50: 31.
[10] Biswas A. 1-soliton solution of Benjamin-Bona-Mahoney equation with dual-power law non-linearity [J]. Commun Nonlinear Sci, 2010, 15: 2744.
[11] Painlevé P. Sur les equations differentielles du second ordre et d′ordre superieur dont l′integrale generale est uniforme [J]. Acta Math, 1902, 25: 1.
[12] Wang M, Li X, Zhang J. The G′/G-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics [J]. Phys Lett A, 2008, 372: 417.
[13] Ayhan B, Bekir A. The G′/G-expansion method for the nonlinear lattice equations [J]. Commun Nonlinear Sci, 2012, 17: 3490.
[14] Biswas A, Sonmezoglu A, Ekici M, et al. Optical soliton perturbation with fractional temporal evolution by extended G′/G-expansion method [J]. Optik, 2018, 161: 301.
[15] Ebadi G, Biswas A. The G′/G method and topological soliton solution of the K(m,n) equation [J]. Commun Nonlinear Sci, 2011, 16: 2377.
[16] Abdou M A. The extended F-expansion method and its application for a class of nonlinear evolution equations [J]. Chaos Soliton Fract, 2007, 31: 95.
[17] Ali A H A. The modified extended tanh-function method for solving coupled MKdV and coupled Hirota-Satsuma coupled KdV equations [J]. Phys Lett A, 2007, 363: 420.
[18] Bona J, Dai M. Norm-inflation results for the BBM equation [J]. J Math Anal Appl, 2017, 446: 879.
[19] Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems [J]. Philos T R Soc A, 1972, 272: 47.
[20] Bhrawy A H, Abdelkawy M A, Biswas A. Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi′s elliptic function method [J]. Commun Nonlinear Sci, 2013, 18: 915.
[21] Jawad A J M, Petkovic M D, Biswas A. Modified simple equation method for nonlinear evolution equations [J]. Appl Math Comput, 2010, 217: 869.
[22] Kirchgássner K. Nonlinearly resonant surface waves and homoclinic bifurcation [J]. Adv Appl Mech, 1988, 26: 135.
[23] 康丽, 孙峪怀, 廖红梅, 等.空时分数阶mBBM方程的新精确解[J]. 四川大学学报: 自然科学版, 2018, 55: 673.
[24] Wang F, Li W, Zhang H. A new extended homotopy perturbation method for nonlinear differential equations [J]. Math Comput Model, 2012, 55: 1471.
[25] Wang D S,Yin Y. Symmetry analysis and reductions of the two-dimensional generalized Benney system via geometric approach [J]. Comput Math Appl, 2016, 71: 748.
[26] Wu X H, He J H. Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method [J]. Comput Math Appl, 2007, 54: 966.
[27] Zhang J. Using the simplified Hirota′s method to investigate multi-soliton solutions of the fifth-order KdV equation [J]. Int Math Forum, 2012, 7: 917.
[28] El-Wakil S A, Abdou M A, El-Shewy E K, et al. (G′/G)-expansion method equivalent to the extended tanh-function method [J]. Phys Scripta, 2010, 81: 035011.