代谢相关脂肪性肝病发生脂肪性肝炎的无创诊断模型构建及分析

2023-04-29 18:36:51陈智恒高博文桂蓓施梅姐萧焕明谢玉宝黎胜池晓玲
临床肝胆病杂志 2023年8期
关键词:诊断模型性肝炎脂肪性

陈智恒 高博文 桂蓓 施梅姐 萧焕明 谢玉宝 黎胜 池晓玲

摘要:目的通過临床一般资料、血清学指标及肝脏弹性成像无创检查手段,基于LASSO及Logistic回归建立代谢相关脂肪性肝病(MAFLD)发生脂肪性肝炎的诊断模型,并评估该模型的诊断价值。方法纳入2018年1月—2021年12月于广东省中医院诊断为MAFLD且完善肝病理活检的患者为研究对象299例,根据肝病理NAS评分将其分为脂肪性肝炎组(n=170)例和无脂肪性肝炎组(n=129)。先后通过LASSO回归及多因素Logistic回归筛选MAFLD发生脂肪性肝炎的影响因素,并建立无创诊断模型,利用列线图形式可视化,采用加强Bootstrap法进行内部验证,绘制ROC曲线及Calibration曲线,并在MAFLD+NAFLD和MAFLD+cHBVi两个亚组人群中观察模型的诊断效能,并与其他诊断模型进行比较分析。计数资料组间比较采用χ2检验;符合正态分布的计量资料组间比较采用成组t检验,不符合正态分布的计量资料组间比较采用Mann-Whitney U检验。采用多因素Logistic回归分析,筛选最佳诊断因素,构建列线图诊断模型,绘制受试者工作特征曲线(ROC曲线),计算ROC曲线下面积(AUC),并进一步采用加强Bootstrap法对模型进行内部验证,绘制Calibration曲线显示校准度。结果两组间BMI、ALT、AST、ADA、ALP、GGT、TBA、TCO2、UA、HbA1c比较差异均有统计学意义(P值均<0.05);FibroScan方面,两组LSM及CAP比较提示差异具有统计学意义(P值均<0.001);病理学方面,两组的纤维化等级、脂肪变积分、小叶炎症积分、气球样变积分及NAS总分差异均有统计学意义(P值均<0.001)。亚组队列方面,MAFLD+NAFLD有、无脂肪性肝炎组分别为63、48例,MAFLD+cHBVi有、无脂肪性肝炎组分别为90、71例。通过LASSO回归及多因素Logistic回归筛选出LSM、CAP、BMI、AST是判断MAFLD患者是否发生脂肪性肝炎的最佳诊断因素,并以此构建LCBA模型。LCBA模型结果提示,总MAFLD、MAFLD+NAFLD和MAFLD+cHBVi人群的AUC分别为0.816、0.866、0.764(P值均<0.001),ROC曲线对比显示均优于acNASH、HSI、NFS模型。结论LCBA模型用于诊断MAFLD患者是否发生脂肪性肝炎的效能稳定,且优于acNASH、HSI、NFS,值得临床推广。关键词:非酒精性脂肪性肝病; 代谢相关脂肪性肝病; 诊断基金项目:国家“十三五”重大传染病专项课题(2018ZX10725506-003, 2018ZX10725505-004); 广东省中医院院内专项(YN2022DB04, YN10101903); 国家中医药管理局全国名老中医药专家池晓玲传承工作室建设项目(国中医药人教函〔2022-75 号〕); 省部共建中医湿证国家重点实验室开放课题(SZ2021KF08)

Construction and analysis of a noninvasive diagnostic model for steatohepatitis in metabolic associated fatty liver disease

CHEN Zhiheng GAO Bowen GUI Bei SHI Meijie XIAO Huanming XIE Yubao LI Sheng CHI Xiaoling(1. The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; 2. Department of Hepatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, China; 3. The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; 4. State Key Laboratory of Dampness Syndrome of Traditional Chinese Medicine Jointly Built by Province and Ministry, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China)

Corresponding author:CHI Xiaoling, chixiaolingqh@163.com (ORCID:0000-0003-3193-1943)

Abstract:ObjectiveTo establish a diagnostic model for steatohepatitis in metabolic associated fatty liver disease (MAFLD) based on LASSO and logistic regression analyses by using general clinical data, serological parameters, and noninvasive liver elastography, and to evaluate the diagnostic value of this model. MethodsA total of 299 patients who were diagnosed with MAFLD and underwent liver biopsy in Guangdong Provincial Hospital of Traditional Chinese Medicine from January 2018 to December 2021 were enrolled as subjects, and according to NAS score, they were divided into steatohepatitis group with 170 patients and non-steatohepatitis group with 129 patients. The LASSO regression analysis and the multivariate logistic regression analysis were used to identify the influencing factors for steatohepatitis in MAFLD, and a noninvasive diagnostic model was established, visualized in the form of nomogram, and internally validated by the enhanced Bootstrap method. The receiver operating characteristic (ROC) curve and the calibration curve were plotted for the model, and its diagnostic efficacy was observed in the MAFLD+NAFLD and MAFLD+cHBVi subgroups, which was then compared with other diagnostic models. The chi-square test was used for comparison of categorical data between groups; the independent-samples t test was used for comparison of normally distributed continuous data between groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between groups. A multivariate logistic regression analysis was used to determine optimal diagnostic factors, and a nomogram diagnostic model was established; the ROC curve was plotted, and the area under the ROC curve (AUC) was calculated; the enhanced Bootstrap method was used for internal validation of the model, and the calibration curve was plotted to show the level of calibration. ResultsThere were significant differences between the two groups in body mass index (BMI), alanine aminotransferase, aspartate aminotransferase (AST), adenosine deaminase, alkaline phosphatase, gamma-glutamyl transpeptidase, total bile acid, total carbon dioxide concentration, uric acid, HbA1c (all P<0.05). As for FibroScan, there were significant differences between the two groups in liver stiffness measurement (LSM) and controlled attenuation parameter (CAP) (both P<0.001); as for pathology, there were significant differences between the two groups in fibrosis degree, steatosis score, lobular inflammation score, ballooning degeneration score, and total NAS score (all P<0.001). In the subgroup analysis, there were 63 patients with steatohepatitis and 48 patients without steatohepatitis in the MAFLD+NAFLD group, and there were 90 patients with steatohepatitis and 71 patients without steatohepatitis in the MAFLD+cHBVi group. The LASSO regression analysis showed that LSM, CAP, BMI, and AST were the best diagnostic factors for the presence or absence of steatohepatitis in MAFLD patients, and the LCBA model was established based on these indices. The LCBA model showed an AUC of 0.816 in the total MAFLD population, 0.866 in the MAFLD+NAFLD population, and 0.764 in the MAFLD+cHBVi population (all P<0.001), and comparisons based on the ROC curve showed that they were superior to the acNASH, HSI, and NFS models. ConclusionThe LCBA model has a stable performance in the diagnosis of steatohepatitis in patients with MAFLD and is superior to acNASH, HSI, and NFS. Therefore, it holds promise for clinical application.

Key words:Non-alcoholic Fatty Liver Disease; Metabolic Associated Fatty Liver Disease; Diagnosis

Research funding:The Thirteenth Five-Year Plan for Major and Special Programs of the National Science and Technology of China (2018ZX10725506-003, 2018ZX10725505-004); The Specific Research Fund for TCM Science and Technology of Guangdong Provincial Hospital of Chinese Medicine (YN2022DB04,YN10101903); Chi Xiaoling National Famous Traditional Chinese Medicine Expert Inheritance Studio (Teaching Letter from State Traditional Chinese Medicine Office (2022-75)); Open Project of State Key Laboratory of Dampness Syndrome of Chinese Medicine(SZ2021KF08)

代謝相关脂肪性肝病(MAFLD)是于2020年经国际专家组共识声明,由非酒精性脂肪性肝病(NAFLD)更名而来[1],更加强调了MAFLD可能伴随的糖脂代谢紊乱、胰岛素抵抗、血压升高、肥胖等代谢异常特征。脂肪性肝炎(NASH)是介导MAFLD疾病进展的主要途径,将进一步导致肝纤维化、肝硬化甚至肝衰竭、肝癌[2-3]。而抑制脂肪性肝炎是阻止纤维化进展的有力治疗手段[5],所以及早识别脂肪性肝炎是临床聚焦的重要领域[4]。目前识别评估脂肪性肝炎的“金标准”仍是肝穿刺病理活检,但因存在费用成本高、并发症风险高、重复评估难等缺点,不适合定期监测。所以开发MAFLD的脂肪性肝炎无创诊断模型是临床迫切所需。然而现有的大部分无创脂肪性肝炎诊断模型,如CA index、NAFIC score、G-NASH model、ClinLipMet score、Index of NASH等,大都依托于特殊的血清学检测,临床推广性差;而一些本用于诊断NAFLD或判别NAFLD纤维化程度的无创模型,用于脂肪性肝炎时,诊断效能明显下降[6-7]。且目前脂肪性肝炎的诊断模型,多是依据NAFLD诊断标准构建,对MAFLD的诊断效能尚未可知。因此,本研究将基于临床常用指标,构建准确性强、可重复性高的无创诊断模型,用于MAFLD患者预测发生脂肪性肝炎的风险,对临床有重要意义。

1资料与方法

1.1研究对象选取2018年1月—2021年12月于广东省中医院就诊并诊断为MAFLD的患者为研究对象。MAFLD诊断标准参照2020年发布的《亚太地区肝病协会代谢相关脂肪性肝病诊断与处理临床实践指南》[8],存在影像学(彩超/CT/MR)脂肪肝证据或肝穿病理提示存在>5%肝细胞脂肪变者,合并BMI≥23.0 kg/m2、2型糖尿病、代谢功能异常三者之一,即可诊断为MAFLD。其中代谢功能异常定义为满足以下7项之2项或以上:(1)男性腰围≥90 cm,女性腰围≥80 cm;(2)血压≥130 mmHg/85 mmHg或使用降压药物;(3)甘油三酯≥1.70 mmol;(4)男性HDL-C<1.0 mmol/L,女性HDL-C<1.3 mmol/L;(5)糖尿病前期(即空腹血糖5.6~6.9 mmol/L,餐后2 h血糖7.8~11.0 mmol/L,糖化血红蛋白5.7%~6.4%);(6)胰岛素抵抗稳态模型(HOMA-IR)指数≥2.5;(7)超敏C反应蛋白≥2.0 mg/L。纳入标准:(1)符合MAFLD诊断的18~70岁患者,性别不限;(2)行肝穿刺病理活检及FibroScan检查,并在肝穿刺病理活检前后1个月内存在经影像学证实的脂肪肝。排除标准:(1)肝穿刺前已经确诊肝硬化或肝癌,或存在严重肝功能不全;(2)合并急性感染、严重心肺肾等重要脏器功能障碍或其他恶性肿瘤史;(3)孕妇或哺乳期妇女;(4)重要数据缺失者。

1.2研究方法

1.2.1病理学标准及分组根据美国NASH临床研究网络病理协会提出的改良Brunt标准及NAS评分[9],将肝纤维化等级分为0~4级,对肝脂肪变性、肝小叶炎症及肝细胞气球样变程度分别赋予0~3分、0~3分、0~2分,三个维度得分相加为NAS总得分,本研究将NAS≥5分归为脂肪性肝炎组,NAS<5分归为无脂肪性肝炎组。

1.2.2亚组设置将本研究中同时符合MAFLD和NAFLD诊断的人群,以及同时符合MAFLD和慢性乙型肝炎病毒感染(cHBVi)诊断的人群分别设置为亚组(即MAFLD+NAFLD组与MAFLD+cHBVi组),其中NAFLD诊断参考《非酒精性脂肪性肝病防治指南(2018更新版)》[10],cHBVi诊断参考《慢性乙型肝炎防治指南(2019年版)》[11]。

1.2.3资料收集收集患者的一般资料,包括性别、年龄、BMI、吸烟史、饮酒情况、高血压情况、糖尿病情况、合并肝病情况等,其中过量饮酒定义为平均酒精摄入≥20 g/d(女)及≥30 g/d(男)。收集患者的血清学检验数据,包括肝功能(ALT、AST、Alb、ALP、GGT、TBil、DBil、TBA、ADA),肾功能(Urea、Cr、UA、TCO2、eGFR),糖代谢指标(GLU、HbA1c),脂代谢指标(TG、TC、HDL-C、LDL-C、Apo-A1、Apo-B)及PLT、CK-MB、TSH等。

1.2.4FibroScan数据采集肝脏硬度值(LSM)及受控衰减参数(CAP)由Echosens公司生产的FibroScan-502机型进行测量,由经验丰富的医生进行测量,保证每次测量均≥10次有效激发,成功率≥60%且IQR/M≤0.30[12]。

1.2.5其他对比模型本研究构建模型将与acNASH、肝脏脂肪变指数(HSI)、NAFLD纤维化评分(NFS)三种无创诊断模型进行对比,公式如下[6,13]:acNASH=AST/SCr×10;HSI=8×(ALT/AST)+BMI(女性,+2;2型糖尿病,+2);NFS=-1.675+(0.037×年龄)+(0.094×BMI)+[1.13×T2DM(yes=1,no=0)]+(0.99×AST/ALT)-(0.013×PLT)-(0.66×Alb)。

1.3统计学方法应用SPSS 22.0软件进行统计学分析。计数资料组间比较采用χ2检验;符合正态分布的计量资料以x±s表示,两组间比较采用成组t检验,不符合正态分布的计量资料以M(P25~P75)表示,两组间比较采用Mann-Whitney U检验。基于R语言软件及相关程序包,利用LASSO回归对变量进行降维处理,筛选具有非零系数特征的变量,并进一步将其纳入多因素Logistic回归分析,筛选出最佳诊断因素,构建列线图诊断模型,绘制受试者工作特征曲线(ROC曲线),计算ROC曲线下面积(AUC),并进一步采用加强Bootstrap法对模型进行内部验证,绘制Calibration曲线显示校准度。最后分析模型在开发队列与MAFLD+NAFLD、MAFLD+cHBVi两个亚组队列人群中的表现,采用MedCalc软件与其他模型进行ROC曲线对比。P<0.05表示差异有统计学意义。

2结果

2.1一般资料共纳入MAFLD患者299例,无脂肪性肝炎组129例,脂肪性肝炎组170例。两组间BMI、ALT、AST、ADA、ALP、GGT、TBA、TCO2、UA、HbA1c比较差异均有统计学意义(P值均<0.05);FibroScan方面,两组LSM及CAP比较提示差异均具有统计学意义(P值均<0.001);病理学方面,两组的纤维化等级、脂肪变积分、小叶炎症积分、气球样变积分及NAS总分差异均有统计学意义(P值均<0.001)。亚组队列方面,MAFLD+NAFLD有、无脂肪性肝炎组分别为63、48例,MAFLD+cHBVi有、无脂肪性肝炎组分别为90、71例(表1)。

2.2MAFLD脂肪性肝炎的LASSO回归分析将一般资料、血清学指标及FibroScan数据共39个变量纳入LASSO回归分析,进行降维处理后筛选出6个具有非零系数特征的变量,即LSM、CAP、BMI、ALT、AST、UA(图1)。

2.3MAFLD脂肪性肝炎的多因素Logistic回归分析

对LASSO回归所筛变量进一步纳入多因素Logistic回归分析,结果显示:LSM(OR=1.148)、CAP(OR=1.301)、BMI(OR=1.015)、AST(OR=1.023)是MAFLD患者发生脂肪性肝炎的最佳诊断因素(P值均<0.05)(表2)。

2.4MAFLD发生脂肪性肝炎的诊断模型构建及内部验证根据多因素Logistic回归分析结果,将LSM、CAP、BMI、AST及其对应权重系数,采用R软件进行模型构建及列线图可视化(图2),将模型命名为LCBA,绘制ROC曲线。结果显示,LCBA模型诊断MAFLD脂肪性肝炎概率的AUC为0.816(95%CI:0.768~0.858)(P<0.001),敏感度为78.24%,特异度为71.32%(表3),提示诊断模型区分度良好。进一步使用加强Bootstrap法对模型开发队列数据进行 1 000次有放回的重抽样,获得1 000个与开发队列样本量相等的数据集作为内部验证集,结果显示,AUC的高估值调整值为0.006 36,用原始模型的模型表现——高估值调整值,获得内部验证后的模型表现,故AUC内部验证=0.810,提示内部验证后的LCBA模型区分度依旧良好。绘制Calibration校准曲线(图3),Hosmer-Lemeshow拟合优度检验P=0.058,提示LCBA模型校准度良好,诊断概率与真实概率拟合一致性优。

2.5LCBA模型在MAFLD+NAFLD和MAFLD+cHBVi亚组人群中的表现结果显示,LCBA模型在MAFLD+NAFLD及MAFLD+CHB亚组人群中诊断概率的AUC分别为0.866(95%CI:0.788~0.923)、0.764(95%CI:0.691~0.827),统计学有意义(P值均<0.001)(表3)。

2.6LCBA模型与其他模型比较将LCBA模型分别在MAFLD、MAFLD+NAFLD、MAFLD+CHB人群中与acNASH、HSI、NFS三种模型进行比较,绘制ROC曲线,结果显示,LCBA模型在三种人群中的诊断概率AUC均高于另外三种模型(表4、图4),提示LCBA模型區分度更优。

3讨论

目前,MAFLD在全球范围内患病率逐年上升,正成为全球第一慢性肝病,据统计,亚洲人群的MAFLD患病率为15%~40%[14],而因MAFLD转诊的行病理检查的亚洲患者中,脂肪性肝炎的发生率高达58%~63.45%[15-16]。本研究结果显示,在总MAFLD人群及MAFLD+NAFLD、MAFLD+cHBVi两个亚组中脂肪性肝炎的发生率分别为56.86%(170/299)、56.77%(63/111)、55.90%(90/161),与文献报道脂肪性肝炎的发生率相近。脂肪性肝炎是MAFLD疾病进展的主要途径,随着炎症的持续存在,可进展为肝硬化、肝细胞癌和终末期肝病[17-18]。然而,目前尚无可供准确判别MAFLD脂肪性肝炎的单项指标,故探索准确可靠的无创诊断模型尤为必要。

本研究中,脂肪性肝炎组肝功能指标中的ALT、AST、ALP、GGT、ADA及代谢异常指標中的BMI、HbA1c、TG、UA均比无脂肪性肝炎组高(P值均<0.05);病理学方面,脂肪性肝炎组纤维化、脂肪变、小叶炎症、气球样变程度也均高于无脂肪性肝炎组(P值均<0.05)。本研究先后通过LASSO回归及多因素Logistic回归,进行MAFLD脂肪性肝炎诊断变量的筛选,在降低自变量间共线性的影响下,最终筛选出LSM、CAP、BMI、AST四个最佳诊断变量,通过列线图形式构筑LCBA无创诊断模型,模型提示当LSM=10 kPa时对应积20分,CAP=330 dB/m积17.5分,BMI=28 kg/m2积12.5分,AST=80 U/L积14分,相加为64分,此时对应风险>0.95,提示出现脂肪性肝炎风险极高。

瞬时弹性成像技术是近年来最有前景的量化肝脏纤维化及脂肪变的无创测量手段, 已广泛用于临床且数据易得,其所测量的LSM和CAP在分别反映纤维化及肝脂肪变性程度方面已被证实具有较高的准确性与敏感度[17],故可作为肝脏病理活检的部分替代手段。一项综合646例肝脏病理的研究[19]指出,NAS评分上升与纤维化等级增加具有高度共线性,表明脂肪性肝炎与纤维化进展密不可分,故在MAFLD发生脂肪性肝炎时,常表现为LSM与CAP均有所升高,与本研究结果一致。

BMI 作为体内脂肪的替代度量之一[20],是诊断肥胖症的关键指标。BMI升高是包括MAFLD在内的多种代谢疾病的主要危险因素,一项全球性研究[13]中指出,在单纯脂肪肝和脂肪性肝炎人群中的肥胖比例分别为51.34%和81.83%,说明BMI升高与脂肪肝的形成和脂肪性肝炎的发生均具有高度相关性。BMI升高引起肝脏脂肪蓄积,并进一步形成脂毒性,导致线粒体功能障碍和氧化应激,是MAFLD发生脂肪性肝炎的关键机制[21-22],而AST主要存在于肝细胞的线粒体中,当肝细胞出现炎症损伤甚至坏死时,线粒体中的AST将释放出来,导致血清AST升高[23],故AST是反映脂肪性肝炎的可靠灵敏指标之一[13,16]。

综上,基于病理学证实的LCBA模型,作为诊断MAFLD发生脂肪性肝炎的风险量化工具,数据易得,操作简便,诊断效能良好,且优于acNASH、HSI、NFS模型,符合临床实际所需,值得推广应用。但不可否认,本研究也存在一定的局限性,例如样本量有限,且数据为单中心,仅进行了内部验证,缺少外部验证评估模型的泛化能力,未来期望可进一步通过多中心研究、扩大样本量等方法来对LCBA模型进一步优化。

伦理学声明:本研究方案于2022年2月14日经由广东省中医院伦理委员会审批,批号为YE2022-035-01。利益冲突声明:本文不存在任何利益冲突。作者贡献声明:陈智恒、施梅姐、池晓玲负责课题设计,拟定写作思路,资料分析,撰写论文;高博文、桂蓓、萧焕明、谢玉宝、黎胜参与收集并核对数据,修改论文;池晓玲指导撰写文章并最后定稿。

参考文献:

[1]ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. DOI: 10.1016/j.jhep.2020.03.039.

[2]KOLAKOWSKI A, DZIEMITKO S, CHMIELECKA A, et al. Molecular Advances in MAFLD—A Link between Sphingolipids and Extracellular Matrix in Development and Progression to Fibrosis[J]. Int J Mol Sci, 2022, 23(19): 11380. DOI: 10.3390/ijms231911380.

[3]MA YQ, XIE YP, LAING XY, et al. Study on the expression characteristics of serum leptin and receptor genes in patients with non-alcoholic fatty liver disease and cirrhosis[J]. Clin J Med Offic, 2021, 49(8): 930-932. DOI: 10.16680/j.1671-3826.2021.08.28.马艳芹, 谢永鹏, 梁旭阳, 等. 非酒精性脂肪肝转归肝硬化患者血清瘦素及受体基因表达特征研究[J]. 临床军医杂志, 2021, 49(8): 930-932. DOI: 10.16680/j.1671-3826.2021.08.28.

[4]DOU KF, YANG XS. Surgeons should attach importance to the understanding of metabolic associated fatty liver disease[J]. Chin J Dig Surg, 2021, 20(1): 40-45. DOI: 10.3760/cma.j.cn115610-20201214-00780.窦科峰, 杨西胜. 外科医师应重视对代谢相关脂肪性肝病的认识[J]. 中华消化外科杂志, 2021, 20(1): 40-45. DOI: 10.3760/cma.j.cn115610-20201214-00780.

[5]Chinese Society of Hepatology, Chinese Medical Association; Chiese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Infectious Diseases, Chinese Medical Association. Consensus on the diagnosis and therapy of hepatic fibrosis(2019)[J]. J CIin HepatoI, 2019, 35(10): 2163-2172. DOI: 10.3969/j.issn.1001-5256.2019.10.007.中華医学会肝病学分会, 中华医学会消化病学分会, 中华医学会感染病学分会. 肝纤维化诊断及治疗共识(2019年)[J]. 临床肝胆病杂志, 2019, 35(10): 2163-2172. DOI: 10.3969/j.issn.1001-5256.2019.10.007.

[6]NL? S, VARELA-CHINCHILLA CD, TRINIDAD-CALDER?N PA. MAFLD/NAFLD biopsy-free scoring systems for hepatic steatosis, NASH, and fibrosis diagnosis[J]. Front Med (Lausanne), 2021, 8: 774079. DOI: 10.3389/fmed.2021.774079.

[7]OTGONSUREN M, ESTEP MJ, HOSSAIN N, et al. Single non-invasive model to diagnose non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)[J]. J Gastroenterol Hepatol, 2014, 29(12): 2006-2013. DOI: 10.1111/jgh.12665.

[8]ESLAM M, SARIN SK, WONG VW, et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease[J]. Hepatol Int, 2020, 14(6): 889-919. DOI: 10.1007/s12072-020-10094-2.

[9]KLEINER DE, BRUNT EM, van NATTA M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease[J]. Hepatology, 2005, 41(6): 1313-1321. DOI: 10.1002/hep.20701

[10]National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease:a 2018 update[J]. J CIin HepatoI, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.

[11]Chinese Society of Infectious Diseases, Chinese Medical Association; Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B (version 2019)[J]. J CIin HepatoI, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.中华医学会感染病学分会, 中华医学会肝病学分会. 慢性乙型肝炎防治指南(2019年版)[J]. 临床肝胆病杂志, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.

[12]Consensus expert committee on clinical application of transient elastography(TE). Expert consensus on clinical application of transient elastography (TE) (2015)[J/CD]. Chin J Liver Dis: Electronic Edition, 2015, 7(2): 12-18. DOI: 10.3969/j.issn.1674-7380.2015.02.002.瞬时弹性成像技术(TE)临床应用共识专家委员会. 瞬时弹性成像技术(TE)临床应用专家共识(2015年)[J/CD]. 中国肝脏病杂志(电子版), 2015, 7(2): 12-18. DOI: 10.3969/j.issn.1674-7380.2015.02.002.

[13]WU XX, ZHENG KI, BOURSIER J, et al. acNASH index to diagnose nonalcoholic steatohepatitis: a prospective derivation and global validation study[J]. EClinicalMedicine, 2021, 41: 101145. DOI: 10.1016/j.eclinm.2021.101145.

[14]YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. DOI: 10.1002/hep.30251.

[15]YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.

[16]NEWSOME PN, SASSO M, DEEKS JJ, et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study[J]. Lancet Gastroenterol Hepatol, 2020, 5(4): 362-373. DOI: 10.1016/S2468-1253(19)30383-8.

[17]CAO YT, XIANG LL, QI F, et al. Accuracy of controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) for assessing steatosis and fibrosis in non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. EClinicalMedicine, 2022, 51: 101547. DOI: 10.1016/j.eclinm.2022.101547.

[18]TAYLOR RS, TAYLOR RJ, BAYLISS S, et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Gastroenterology, 2020, 158(6): 1611-1625. e12. DOI: 10.1053/j.gastro.2020.01.043.

[19]HAGSTRM H, NASR P, EKSTEDT M, et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD[J]. J Hepatol, 2017, 67(6): 1265-1273. DOI: 10.1016/j.jhep.2017.07.027.

[20]VILALTA A, GUTI?RREZ JA, CHAVES S, et al. Adipose tissue measurement in clinical research for obesity, type 2 diabetes and NAFLD/NASH[J]. Endocrinol Diabetes Metab, 2022, 5(3): e00335. DOI: 10.1002/edm2.335.

[21]HORN CL, MORALES AL, SAVARD C, et al. Role of cholesterol-associated steatohepatitis in the development of NASH[J]. Hepatol Commun, 2022, 6(1): 12-35. DOI: 10.1002/hep4.1801.

[22]LIM S, KIM JW, TARGHER G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease[J]. Trends Endocrinol Metab, 2021, 32(7): 500-514. DOI: 10.1016/j.tem.2021.04.008.

[23]KWO PY, COHEN SM, LIM JK. ACG clinical guideline: evaluation of abnormal liver chemistries[J]. Am J Gastroenterol, 2017, 112(1): 18-35. DOI: 10.1038/ajg.2016.517.

收稿日期:2022-12-30;錄用日期:2023-02-13

本文编辑:林姣

引证本文:CHEN ZH, GAO BW, GUI B, et al. Construction and analysis of a noninvasive diagnostic model for steatohepatitis in metabolic associated fatty liver disease[J]. J Clin Hepatol, 2023, 39(8): 1857-1866.

猜你喜欢
诊断模型性肝炎脂肪性
非酒精性脂肪性肝病,需要治疗吗?
肝博士(2024年1期)2024-03-12 08:38:22
非酒精性脂肪性肝病的中医治疗
肝博士(2022年3期)2022-06-30 02:49:06
成军:非酒精性脂肪性肝病新药的研发
肝博士(2021年1期)2021-03-29 02:32:02
中医适宜技术治疗老年非酒精性脂肪性肝炎合并糖尿病1例
CD4细胞计数联合IGRA预测AIDS/Ⅲ型TB影像诊断模型分析
甘肃科技(2020年20期)2020-04-13 00:30:56
芒果苷对大鼠酒精性肝炎的保护作用研究
一种电网通信网络的故障检测方法及系统
异甘草酸镁对酒精性肝炎患者TNF和IL-6的影响
中西医结合治疗非酒精性脂肪性肝病
西南军医(2015年2期)2015-01-22 09:09:27
对于电站锅炉燃烧经济性诊断模型的研究