阵列天线波束合成计算

2023-04-06 05:08颜毅华陈志军
现代电子技术 2023年7期
关键词:天线阵辛格旁瓣

李 沙,颜毅华,王 威,陈志军

(中国科学院 国家空间科学中心 空间天气学国家重点实验室,北京 100190)

0 引言

天线在无线通信系统中主要承担着发射和接收信号的作用[1],目前已经广泛应用于军工、民用电子和航空航天领域。相比于单个天线,阵列天线[2]具有较高的增益和更低的副瓣[3]、更窄的波束和更深的零陷等特性[4]。当天线的窄波束以一定规律在宽空域[5]范围扫描,其中一种就是相控[6]扫描,通过对阵元相位的控制,实现波束扫描机制。影响阵列天线的性能有如下几个因素:阵列单元数、阵元间距、阵元激励的幅度相位以及阵元的馈电方式等。按照阵列天线的阵元维数排列进行分类,包括一维、二维和三维阵列天线。本文建立了一维和二维天线阵列的数学模型,通过改变阵元数、阵元间距以及不同的阵元函数等,得到了不同参数变化对阵列方向图的影响[7]。

1 阵列天线简介

1.1 阵列天线方向图计算原理

一维直线阵列天线是指阵列单元[8]都在一条直线上的天线,该直线阵上有N个阵元,设远场观测点为P(r,θ,ϕ),对于直线阵而言,观测点和直线阵属于同一平面,所以ϕ=0。设坐标原点为参考点,信号的入射方向为(θ,ϕ),其中入射信号的俯仰角为θ,方位角为ϕ。此时沿观测点方向的单元向量er从球坐标系转化为直角坐标系,则有:

天线阵第n个阵元的激励为,假设直线阵[9]阵元等间距排列,第二个阵元到坐标参考点的间距是d,则第n个阵元到坐标参考点的间距为dn=(n-1)*d,激励幅度都是0,相邻阵元[10]之间相对相位为α,所以第n个阵元的激励为In=I0ejnα,故均匀直线阵统一方向图表达式为:

式中u=kdsinθ+α。

根据方向图[11]算法,对激励为等幅度、同相位的直线阵进行仿真,阵元间距为半波长。一维直线阵列[12]的几何图如图1 所示。

图1 一维直线阵列天线示意图

当阵列单元数分别为32,100,150 和401 时,计算直线阵方向性函数结果如图2 所示。由图2 可以看出,他们的第一旁瓣电平分别是-13.00 dB,-18.55 dB,-20.63 dB 和-23.26 dB,由此可见,随着阵元数目的增多,会使副瓣个数增多,第一副瓣电平随之降低,但主瓣宽度并没有明显的减小。

图2 不同阵元数目对应的阵列方向图

1.2 均匀邻接子阵形成接收多波束

影响阵列天线阵面方向图[13]的因素包括阵元个数、阵元间距、工作频率、移相量等,阵元方向图是直接影响天线方向图的因素。由于阵列天线各阵元并非全向天线,故阵元方向图可以用典型函数进行近似,常用的函数包括高斯函数和辛格函数[14]。

高斯函数表达式为:

式中W e3dB为阵元3 dB 的波束宽度。

辛格函数近似公式为:

式中W e0为阵元的第一零点波束宽度。

阵元方向图也是直接影响天线方向图的因素之一,本次计算使用了高斯、辛格两种阵元方向图作为近似函数,分别用两个阵元方向图和阵面方向图进行相乘,得到天线阵列的方向图。

1.3 仿真结果

运用Matlab 程序对一维阵列方向图进行了仿真,计算频率选择654 MHz,天线个数设置为14。在计算阵元方向图时,初始参数设置一致,方向图分别采用了辛格函数和高斯函数进行计算,并将天线间距值分别设为λ2,λ和3λ2,计算结果如图3 和图4 所示。可以看出,当间距为λ2 时,运用辛格函数计算的阵列方向图第一旁瓣电平为-17.3 dB;采用高斯函数计算阵列方向图第一旁瓣电平为-26.8 dB。随着间距的增加,可以很清楚地看到阵面方向图的旁瓣增多,且在特定角度其旁瓣电平最大值与主瓣相当,故选取天线间距以λ2为最佳选择。

图3 采用辛格函数计算的天线阵列方向图

图4 采用高斯函数计算的天线阵列方向图

2 平面阵列天线

以上讨论了一维直线天线阵的性能,平面阵天线是直线天线阵的拓展[15]。平面阵天线根据阵元的排列方式以及阵面的形状进行分类。当计算矩形栅格时,每个阵元都与其相邻阵元的距离相等,与它的上下相邻阵元的距离也相等[16]。下面以矩形口面的矩形栅格平面阵为例,如图5 所示,对于一个(2M+1)×(2N+1)的矩形平面阵,均匀面阵可以看出是由行子阵和列子阵组成,每一行、每一列都是线阵,设行间距是dx,列间距是dy,阵元的直角坐标位置为dmn=(mdx,ndy,0),远场的观测点为P(r,θ,ϕ),则沿观测方向的单位向量为:

图5 天线面阵模型示意图

远场方向图的表达式为:

将此直角坐标系下的远场方向图进行坐标转换,令:

式中,-1 ≤u≤1,-1 ≤v≤1,且0 ≤u2+v2≤1,则方向图表达式变为:

以10×10 的平面天线阵举例,假设每一个阵元的激励是等幅度、同相位,且行单元间距与列单元间距相等,都是半波长,仿真结果如图6 所示。

图6 二维面阵方向图仿真结果

由图6a)可以看出,当间距增大时,主瓣宽度减小,副瓣会随之增多。所以在实际设计二维阵列天线时,要充分考虑阵元间距所带来的方向图的改变。由图6b)可以看出,阵列天线间距分别为0.5λ,0.55λ和0.6λ时天线阵方向图的变化,由仿真结果可知,天线单元间距在0.1λ范围内变化时,对方向图的影响不是很大。

3 结语

为研究一维和二维天线阵列的辐射性能,根据阵列天线的基本原理,在计算阵元方向图时分别利用了高斯函数和辛格函数,再与阵面方向图相乘得到阵列方向图。同时改变阵元个数和间距,并对比了不同参数下阵列方向图的特点。在计算二维阵列方向图时,当阵元个数不变,阵元间距在0.5λ~0.6λ变化时,方向图没有太大变化;当阵元间距在0.5λ~1.5λ大范围内变化时,方向图有较明显变化。因此在设计和制作阵列天线时,阵元的位置和间距要充分考虑,寻找阵列天线最优参数对应的天线辐射特性。

猜你喜欢
天线阵辛格旁瓣
基于圆柱阵通信系统的广义旁瓣对消算法
我的自由
地面对下滑信号的影响及M型天线阵的应用
一种基于线性规划的频率编码旁瓣抑制方法
基于加权积分旁瓣最小化的随机多相码设计
基于四项最低旁瓣Nuttall窗的插值FFT谐波分析
一种超宽带相控阵天线阵方向图栅瓣抑制方法
基于PSO的不规则低频天线阵与载机一体化综合设计
看电影
手机不通