林政霖,余远红,张术勇
(台山核电合营有限公司化学环保部,广东 台山 529200)
滨海核电厂循环水系统一般采用开放式海水直流循环冷却方式,直流式海水冷却系统的最大问题是海生物的附着污染。海生物的种类视海域分布而有所不同,但主要是牡蛎、藤壶、贻贝、藻类等,其主要危害有:
1)循环水取水涵道、入口隔栅及拦污栅上容易生长大量生物,从而造成管线、设备及冷却系统的堵塞、结垢和腐蚀;
2)旋转滤网和循环水取管道也易积聚大量贝类及藤壶等,清理工作量极大,时间较长,费用较高[1];
3)凝汽器海水侧钛管会被生物附着堵塞,造成进出口压差升高,降低机组效率,影响机组正常运行安全。
为防止海生物附着污染,核电厂目前常用的方法是通过建造制氯站或购买工业成品次氯酸钠溶液,往海水循环水系统中投加大量的次氯酸钠,利用其强氧化性对海生物的孢子和幼虫进行杀灭,从而达到抑制海生物生长的目的。次氯酸钠虽然对于藻类、贝类等海生物有较好的控制作用,并且能较好的对污染海生物进行剥离和清洁,但因投加的浓度不同,某些海生物遇到次氯酸钠后可暂时停止活动,之后又可持续生长,且长期使用会造成抗药性。持续投加次氯酸钠消耗量大,对环境影响大[2]。
国内某核电站建有长距离的取水隧洞,夏季时海水温度较高,海生物生长较快,为防止海生物附着,在隧洞入口上设计有加氯装置,外购10%浓度的次氯酸钠,从取水隧洞进水口加入构筑物内,流量大约为5 m3/h,冲击性加药质量浓度为1 mg/L。即便如此,隧洞前1 000 m 海生物生长得比较少,而1 000 m 后隧洞内海生物逐渐增多,在大修期间还是需要增加人工清理海生物的方式,这大大增加了大修时间和核电站的冷源安全风险。
某核电对海水水质进行了大量分析工作,全年雨水较多且排至制氯系统取水区域,造成全年约1/3 以上时间制氯用海水的氯离子质量浓度小于15 000 mg/L,而正常海水的氯离子质量浓度值在19 000 mg/L 以上。
表1 为某电解海水制氯站厂家标准,可以看出制氯站厂家对低盐度的海水制氯持谨慎态度。
表1 某电解海水制氯厂家标准
低氯海水直接影响制氯系统的电解槽产量,引起制氯系统不稳定或出力不足,若是强行提高电流以达到产量,势必会造成电解槽阳极板及其它部件的加速损耗。若产氯量不足导致加药浓度偏低未能对海水中的海生物幼体完全杀灭时,这样就提高了海生物在系统内附着的风险。
国内核电站大都建设有制氯站(CTE 系统),目前各电厂制氯站出现的运行缺陷问题较多,主要有四个方面的问题:电解槽产生电火花;电解槽阳极寿命过短;电解槽漏液问题;电解槽频繁槽压高问题。
如图1 所示,为典型的电解制氯阳极板问题,左图为阴阳极板搭接产生电火花缺陷问题,右图为阳极涂层脱落导致寿命变短。虽然核电站目前冷源的加药方式基本保障了核电的冷源安全,但随着制氯系统的逐渐老化,制氯效率逐渐下降,设备维护成本已呈逐年上升趋势。
图1 电解制氯系统阳极板典型问题
从目前杀生剂的应用来看,氯气和氯化产物为主的氧化性杀生剂应用较为广泛,但存在易造成海洋环境污染,长期使用会导致海生物产生抗药性等问题。非氧化性杀生剂对贝类、蛤类等有独特的杀灭效果,试剂对设备没有腐蚀,加药设备简单,维护量极少。因此,在滨海火电厂或液化天然气生产单位的循环水系统中,常采取氧化性杀生剂与非氧化性杀生剂交替使用的方案防治海生物污染,可防止冷却水系统中的海生物产生抗药性,从而取得良好的效果。
目前已有应用的典型非氧化杀生剂种类有季铵盐、季膦盐、有机胺类[3]等,季铵盐类以十二烷基二甲基苄基氯化铵为代表,但药剂持续时间短,细菌易对其产生抗药性且使用时泡沫多、不易清除等缺点。为了克服上述缺点,国内外又开发出了双烷基季铵盐、双季铵盐、聚季铵盐等。
季膦盐类产品的出现是目前杀生剂最新进展之一。这类化合物与季铵盐有着相似的结构,只是以磷阳离子代替氮阴离子。迄今虽然对它的各种性能参数认识并不全面,但它用于工业水处理及油田水处理确实具有高效、快速、广谱,对环境、鱼类具有低毒,易生物降解和使用方便等优点。
有机胺类非氧化防污剂,主要为有机脂肪胺乳液,其在海生物表面形成一层分子薄膜,具有分散和剥离生物粘泥,驱离和防止海生物附着的作用,可以大幅减少次氯酸钠的使用。
主要非氧化杀生剂(抑制剂)及其优缺点,如表2所示。
表2 不同杀生剂(抑制剂)的优缺点
非氧化杀生剂在加药过程当中,可进行实时监测凝汽器进出水温差、凝汽器进出水压差、凝汽器真空度、汽轮机排气温度等,除此之外还可以对冷源海生物生长情况也进行实时监测。
监测设备,如图2 所示。附着在设备上的生物膜会产生微小的直流生物电流,通过对直流电流的测量即可对生物附着情况进行实时监测,并可借此判断加药是否有效,并对加药量进行控制。
图2 微生物监测仪设备及数据分析案例
长期依靠次氯酸钠杀灭海生物,会使海生物产生抗药性,导致该方法对部分海生物杀灭不彻底。为确保核电站冷源安全,推荐采用定期投加非氧化性杀生药剂和次氯酸钠相结合的新方式,则可以有效地解决该问题,保证系统中海生物的杀灭效果。详细建议如下:
1)非氧化杀生剂不具备广谱杀生效果,是否能杀死特定核电海域的不同种类的海生物,需要在核电现场验证;
2)宜在核电现场搭设实验台架,并根据核电现场制氯站的运行性能,以得出详细的且适用于核电的不同时段、季节、气候、潮位的联合加药(次氯酸钠+非氧化杀生剂)方案;
3)台架实验结束后,方可进行非氧化杀生剂的冷源投加应用。不同时间海生物的生长周期变化较大,每年的生物周期和生长特点均略有差异,需要根据实际情况及时调整海生物控制策略;
4)现场联合加药时,应实时监测冷源海生物生长情况、凝汽器进出水温差、凝汽器进出水压差、凝汽器真空度、汽轮机排气温度等。