一类二阶非齐次边值问题正解的存在性与多解性

2023-01-17 02:41石轩荣
浙江大学学报(理学版) 2023年1期
关键词:解性边值问题边界条件

石轩荣

一类二阶非齐次边值问题正解的存在性与多解性

石轩荣

(西北师范大学 数学与统计学院,甘肃 兰州 730070)

正解;多解性;上下解方法;拓扑度理论

0 引言

Neumann边值问题在数学物理中有重要应用,如平衡梁问题、流体流向问题、热传导问题等,因此备受关注,并在特定条件下验证了其解的存在性[1-7]。JIANG等[8]研究了二阶Neumann边值问题:

SUN等[9]研究了二阶Neumann边值问题

值得注意的是,文献[8-9]研究了齐次边界条件下二阶Neumann边值问题正解的存在性。涉及非齐次边界条件下二阶微分方程边值问题的研究较少,当二阶Neumann边值问题的边界条件为非齐次时是否存在正解?本文将给出一个肯定的回答。

1 预备知识

有唯一解:

其中,

证明由文献[8-9],易得

定义

有唯一解:

证明由引理1易证。

2 主要结果及其证明

假设:

考察问题

正解的存在性与多解性,则有以下主要结果。

证明考察辅助问题:

定义

定理2的证明主要分为4步。

的解,易得

的正解。

的唯一解。

可得

定义

所以

此外,由于式(5)的所有解有界,所以

[1] TARIBOON J, SITTHIWIRATTHAM T. Positive solutions of a nonlinear three-point integral boundary value problem[J]. Boundary Value Problems, 2010, 24(5): 1-11. DOI:10.1155/2010/519210

[2] CHU J F, SUN Y G, CHEN H. Positive solutions of Neumann problems with singularities[J]. Journal of Mathematical Analysis and Applications, 2008, 337(2): 1267-1272. DOI:10.1016/j.jmaa.2007.04.070

[3] WANG H Z, LI Y. Neumann boundary value problems for second-order ordinary differential equations across resonance[J]. SIAM Journal on Control and Optimization,1995, 33(5): 1312-1325. DOI:10.1137/S036301299324532X

[4] JIANG D Q, YANG Y, CHU J F, et al. The monotone method for Neumann functional differential equations with upper and lower solutions in the reverse order[J]. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67(10): 2815-2828. DOI:10. 1016/j.na.2006.09.042

[5] MA R Y, GAO C H, CHEN R P. Existence of positive solutions of nonlinear second-order periodic boundary value problems[J]. Boundary Value Problems, 2010, 2012: 1-18. DOI:10.1155/2010/626054

[6] WANG F, ZHANG F, WANG F L. The existence and multiplicity of positive solutions for second-order periodic boundary value problem[J]. Journal of Function Spaces and Applications, 2012, 2012: 1-13. DOI:10.1155/2012/725646

[7] ZHANG Z X, WANG J Y. On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations[J]. Journal of Mathematical Analysis and Applications, 2003, 281(1): 99-107. DOI:10.1016/S0022-247X(02)00538-3

[8] JIANG D Q, LIU H Z. Existence of positive solutions to second-order Neumann boundary value problem[J]. Journal of Mathematical Research and Exposition, 2000, 20(3): 360-364.

[9] SUN J P, LI W T. Multiple positive solutions to second-order Neumann boundary value problems[J]. Applied Mathematics and Computation, 2003, 146(1): 187-194. DOI:10.1016/S0096-3003(02)00535-0

[10]MA R Y. Existence of positive radial solutions for elliptic systems[J]. Journal of Mathematical Analysis and Applications, 1996, 201(2): 375-386. DOI:10.1006/jmaa.1996.0261

[11]ERBE L H, WANG H Y. On the existence of positive solutions of ordinary differential equations[J]. Proceedings of the American Mathematical Society,1994, 120(3): 743-748. DOI:10.2307/2160465

[12]JIANG D Q, CHU J F, ZHANG M R. Multiplicity of positive periodic solutions to superlinear repulsive singular equations[J]. Journal of Differential Equations, 2005, 211(2): 282-302. DOI:10.1016/j.jde.2004.10.031

Existence and multiplicity of positive solutions for a class of second-order nonhomogeneous boundary value problems

SHI Xuanrong

(,,730070,)

positive solutions; multiplicity; upper and lower solutions; topological degree theory

O 175.8

A

1008⁃9497(2023)01⁃038⁃05

2022⁃01⁃08.

国家自然科学基金资助项目(12061064).

石轩荣(1998—),ORCID:https://orcid.org/0000-0002-7496-6348,男,硕士研究生,主要从事常微分方程与动力系统研究,E-mail: SXR15209336785@163.com.

猜你喜欢
解性边值问题边界条件
临界Schrödinger映射非齐次初边值问题的有限差分格式
k-Hessian方程径向解的存在性与多解性
一类带有Stieltjes积分边界条件的分数阶微分方程边值问题正解
带有积分边界条件的奇异摄动边值问题的渐近解
黎曼流形上具有Neumann边界条件的Monge-Ampère型方程
R2上对偶Minkowski问题的可解性
方程的可解性
非线性m点边值问题的多重正解
∑*-嵌入子群对有限群的可解性的影响
带非齐次边界条件的p—Laplacian方程正解的存在唯一性