氧化三甲胺对氯吡格雷抗血小板聚集的抑制作用观察

2022-12-24 08:32马瑞松胡小春王苗廖旺王圣
山东医药 2022年33期
关键词:断尾生理盐水氯吡

马瑞松,胡小春,王苗,廖旺,王圣

氧化三甲胺对氯吡格雷抗血小板聚集的抑制作用观察

马瑞松,胡小春,王苗,廖旺,王圣

海南省人民医院心内科 海南省心血管病临床研究中心,海口 570311

观察氧化三甲胺(TMAO)对氯吡格雷(Clo)抗血小板聚集的抑制作用。19只雄性SD大鼠随机分为IR组、Clo + IR组、TMAO + Clo + IR组。IR组制备IR模型;Clo + IR组使用Clo溶液灌胃4 d后再制作IR模型;TMAO + Clo + IR组使用Clo溶液灌胃4 d,尾静脉注射TMAO溶液后再制作IR模型。取大鼠颈静脉血,使用全自动血液体液分析仪测定血小板计数、平均血小板体积(MPV)、大血小板比例(P-LCR),使用血小板聚集功能分析仪观察血小板聚集功能,包括最大聚集率(MaxAR-ADP)、平均聚集率(AveAR-ADP)和最大聚集时间(MaxAT-ADP)。再灌注4 h后断尾,观察大鼠断尾出血时间。采用免疫染色法观察大鼠心肌血栓负荷,用最大血栓浓度(MD)和血栓指数(TI)表示。Clo + IR组血小板计数显著高于IR组(<0.05)。Clo + IR组、TMAO + Clo + IR组血小板MaxAR-ADP、AveAR-ADP均低于IR组(均<0.05),而TMAO + Clo + IR组血小板MaxAR-ADP高于Clo + IR组(<0.05)。Clo + IR组大鼠断尾出血时间高于IR组(<0.05)。Clo + IR组TI、MD均低于IR组(均<0.05),TMAO + Clo + IR组MD低于IR组(<0.05),TMAO + Clo + IR组TI高于Clo + IR组(<0.05)。Clo可以诱导血小板再生、抑制血小板聚集、延长断尾出血时间、减轻心肌血栓负荷,而TMAO可以部分抑制Clo的抗血小板聚集作用,导致Clo抵抗。

氧化三甲胺;氯吡格雷;药物抵抗;缺血再灌注;血小板

氯吡格雷(clopidogrel,Clo)是抑制血小板聚集的药物,是急性冠脉综合征的基石治疗方案,然而Clo抵抗(clopidogrel resistance, CR)发生率为5.2%~40%[1],限制了其临床应用。氧化三甲胺(Trimethylamine-N-oxide,TMAO)是肠道菌群代谢产物三甲胺经肝脏氧化而来[2]。近年来研究[3-6]证实,TMAO可以诱导血小板高反应性,增加动脉血栓风险,同时参与调解糖脂代谢,促进冠心病发生发展。Clo疗效受糖脂代谢、肾功能不全等多种因素影响,而TMAO除了直接影响血小板活性,也调解糖脂代谢,且依赖肾脏排泄。研究[7]证实,慢性肾脏病患者的肾小球滤过率低于60,血清TMAO水平显著高于健康人群,且TMAO是慢性肾脏病患者心血管并发症的独立预警因子。因此我们推测,TMAO可能是Clo抵抗的潜在因素之一。2018年2月—12月,我们观察了TMAO对Clo抗血小板聚集的抑制作用,现将结果报告如下。

1 材料与方法

1.1大鼠分组、Clo和TMAO给予及IR构建方法19只雄性SD大鼠(180~230 g,6~8周龄)购自湖北省疾控中心,随机分为IR组、Clo + IR组、TMAO + Clo + IR组。TMAO + Clo + IR组(6只大鼠),使用Clo(1 mg/kg,Sanofi)粉末溶于生理盐水(1 mL)后连续灌胃4 d,尾静脉注射TMAO溶液(500 mg/kg,溶于0.5 mL生理盐水),30 min后制作IR模型大鼠:2.5%戊巴比妥钠(45 mg/kg,i.p)麻醉大鼠,固定于鼠板上,行气管插管(70 bpm,吸呼比1︰1.5,潮气量4 mL),开胸后剪开心包,将大鼠冠状动脉前降支近端与一中空中间带凹槽的塑料管一起结扎30 min,沿凹槽剪断结扎线,再灌注4 h。Clo + IR组(7只大鼠),使用Clo(1 mg/kg,Sanofi)粉末溶于生理盐水(1 mL)后连续灌胃4 d,尾静脉注射生理盐水0.5 mL,30 min后制作IR模型大鼠,方法同上。IR组(6只大鼠),使用生理盐水(1 mL/d)连续灌胃4 d后,尾静脉注射生理盐水0.5 mL,30 min后制作IR模型大鼠,方法同上。

1.2各组大鼠血小板计数、平均血小板体积(mean platelet volume,MPV)、大血小板比例(platelet-larger cell ratio,P-LCR)测定取大鼠颈静脉血0.5 mL,收集到EDTA的抗凝管,选用全自动血液体液分析仪(XN-9000, Sysmex Corporation)测定血小板计数、MPV、P-LCR。

1.3各组大鼠血小板聚集功能观察采用血小板聚集实验。取大鼠颈静脉血1 mL到ACD抗凝管中,上下颠倒10次,使抗凝剂与血液充分混匀,选用300目尼龙布过滤掉血液中微血栓,后用英诺华AGGRESTAR(PL)血小板聚集功能分析仪测定ADP诱导的血小板聚集功能,包括最大聚集率(Maximum Agglutination Ratio, MaxAR-ADP)、平均聚集率(Average Agglutination Ratio, AveAR-ADP)和最大聚集时间(Maximum Agglutination Time, MaxAT-ADP)。

1.4各组大鼠断尾出血时间观察再灌注4 h后,在距离大鼠尾巴末端0.5 cm处断尾,将鼠尾残端浸于36 ℃生理盐水中,鼠尾残端出血线中断视为出血终止,记录出血时间。若出血时间>15 min,则以出血时间为15 min计算。

1.5各组大鼠心肌血栓负荷观察采用免疫染色法。各组大鼠制作IR模型后,半量2.5%戊巴比妥钠(22.5 mg/kg,i.p)麻醉,快速剪取心脏,缺血区(心梗区周围5 mm)心肌,洗涤后用4%多聚甲醛固定,包埋、切片、脱蜡后,高温高压修复抗原,驴血清(AntGene,ANT051)封闭,分别用1抗、抗CD41(1∶500稀释,Abcam)和抗CD31(1∶1 000稀释,Abcam),4 ℃过夜,Alexa Fluor 488驴抗兔IgG(1∶400稀释,赛默飞世尔)37 ℃孵育30 min,DAPI(1∶500稀释,罗氏公司)染核,显微玻片扫描仪(Pannoraminc Viewer MIDI II)扫描。血小板和微血栓被染成绿色,用Pannoramic Viewer软件调解合适的亮度和对比度,使直径<8 μm的绿色团块消失,观察各组大鼠心肌血栓负荷,用最大血栓浓度(Maximum density,MD)和血栓指数(Thrombosis index,TI)表示。MD定义为在100×下,750 μm×750 μm区域内绿色团块的面积。TI定义为整块染色心肌中绿色团块面积与整块染色心肌面积的比值。

2 结果

2.1各组大鼠血小板计数、MPV、P-LCR比较各组大鼠血小板计数、MPV、P-LCR比较见表1。由表1可知,Clo + IR组血小板计数显著高于IR组(<0.05)。

表1 各组大鼠血小板计数、MPV、P-LCR比较( ± s)

注:与IR组相比,*<0.05。

2.2各组大鼠血小板MaxAR-ADP、AveAR-ADP、MaxAT-ADP比较各组大鼠血小板MaxAR-ADP、AveAR-ADP、MaxAT-ADP比较见表2。由表2可知,Clo + IR组、TMAO + Clo + IR组血小板MaxAR-ADP、AveAR-ADP均低于IR组(均<0.05),而TMAO + Clo + IR组血小板MaxAR-ADP高于Clo + IR组(<0.05),提示TMAO可以部分拮抗Clo抑制血小板聚集的功能。

表2 各组大鼠血小板MaxAR-ADP、AveAR-ADP、MaxAT-ADP比较( ± s)

注:与IR组相比,*<0.05;与Clo + IR组相比,#<0.05。

2.3各组大鼠断尾出血时间比较IR组、Clo + IR组、TMAO + Clo + IR组大鼠断尾出血时间分别为(2.33 ± 1.43)min、(15.00 ± 2.37)min、(10.50 ± 8.63)min,其中Clo + IR组大鼠断尾出血时间高于IR组(<0.05)。

2.4各组大鼠心肌血栓负荷比较各组大鼠心肌血栓负荷比较见表3。由表3可知,Clo + IR组TI、MD均低于IR组(均<0.05),TMAO + Clo + IR组MD低于IR组(<0.05),TMAO + Clo + IR组TI高于Clo + IR组(<0.05)。

表3 各组大鼠心肌血栓负荷比较( ± s)

注:与IR组相比,*<0.05;与Clo + IR组相比,#<0.05。

3 讨论

Clo是血小板P2Y12受体拮抗剂,通过与ADP竞争性拮抗P2Y12受体抑制血小板活化。Clo可以诱导急性期血小板生成,并增加大血小板比率。循环中,正常血小板大约2~3 μm,新生成的血小板不乏直径超过6 μm的,称为大血小板。相较于正常血小板,其内网状结构和血小板激活因子更为丰富,因此也有更高的聚集活性。有研究[8-9]提出,网状血小板和大血小板可以作为心血管风险的预警因子。前期FU等[9]研究证实,心梗30 min内即可以观察到骨髓活化和血小板生成,氯吡格雷组血小板数量呈上升趋势,可能与开胸手术创伤、急性失血、氯吡格雷诱导的血小板失活、急性心梗等多种因素刺激大鼠骨髓活化,生成血小板相关[10-11]。

从细胞、动物、临床实验水平均已证实,TMAO可以诱导血小板高反应性[11-14]。同时TMAO参与调节糖脂代谢以及冠心病的发生发展。研究证实,冠心病患者血清TMAO水平较正常人更高,人群血清TMAO水平波动在0~400 μM[12],其与冠脉血栓事件和不良心血管预后正相关[15-17]。血清TMAO水平,每升高10 μM冠心病患者全因死亡率提高7.6%[17]。降低血清TMAO水平可以逆转血小板高反应性,降低血栓风险[18]。有学者提出,TMAO可以作为不稳定斑块以及急性ST段抬高型心肌梗死患者不良心血管事件的独立预警因子[19]。因此TMAO是诱导血小板高反应性的独立因素,但其对Clo抗血小板治疗效果的影响尚未见报道,本研究率先提出,TMAO可以部分拮抗Clo抗血小板作用,相较于Clo + IR组,TMAO可以增加血小板聚集功能,缩短大鼠尾巴出血时间,增加心肌血栓负荷。据此我们推测,冠心病患者血清中高TMAO水平,可能是Clo抵抗以及临床抗血小板治疗失败的潜在因素。

目前,TMAO诱导血小板高反应性的机制尚未阐明。前期ZHU等[11]证实,TMAO可能通过上调磷脂酰肌醇-1,4,5-三磷酸和胞内钙离子浓度诱导血小板活化。基于目前对血小板活化机制的认识,血小板胞内钙离子通过下游Ras相关蛋白1b,激活丝裂原激活蛋白激酶通路诱导血栓素AA合成,同时诱导血小板致密颗粒分泌ADP和血栓素AA,进而通过胞内-胞外通路活化整合素Ⅱb/Ⅲa受体,引起血小板聚集,这可能是TMAO诱导Clo抵抗的潜在机制。然而,多种上游通路参与调节血小板内磷脂酰肌醇-1,4,5-三磷酸表达和胞内钙离子上调,如免疫受体酪氨酸活化基序、TOLL样1和2受体通路、糖蛋白Ib-IX通路和G蛋白偶联受体中的蛋白激活受体1和4等[20-21]。因此,TMAO诱导血小板活化的完整机制尚待进一步研究。

综上所述,Clo可以诱导血小板再生、抑制血小板聚集、延长断尾出血时间、减轻心肌血栓负荷,而TMAO可以部分拮抗Clo的作用,诱导Clo抵抗的发生,TMAO可能是临床Clo抵抗的潜在因素之一。本研究还存在以下几点局限性,一是本研究通过大鼠IR模型模拟冠心病心梗模型,二者微环境可能存在不同;二是普拉格雷和替格瑞洛亦为P2Y12受体拮抗剂,尚需进一步研究明确TMAO对二者抗血小板疗效的影响。

[1] GURBEL P A, BECKER R C, MANN K G, et al. Platelet function monitoring in patients with coronary artery disease[J]. J Am Coll Cardiol, 2007,50(19):1822-1834.

[2] VERHAAR J H V, PRODAN A, NIEUWDORP M. Gut microbiota in hypertension and atherosclerosis: A review[J]. Nutrients, 2020,12(10):1-22.

[3] ZHU W, BUFFA J A, WANG Z, et al. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk[J]. J Thromb Haemost, 2018,16(9):1857-1872.

[4] HUDA M N, KIM M, BENNETT B J. Modulating the microbiota as a therapeutic intervention for type 2 diabetes[J]. Front Endocrinol (Lausanne), 2021,7(12):632335.

[5] WITKOWSKI M, WEEKS T L, HAZEN S L. Gut microbiota and cardiovascular disease[J]. Circ Res, 2020,127(4):553-570.

[6] TOMLISON J A P, WHEELER D C. The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease[J]. Kidney Int, 2017,92(4):809-815.

[7] CESARI F, MARCUCCI R, GORI A M, et al. Reticulated platelets predict cardiovascular death in acute coronary syndrome patients: Insights from the AMI-florence 2 study[J]. Thromb Haemost, 2013,109(5):846-853.

[8] CHU S G, BECKER R C, BERGER P B, et al. Mean platelet volume as a predictor of cardiovascular risk: A systematic review and meta-analysis[J]. J Thromb Haemost, 2010,8(1):148-156.

[9] FU W, WANG J, JIANG H, et al. Myocardial infarction induces bone marrow megakaryocyte proliferation, maturation and platelet production[J]. Biochem Biophys Res Commun, 2019,510(3):456-461.

[10] HEIANZA Y, MA W, MANSON J A E, et al. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: A systematic review and meta-analysis of prospective studies[J]. J Am Heart Assoc, 2017,6(7):e004947.

[11] ZHU W, GREGORY J C, ORG E, et al. Gut microbial metabolite tmao enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016,165(1):111-124.

[12] BERGER M, KLEBER M E, DELGADO G E, et al. Trimethylamine n-oxide and adenosine diphosphate-induced platelet reactivity are independent risk factors for cardiovascular and all-cause mortality[J]. Circ Res, 2020,126(5):660-662.

[13] GAO J, YAN K T, WANG J X, et al. Gut microbial taxa as potential predictive biomarkers for acute coronary syndrome and post-STEMI cardiovascular events[J]. Sci Rep, 2020,10(1):2639.

[14] KOAY Y C, CHEN Y C, WALI J A, et al. Plasma levels of trimethylamine-N-oxide can be increased with “healthy” and “unhealthy” diets and do not correlate with the extent of atherosclerosis but with plaque instability[J]. Cardiovasc Res, 2021,117(2):435-449.

[15] NOWINSKI A, UFNAL M. Trimethylamine N-oxide: A harmful, protective or diagnostic marker in lifestyle diseases?[J]. Nutrition, 2018,46:7-12.

[16] SCHIATTARELLA G G, SANNINO A, ESPOSITO G, et al. Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases[J]. Trends Cardiovasc Med, 2019,29(3):141-147.

[17] STEFANINI L, BERGMEIER W. RAP GTPases and platelet integrin signaling[J]. Platelets, 2019,30(1):41-47.

[18] SHI W H, HUANG Y J, YANG Z, et al. Reduction of TMAO level enhances the stability of carotid atherosclerotic plaque through promoting macrophage M2 polarization and efferocytosis[J]. Bioscinece Report, 2021,41(6):BSR20204250.

[19] GAO J, YAN K T, WANG J X, et al. Gut microbial taxa as potential predictive biomarkers for acute coronary syndrome and post-STEMI cardiovascular events[J]. Science Report, 2020,10(1):2639.

[20] THIBEAULT P E, RAMACHANDRAN R. Biased signaling in platelet g-protein coupled receptors[J]. Can J Physiol Pharmacol, 2021,99(3):255-269.

[21] MEZGER M, NORDING H, SAUTER R, et al. Platelets and immune responses during thromboinflammation[J]. Front Immunol, 2019,10:1731.

Inhibitory effect of TMAO on anti-platelet aggregation effects of clopidogrel

,,,,

,,570311,

To observe the inhibitory effect of trimethylamine-N-oxide (TMAO) on clopidogrel (Clo) against platelet aggregation.Nineteen male SD rats were randomly divided into the IR group, Clo+IR group, and TMAO+Clo+IR group. In the IR group, we made IR models. The rats in the Clo+IR group were given Clo solution intragastrically for 4 days before the IR models were made. In the TMAO+Clo+IR group, Clo solution was administered intragastrically for 4 days, and TMAO solution was injected into the tail vein before the IR models were made. Carotid venous blood was collected from rats, and platelet count, mean platelet volume (MPV) and large platelet ratio (P-LCR) were measured by automatic blood fluid analyzer. Platelet aggregation functions, including maximum aggregation rate (MaxAR-ADP), average aggregation rate (AveAR-ADP), and maximum aggregation time (MaxAT-ADP), were measured by platelet aggregation function analyzer. The tail was severed 4 h after reperfusion and the bleeding time was observed. The myocardial thrombotic load of rats was observed by immunostaining, which was expressed by the maximum thrombotic concentration (MD) and thrombotic index (TI).The platelet count in the Clo+IR group was significantly higher than that in the IR group (<0.05). Platelet MaxAR-ADP and AveAR-ADP in the Clo+IR group and TMAO+Clo+IR group were lower than those in the IR group (both<0.05), while platelet MaxAR-ADP in the TMAO+Clo+IR group was higher than that in the Clo+IR group (<0.05). The duration of caudal bleeding in the Clo+IR group was longer than that in the IR group (<0.05). TI and MD in the Clo+IR group were lower than those in the IR group (both<0.05), MD in the TMAO+Clo+IR group was lower than that in the IR group (<0.05), and TI in the TMAO+Clo+IR group was higher than that in the Clo+IR group (<0.05).Clo can induce platelet regeneration, inhibit platelet aggregation, prolong the time of caudal bleeding, and reduce myocardial thrombotic load, while TMAO can partially inhibit the anti-platelet aggregation effect of Clo, leading to Clo resistance.

trimethylamine-N-oxide; clopidogrel; drug resistance; ischemia and reperfusion; platelet

10.3969/j.issn.1002-266X.2022.33.003

R54

A

1002-266X(2022)33-0009-04

海南省自然科学基金项目(821MS0823,822RC811)。

马瑞松(1986-),男,博士,主治医师,主要研究方向为血小板、心肌缺血再灌注损伤研究。E-mail: 414542231@qq.com

王圣(1972-),男,博士,主任医师,主要研究方向为血小板、结构性心脏病研究。E-mail: Cardiohn@126.com

(2022-07-07)

猜你喜欢
断尾生理盐水氯吡
《断尾的狐狸》新编
Physiological Saline
壁虎的独白
曲美他嗪联合氯吡格雷治疗冠心病心绞痛的临床效果
生理盐水
吃氯吡格雷最好测下基因
1例氢氯吡格雷致糖尿病肾病患者球结膜出血报告
氯吡格雷抵抗须防范
小花猫与老鼠
断尾猫