李 涵,葛许华,缪红军
南京医科大学附属儿童医院急诊/重症医学科,江苏 南京 210008
足细胞及内皮细胞、肾小球基底膜共同组成肾小球滤过屏障。血液滤过肾小球时,足细胞作为最后屏障,决定血液中蛋白质是否丢失。因此,足细胞在维持肾小球滤过屏障的完整性以及防止蛋白尿的产生中起到不可或缺的作用[1]。足细胞骨架成分以及狭缝隔膜(slit diaphragm,SD)蛋白的突变或异常会引起足细胞损伤和破坏,导致蛋白尿和进行性肾小球硬化[2]。目前,氧化应激被认为是足细胞损伤的主要原因,对足细胞损伤的其他潜在机制仍然知之甚少[3]。
足细胞是一种特殊类型的分化上皮细胞,也是维持肾小球滤过屏障结构和功能的完整性以及选择滤过蛋白质大小的重要组成部分[4-5]。足细胞具有复杂的细胞形态,即复杂的细胞极性组织——细胞体和广泛的突起网络——足突。它的初级足突逐渐延伸形成次级足突,并与相邻足细胞的次级足突连接形成SD,参与构成肾小球滤过屏障[6]。早期有研究发现,初级足突和次级足突具有独特的细胞骨架特征和成分。细胞体和初级足突主要的细胞骨架成分是微管(microtubule,MT)和中间丝(inter⁃mediate filaments,IF)[7]。其中,MT 主要以a/β微管蛋白亚基为基本元件构成,是一种高度动态的结构,参与多种生物的细胞有丝分裂以及纤毛的形成[8];IF主要由波形蛋白和结蛋白构成,在孤立肾小球中,已证实IF可调节细胞弹性[9]。次级足突的主要细胞骨架成分是微丝,它主要是由F⁃肌动蛋白和肌球蛋白聚集组成。肌动蛋白细胞骨架广泛分布于次级足突中,是导致足细胞损伤和功能障碍的重要成分[7]。足细胞损伤或功能障碍可由不同的代谢紊乱引起,使足细胞从肾小球基底膜脱离,导致肾小球滤过屏障功能障碍,从而引起蛋白尿和多种肾脏疾病[10]。
母源性同种免疫性肾小球病是一种新的器官特异性母源性疾病,主要是由于遗传缺陷导致母亲孕后产生针对胎儿的抗体,该抗体穿过胎盘,与胎儿肾小球足细胞结合,引起足细胞破坏,从而导致肾功能障碍[11]。有研究者在检测膜性肾病患儿及母亲的血液样品时,发现了一个90 kDa 的抗原,即中性内肽酶(neutral endopetidase,NEP)[12]。NEP 抗原缺陷母亲在怀孕时,产生针对胎儿NEP抗原的抗NEP IgG1 抗体,该抗体通过胎盘,在足细胞基底膜形成原位免疫复合物引起足细胞破坏、蛋白尿的产生,甚至发生终末期肾衰竭。同时,也发现金属膜内肽酶基因截短突变是孕期同种免疫的诱因,可诱导抗NEP抗体的产生[12-13]。这一发现打开了膜性肾病在病理生理学和治疗方面的新大门。
随着编码狭缝隔膜相关蛋白的突变基因(如NPHS1、NPHS2、NPHS3 和CD2AP)的报道,近年来,越来越多涉及足细胞损伤的突变基因被研究者们发现[14]。其中,细胞骨架成分相关的编码基因如辅肌动蛋白A4(recombinant actinin alpha 4,ACTN4)、MYH9 等突变备受关注。有研究者发现,足细胞特异性表达的编码ACTN4 基因突变或表达异常可导致足细胞形态和结构的严重破坏,老年小鼠出现蛋白尿[15]。最近发现,编码非肌肉肌球蛋白的MYH9基因突变引起足细胞足突消失以及足突之间的SD 破坏,使机体出现大量蛋白尿甚至肾小球硬化[16]。另外,有研究者在患有局灶性节段性肾小球硬化症(focal segmental glomerulosclerosis,FSGS)和肾小管间质病变的家庭中鉴定出纯合的TTC21B p.P209L基因突变。通过测序对突变基因分析发现TTC21B隐性突变有致病作用。TTC21B突变的患者会在儿童期或者成年期出现蛋白尿并迅速发展为终末期肾病[17]。
2.3.1 免疫相关
近年来,越来越多的研究表明足细胞具有先天免疫活性。同时,各种抗原诱导的免疫反应具有病理作用,可导致足细胞损伤和肾脏疾病的发生。研究发现,足细胞磷脂酶A2受体(phospholipase A2 re⁃ceptor,PLA2R)是成人膜性肾病自身免疫反应的抗原靶点[18]。约70%成年原发性膜性肾病患者可产生针对足细胞M型PLA2R的抗IgG4抗体,引起足细胞损伤[19]。与PLA2R相似特性的足细胞抗原⁃血小板反应蛋白1 型结构域7A(thrombospondin type 1 domain⁃containing 7A,THSD7A)也被报道[20]。在Heymann 肾炎模型中,研究者发现一种分子量达600 kDa的自身抗原,即足细胞跨膜蛋白⁃巨蛋白[13]。它可与体内的抗巨蛋白抗体结合,形成原位免疫复合物,引起补体激活形成膜攻击复合物C5b⁃9 破坏足细胞结构和功能,引起SD 损害,从而导致肾小球滤过屏障破坏,蛋白质渗漏,产生大量蛋白尿[19]。
2.3.2 非免疫相关
除了上述原因外,感染、代谢等因素也会引起足细胞损伤。当细菌等感染引起脓毒症时,促炎细胞因子如白介素(IL)⁃1β、IL⁃6、肿瘤坏死因子α(TNF⁃α)等表达水平升高,导致足细胞破坏和凋亡[21]。慢性人类免疫缺陷病毒感染机体,会激活先天性抗病毒机制,使载脂蛋白L1 表达上调,引起足细胞肌动蛋白细胞骨架肾病蛋白(nephrin)表达下调,从而导致足细胞骨架及细胞形态的稳定性破坏[22]。此外,糖尿病引起的机体代谢变化(如高血糖、高氨基酸血症等)会引起足细胞破坏,肾小球肥大和硬化以及肾小管炎症和间质纤维化[23]。
足细胞的肌动蛋白细胞骨架为细胞形态及其与细胞外基质的连接提供结构和功能支持[24]。已有研究表明,足细胞损伤时,细胞骨架失调是导致足细胞足突消失的根本原因[25],表现为足突中高度有序的平行收缩的肌动蛋白丝束在病理条件下变得紊乱、缩短、分枝,足细胞足突消失,抵消滤过压力的能力下降,毛细血管扩张,从而导致蛋白尿[24-25]。然而,最近研究发现,虽然足细胞损伤会引起足突消失,但如果足细胞仍附着于基底膜上,足突是可以再生的。通过电子显微镜可以看到,在足突消失后期,足细胞的基底膜侧会形成肌动蛋白层。之后,致密的肌动蛋白层溶解,新的足突从细胞中再生出来[26]。因此,足细胞骨架与足突细胞的消失和再生均有着密切联系。
Krüppel 样因子(Krüppel⁃like factor,KLF)是一种锌指结构的DNA 结合转录因子,参与细胞分化、代谢以及DNA 修复等多种生物学过程[27]。其中,KLF15 是足细胞分化的关键调控因子,通过转录调节足细胞特异性蛋白如突触足蛋白(synaptopodin)、足蛋白(podocin)及nephrin 等的表达,保护足细胞。KLF15缺失导致肌动蛋白细胞骨架稳定性破坏和足细胞损伤。然而,足细胞在应激时会通过过表达KLF15来稳定肌动蛋白细胞骨架,减轻肾纤维化、炎症和足细胞损伤,改善肾功能[28]。最新的启动子分析发现KLF15结合位点的代表基因——活化T细胞核因子c1(nuclear factor of activated T cells c1,NFATc1),又称NFAT2,是NFAT 转录因子家族成员。在生理情况下,KLF15通过直接结合到NFATc1的启动子区域来抑制NFATc1基因的转录。在病理条件下,KLF15 缺失导致结合NFATc1 启动子区域的KLF15减少,从而增强NFATc1基因的转录,导致足细胞损伤、凋亡以及足突消失[29]。也有研究发现,E2F 转录因子3(e2f transcription factor 3,E2F3)是E2F 家族的一员,与细胞增殖和凋亡密切相关。高糖刺激的足细胞会使E2F3表达下调,促进足细胞损伤[30]。
线粒体作为细胞的动力源,提供ATP,以维持足细胞肌动蛋白细胞骨架的稳定。在肾脏中,线粒体功能障碍与多种肾脏疾病密切相关,其中对足细胞损伤的影响最为显著[31]。过氧化物酶体增殖物激活受体γ共激活因子⁃1α(peroxisome proliferator⁃acti⁃vated receptor γ coactivator⁃1α,PGC⁃1α)是诱导线粒体生物合成和功能的上游转录调节因子。足细胞中PGC⁃1α水平升高促进线粒体的生物合成,提高细胞的氧化磷酸化,增加活性氧(reactive oxygen,ROS)副产物的产生。同时,PGC⁃1α调节ROS抑制物的转录表达,促进细胞呼吸和ATP 合成,减少细胞氧化损伤。当各种因素引起足细胞PGC⁃1α表达降低时,出现线粒体功能障碍,ROS 大量产生,从而诱导线粒体外膜孔道开放,释放Ca2+、细胞色素C、凋亡诱导因子,引起足细胞凋亡[32]。然而也有研究显示,诱导小鼠足细胞PGC⁃1α过表达可导致足细胞分化标志物缺失,使肾小球上皮细胞增殖,引起肾小球病变塌陷[33-34]。此外,动力相关蛋白⁃1(dynamin⁃relat⁃ed protein⁃1,Drp1)是动力超家族中的一个大型GTP酶,对哺乳动物细胞的线粒体分裂具有重要作用。在线粒体分裂时,Drp1 从细胞质聚集到线粒体外膜,在外膜自行组装成寡聚体破坏线粒体膜[35]。有研究发现,醛固酮可剂量依赖性诱导Drp1 的表达,并通过Drp1介导线粒体分裂,从而引起线粒体功能障碍和足细胞的凋亡[36]。同时,足细胞是高度分化的终末细胞,其特性与神经细胞、肌肉细胞等永久细胞类似,易发生线粒体突变。当突变的异常线粒体聚集于足细胞时,会破坏线粒体的蛋白质合成和能量供应,引起足细胞破坏和功能障碍,甚至发生肾小球硬化[37]。
瞬态受体电位阳离子通道(transient receptor po⁃tential cation channel,TRPC)是哺乳动物细胞中非选择性的钙离子通道。TRPC 具有7 种亚型,即TRPC1⁃7,除TRPC2 外的其他6 种亚型在哺乳动物中表达[38]。通过电生理记录,研究者发现TRPC6在足细胞足突的SD处高度表达,并与SD蛋白podocin和nephrin相互作用[39]。生理情况下,TRPC6通道被激活后,促使Ca2+流入细胞,触发细胞内信号级联反应,从而引起基因转录增强,维持足细胞结构和功能的稳定。然而,在病理条件下,如高血糖、血管紧张素Ⅱ等刺激引起ROS和过氧化氢产生增加,通过G 蛋白偶联受体级联反应使TRPC6 通道过度激活,足细胞Ca2+内流急剧增加,导致足细胞肥大,足细胞以及足突破坏,从而引起肾小球滤过屏障破坏和功能障碍,甚至产生蛋白尿[40]。也有研究发现,TRPC6和Rho 蛋白家族的成员RhoA 构成一种分子复合物。TRPC6 介导的足细胞Ca2+内流增加也增强了RhoA 的活性,而RhoA的异常激活可导致足细胞骨架结构紊乱,F⁃肌动蛋白纤维重排,足细胞损坏[39]。Verheijden 等[41]发现TRPC6 介导的Ca2+内流激活足细胞钙蛋白酶家族成员⁃钙蛋白酶1,使SD 蛋白nephrin和足突细胞骨架相关锚定蛋白踝蛋白⁃1(ta⁃lin⁃1)降解,从而破坏足细胞的完整性,导致严重的蛋白尿。
足细胞的SD 特异性蛋白与肌动蛋白细胞骨架密切作用,影响足细胞的信号通路和运动。SD蛋白及其相关蛋白表达或功能异常对足突缺失影响显著,甚至引起蛋白尿和肾病的发生发展[42]。SD的蛋白质主要包括nephrin、podocin等。由Nphs1基因编码的nephrin 是一种表达于肾小球足细胞连接处的黏附蛋白。Nphs1基因突变、糖尿病肾病、肾性蛋白尿以及细菌感染诱发的肾病患者nephrin 表达会减低,引起SD 损伤,同时也减弱足细胞在损伤后的修复能力[43]。SD 损伤导致肌动蛋白细胞骨架的重新排列,使高度复杂的肌动蛋白骨架结构简化,主要表现为足突回缩、结构扁平和相互之间交错减少,最终导致足细胞凋亡或脱离[42]。podocin 是一个含有383 个氨基酸残基的类似发夹状结构的SD 蛋白质,可激活并增强nephrin诱导的信号转导。研究发现,在糖尿病肾病中,podocin 表达随着足细胞损伤和基底膜的破坏而减低,这表明podocin表达减低与足细胞损伤密切相关[44]。
在许多肾小球疾病中,引起疾病的明确发病机制尚不清楚。近年来,随着足细胞生物学和细胞学的研究进展,我们对足细胞损伤机制的了解显著增加。然而,足细胞对损伤的反应是复杂的,涉及多种机制,并且一些机制参与多种肾小球疾病过程。目前,我们对足细胞损伤机制的研究仍然有限。未来我们还需要进一步研究,更深入探索足细胞损伤的机制,这对寻找肾脏疾病新的治疗靶点具有重要意义。