孙昊,莫彦,李光永,张彦群,龚时宏
地下滴灌加气技术研究进展
孙昊1,莫彦2*,李光永1,张彦群2,龚时宏2
(1.中国农业大学,北京 100091;2.中国水利水电科学研究院 水利研究所,北京 100048)
地下滴灌加气技术是通过对地下滴灌管网加气来改善根区土壤通气条件,避免低氧胁迫对作物造成不利影响,促进作物增产提质的一种新型灌溉技术。明确不同条件下地下滴灌加气技术的实施效果,确定适宜的加气灌溉模式与配套设备是推动该技术规模化应用的关键。通过总结近年来地下滴灌加气技术的相关研究进展与成果,全面总结了作物生长适宜的根区土壤氧气条件以及地下滴灌加气技术对土壤环境与作物生长的改善效果,并重点探讨了加气模式与加气设备的应用现状、存在的问题和发展趋势。目前,地下滴灌加气技术在作物产量与品质提升方面效果显著,但仍存在需进一步研究和解决的问题,首先是作物需按时、按需加气,其次需要从“气源-灌溉系统-土壤环境-作物生长”全过程提升加气综合利用效率并研发实用、高效的地下滴灌专用加气设备。
地下滴灌;加气灌溉;氧气量阈值;加气模式;加气设备
土壤孔隙中的氧气是植物根系、土壤微生物与动物呼吸作用的重要氧气来源[1],与水、肥、热、光共同构成作物生长的主要影响因素[2]。土壤黏粒量高、地下水埋深浅、洪涝灾害等自然因素和农业机械碾压、过度灌溉施肥等人为因素均会导致土壤氧气量降低[3],出现低氧胁迫现象,对作物产生一系列的生理危害,根系对土壤中水分与养分吸收能力下降[4],进而造成叶片变黄脱落加快、新叶形成受阻、植物生长态势和生长速率减缓、干物质减少、果实品质低劣等现象[5]。加气灌溉能优化土壤三相比例,改善土壤微生物活性、酶活性、氧化还原反应等土壤微环境,提高土壤生产力。
地下滴灌(SDI)作为加气灌溉的最适宜载体,可直接向根区输送水气混合液或微型气泡实现增氧。大量研究证实SDI加气能有效改善土壤环境,提高作物产量与品质[6]。然而,目前针对SDI加气的技术参数与加气效果的研究结果并不一致,制约了加气技术模式的提出和应用。基于此,本文通过梳理主要作物根区适宜氧气量范围,总结SDI加气效果、加气模式和加气设备的应用与优化等多方面的研究成果,挖掘该研究领域存在的关键问题,提出急需进一步研究的方向,旨在解决SDI加气技术存在的问题,为推动SDI技术规模化发展提供支撑。
土壤氧气主要由气态氧(C)和液态溶解氧(DO)组成[7],二者通常随土层深度的增加而减少[8]。目前,关于C和DO的适宜取值范围研究大多围绕蔬菜和瓜果等经济作物开展,一般要求根区的值不能低于15%,蔬菜适宜的DO范围为10~20 mg/L,果树适宜的DO范围为2~10 mg/L。
对于大豆、烟草、番茄、甜瓜等作物,当值<0.5%时,作物根系的抗氧化酶将产生应激反应,导致根系受损甚至生长停滞[9]。当值<10%,园林植物根系将会无法正常生长[10]。纪拓等[11]借助还原性铁粉来控制甜茶幼苗根区土壤的氧气量,当值=15.9%时,幼苗根系生长受到抑制;当值<12%时,幼苗无法存活。尽管土壤DO量较低,但由于土壤溶液通常以膜状的形式包裹在植株根系和土壤颗粒表面,土壤液态溶解氧更容易被根系吸收利用[12]。当DO量为0.5~2.0 mg/L时,番茄根系的有氧呼吸将受阻或中断,根系活力减弱,生长速度减缓;当DO量为7.0~8.0 mg/L时,番茄根系活力最大,相比DO量为1.2~6.4 mg/L条件下的番茄根系活力显著提高了84.3%[13],但过高的氧气质量浓度(DO量为40 mg/L)又会造成番茄根系发育不良,DO量为30 mg/L是水培番茄生长的上限质量浓度[14]。黄瓜具有较好的耐低氧性[13],但在低氧(DO量为0.9~1.1 mg/L)胁迫下,黄瓜叶面积指数为对照(DO量为8.0 mg/L)的63.8%,其鲜物质量、干物质量分别降低36.1%和40.4%[15]。当使用微咸水加氧滴灌时,小白菜的净光合速率和地上部鲜物质量最大值对应的DO量为18.5 mg/L[16]。对于盆栽枸杞和无花果,适宜的根区DO量分别为4 mg/L和6.0 mg/L[17]。苹果砧木幼苗在根区DO量为1.5~2.0 mg/L的低氧胁迫下会停止生长[18]。不同作物以及生长阶段对土壤氧气量的响应程度不同,基于作物适宜生长所需氧气量范围制定科学合理的SDI加氧灌溉制度至关重要。
目前,绝大多数研究主要采用土壤氧气量、氧气扩散率等物理指标以及土壤微生物、酶活性等生态指标来定量表征SDI加气技术对土壤环境的改善作用。此外,还有学者通过研究作物生理、产量、品质和水分利用效率等方面的响应来分析SDI加气技术的应用效果。
加气灌溉对土壤值提升幅度较小,对于塿土和壤土,加气灌溉后土壤全生育期的值平均提升幅度为1.5%~2.7%[19-20],在加气时和加气后的有限时间内有一定幅度的增加[21],然而对于土壤呼吸速率(),在SDI加气后显著提升25.2%~38.8%[19-20]。当灌水定额较大(蒸发皿系数p=0.9)时,SDI加气技术能增强土壤供氧能力,土壤氧气扩散率()和氧化还原电位()比不加气处理分别提高了14.9%和9.7%[22]。
作物根区是“土壤-根系-土壤微生物与酶”等因素相互作用下的复杂系统。其中,土壤微生物是土壤养分转化和生化反应的重要推动力,土壤硝化反应、速效磷合成等过程均受微生物影响,而土壤微生物群落构成和种群数量与土壤氧气量相关,加气处理可提高0~15 cm土层的微生物数量,提高有机肥使用效率,用于表征土壤微生物多样性的Shannon指数提高了4.2%,生物种类增加了6~7种[23]。加气灌溉可通过增加硝化细菌数量、减少反硝化细菌数量来促进土壤硝化反应[24],硝态氮平均生成速率提高了41.4%[25],硝态氮量可增加18.6%~101.4%[21]。除了硝态氮,加气灌溉还能提高7.0%~31.1%的土壤速效磷合成速率[26],促进温室果蔬对土壤钾元素的吸收[20],并能降低秸秆还田后土壤中有毒还原性物质Fe2+和Mn2+量[27]。
土壤酶主要来源于土壤微生物、作物根系和植株残体的分解、土壤动物的排泄物等,土壤脲酶和磷酸酶活性一般作为评价土壤肥力的参考指标[28]。相比于不加气处理,加气滴灌后滴头下方0~20 cm土层的土壤脲酶与磷酸酶活性能提高1.0%~27.0%[29],过氧化氢酶活性能提高11.9%[30]。此外,周云鹏[31]研究结果表明,加气滴灌能提升102.0%~133.0%的脲酶量。
SDI加气技术主要通过促进作物根系生长来改善地上部分生物量的积累,提高作物株高和茎粗。SDI加气技术对大豆、鹰嘴豆、南瓜等作物的总根长、总根表面积、总根体积和根系活力均有显著的提高作用[32]。其中,番茄的根系长度增加了5.6%~7.5%,根系活力提高了7.6%~17.5%[33]。在黄瓜发芽过程中,经过早、中、晚3次加气灌溉后,其发芽速率高峰值比不加气处理显著提高了27.5%[34]。循环曝气处理后的小白菜干物质、光合速率、气孔导度与蒸腾速率分别显著提高了42.0%、868.6%、157.1%和55.6%[35]。文丘里加气灌溉处理后,西瓜的叶、茎干质量分别增加了7.5%~50.3%和34.8%~64.7%[36]。在SDI微纳米气泡加气条件下,春玉米株高和茎粗分别增加了4.3%~11.5%和8.4%~29.7%[29]。
综合考虑成本投入、加氧效果和经济效益,SDI加气技术主要应用在番茄[19]、黄瓜[20]、小白菜[35]、西瓜[36]、甜瓜[37]、辣椒[38]、菠萝[39]等温室果蔬上,少量应用在苜蓿[26]、水稻[27]、玉米[40]、小麦[41]和马铃薯[42]等粮食作物上。对于温室果蔬,SDI加气后作物的产量和水分利用效率分别提高了3.6%~66.4%和5.9%~60.0%;对于大田粮食作物,SDI加气后作物的产量和水分利用效率分别提高了5.2%~29.2%和5.2%~20.5%(表1—表3)。维生素C、可溶性固形物、可溶性糖量等是衡量果蔬品质的重要指标,在水肥调节的基础上,加气灌溉能进一步改善果蔬品质,西瓜的酸糖比能显著提高11.2%~54.4%,番茄维生素C和可溶性固形物量分别增加10.4%~44.0%和1.0%~3.9%(表1—表3)。
SDI加气模式主要包含加气深度、加气频率、加气时间和加气量。目前,学者们主要围绕加气频率和加气量优选方面开展研究,加气时间较为固定,一般随灌溉过程同步加气。
3.1.1 加气深度
加气深度由滴灌带(管)埋深决定,在根区附近加气能更有效地缓解低氧胁迫问题[26],但受深埋SDI存在作物出苗难、滴灌带(管)损坏不易更换[43]等问题限制,在调查的全部文献中,92.9%的滴灌带(管)埋深范围是10~20 cm,属于浅埋滴灌。较浅的加气深度会造成严重的土壤氧气逸散现象,使得氧气利用效率低,结合水分因素影响,10 cm加气深度的甜瓜产量比25 cm加气深度降低9.5%[44]。
3.1.2 加气频率
过低的加气频率会造成土壤氧气量不能长期保持在适宜范围,而过高的加气频率会扰动土壤,不利于作物根系稳定,还会减少土壤真菌、放线菌等微生物量[37]。利用文丘里射流器或微纳米气泡发生机加气时,加气频率通常与灌水频率一致,通常为1/3~6 d/次;利用空气压缩机或气泵加气时,学者们通常采用1/3~3 d/次的加气频率(表1—表3)。大田粮食作物适宜的加气频率一般为5 d/次[26],温室番茄[19]、西瓜[36]和甜瓜[45]等果蔬的加气频率为2~3 d/次,也有学者推荐番茄的加气频率为6 d/次[46]。
表1 以空气压缩机或气泵为地下滴灌加气设备的加气效果总结
注 Pt:土壤孔隙度;-:缺少参数;(!):最优处理。土壤环境、产量及水分利用效率列表数据表示为加氧处理与不加氧处理相比的增加/减少比例,单位均为%。
表2 以文丘里射流器为地下滴灌加气设备的加气效果总结
注 Pt:土壤孔隙度;-:缺少参数;SRR:土壤呼吸速率。土壤环境、产量及水分利用效率列表数据表示为加氧处理与不加氧处理相比的增加/减少比例,单位均为%。
表3 以微纳米气泡发生器为地下滴灌加气设备的加气效果总结
注 Pt:土壤孔隙度;-:缺少参数;SRR:土壤呼吸速率;(!):最优处理。土壤环境、产量及水分利用效率列表数据表示为加氧处理与不加氧处理相比的增加/减少比例,单位均为%。
3.1.3加气时间
水中溶氧量随温度降低而增加,为提高灌溉水中溶解氧量上限并加快溶氧速率,SDI加气时间一般较为固定,通常为08:00—09:00或17:00—19:00[36]。当使用空气压缩机将空气或纯氧注入根区土壤时,刘杰等[36]和Bhattarai等[46]建议在灌水或降水后单独进行,含水率较高的土壤可减少氧气逸散,提高氧气在根区土壤中的存留时间。
3.1.4加气量
目前,加气灌溉的单次加气量一般按照以下5种方法实施:①50%Pt(Pt为土壤孔隙度);②注入体积(0.1~0.3 L/次);③注入时长(20~30 min/次);④灌溉水溶解氧质量浓度×灌水定额,溶解氧质量浓度取1.8~40 mg/L;⑤掺气比×灌水定额,掺气比取12%~50%(表1—表3)。其中,方法①和方法③多适用于空气压缩机或气泵,方法②和方法⑤多适用于文丘里射流器,方法④适用于微纳米气泡发生机。除此之外,还有学者采用浓度为0.03%的H2O2作为氧源来加氧[2]。
在调查的所有文献中,使用空气压缩机或气泵、文丘里射流器、微纳米气泡发生机以及化学加氧法的加气方式各占28.6%、37.1%、25.7%和8.6%,作物产量提升幅度分别为4.5%~66.4%、3.9%~56.5%、3.6%~31.6%和19.7%~38.7%,使用空气压缩机或气泵、文丘里射流器和微纳米气泡发生机的试验中水分利用效率分别提高了11.2%~60.0%、5.9%~30.5%、5.2%~20.1%。虽然文丘里射流器使用比例较大,但由于该设备产生气泡尺寸较大,易发生“烟囱效应”[47-48],且加气效率较低,曝气比率为12%[38],故其产量和水分利用效率的提升幅度小于空气压缩机和气泵。微纳米气泡因其强稳定性和高传质率可减少气泡间的相互作用,改善水气分布均匀性和稳定性,灌溉水中的溶解氧质量浓度在加气停止后降至初始值时间可由文丘里射流器的15~30 min延长至6 h[49],当以纯氧作为气源时,灌溉水溶解氧质量浓度可比以空气为气源时提高250%~400%,达到35~40 mg/L[29],但微纳米气泡发生机存在造价过高、运维麻烦等问题。在灌溉水中添加适量的过氧化物如双氧水等可促进作物生长,但存在运输储存不便,长期使用污染土壤环境等问题[50]。
加气设备的性能优化是提升加气效果的重要途径。Wang等[50]通过测试指出MAZZEI型号文丘里装置具有注气流量大和性能稳定等优点,适合作为SDI加气设备。有学者通过对微气泡释放器的喉部直径、湍流腔厚度和出口角度等结构参数进行优化,提高了微纳米气泡机加气效率[51]。还有学者通过优化灌溉管路布设与添加表面活性剂来提高微气泡曝气的掺气比例、氧传质效率、滴灌带水气传输均匀性[52]。
SDI加气技术已经进行较多的研究,但由于气泡形成与输送过程形态变化复杂、土壤结构空间变异性大、作物根区氧气难以定量表征等问题,地下滴灌加气技术大多停留在小范围试验规模,且主要关注温室果蔬作物,仍存在诸多问题需要深入研究。
1)完善不同作物根区需氧量体系,按时按需加气。不同地域和土壤,加气模式有区别,需以作物根区适宜需氧量为根据,尤其需要针对适宜SDI技术的大田粮食作物、果树以及苜蓿、灌木等多年生植物,结合作物根区氧气量测定传感器,提出加气技术参数与土壤环境参数及作物生长指标的量化关系,构建高效的土壤氧气监测系统和科学的加气制度。
2)关注气体输送全过程,提升加气效率。“气源-灌溉系统-土壤环境-作物生长”是SDI加气技术中气体运动的完整过程,目前研究主要关注后2个环节,忽略了气体在首部和供水管网中的运动变化过程,需围绕全链条的气体输送过程开展气泡形态变化研究、灌溉水溶解氧质量浓度监测、水气传输均匀性评价等,提升气体综合利用效率。
3)研发加气专用设备。目前使用的加气设备大多是对别的行业设备加以改造利用,针对SDI系统管网布置特点,构建科学的产品研发理论体系,研发性能稳定、实用性强、专业的SDI加气设备与系统是未来研究的重要方面。
[1] 韩广轩, 周广胜, 许振柱. 中国农田生态系统土壤呼吸作用研究与展望[J]. 植物生态学报, 2008(3): 204-218.
HAN Guangxuan, ZHOU Guangsheng, XU Zhenzhu. Research and prospects for soil respiration of farm and ecosystems in China[J]. Journal of Plant Ecology, 2008(3): 204-218.
[2] BENNOAH Ilan, FRIEDMAN S. Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments[J]. Agricultural Water Management, 2016, 176: 222-233.
[3] DU Yadan, NIU Wenquan, GU Xiaobo, et al. Crop yield and water use efficiency under aerated irrigation: A meta-analysis[J]. Agricultural Water Management, 2018, 210: 158-164.
[4] GREENWAY Hank, ARMSTRONG William, COLMER Timothy. Conditions leading to high CO2(> 5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism[J]. Annals of Botany, 2006, 98(1): 9-32.
[5] DREW Michael. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 223-250.
[6] NIU Wenquan, FAN Wentao, PER Saud, et al. Effect of post-irrigation aeration on growth and quality of greenhouse cucumber[J]. Pedosphere, 2013, 23(6): 790-798.
[7] 范爱武, 刘伟, 李光正. 土壤中热、湿、气及溶质耦合迁移的数学模型[J]. 华中科技大学学报(自然科学版), 2005(9): 59-61.
FAN Aiwu, LIU Wei, LI Guangzheng. Modeling for simultaneous transfer of heat, moisture, gas and solute in soil with plants growing[J]. Journal of Nuclear Agricultural Sciences, 2005(9): 59-61.
[8] 沈维, 胡德勇, 姚帮松, 等. 土壤耕作层含氧量对黄瓜叶片生长特性的影响[J]. 灌溉排水学报, 2017, 36(4): 47-52.
SHEN Wei, HU Deyong, YAO Bangsong, et al. Impact of oxygen content in the horizon on growth of cucumber leaves[J]. Journal of Irrigation and Drainage, 2017, 36(4): 47-52.
[9] URRESTARAZU Mazuela. Effect of slow-release oxygen supply by fertigation on horticultural crops under soilless culture[J]. Scientia Horticulturae, 2005, 106(4), 484-490.
[10] 李玉和. 城市土壤形成特点肥力评价及利用与管理[J]. 中国园林, 1997(3): 20-23.
LI Yuhe. Evaluation, utilization and management of urban soil fertility[J]. Chinese Landscape Architecture, 1997(3): 20-23.
[11] 纪拓, 杨洪强. 根区控氧对平邑甜茶幼苗根系及根/冠比的影响[J]. 植物生理学报, 2018, 54(6): 999-1 004.
JI Tuo, YANG Hongqiang. Effects of oxygen control in root-zone on the roots and the ratio of root to shoot of Malus hupehensis seedlings[J]. Plant Physiology Journal, 2018, 54(6): 999-1 004.
[12] WOLF B. The fertile triangle: The interrelationship of air, water, and nutrients in maximizing soil productivity[M].Binghamton: Food Products Press, 1999.
[13] 郭世荣. 营养液溶氧浓度对黄瓜和番茄根系呼吸强度的影响[J]. 园艺学报, 2000(2): 141-142.
GUO Shirong. Effect of dissolved oxygen concentrations in nutrient solution on the respiratory intensity of cucumber and tomato roots[J]. Acta Horticulturae Sinica, 2000(2): 141-142.
[14] ZHENG Youbin, WANG Linping, DIXON Mike.An upper limit for elevated root zone dissolved oxygen concentration for tomato[J]. Scientia Horticulturae, 2007, 113(2): 162-165.
[15] 陆晓民, 孙锦, 郭世荣, 等. 油菜素内酯对低氧胁迫黄瓜幼苗根系有氧呼吸同工酶表达的影响[J]. 生态学杂志, 2012, 31(12): 3 070-3 074.
LU Xiaomin, SUN Jin, GUO Shirong, et al. Effects of brassinolide on the isozyme expressions of aerobic respiration enzymes in cucumber seedling roots under hypoxia stress[J]. Chinese Journal of Ecology, 2012, 31(12): 3 070-3 074.
[16] 孙燕, 王怡琛, 王全九. 增氧微咸水对小白菜光响应特征及产量的影响[J]. 农业工程学报, 2020, 36(9): 116-123.
SUN Yan, WANG Yichen, WANG Quanjiu. Effects of oxygenated brackish water on light response characteristics and yield of pakchoi [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 116-123.
[17] 卢芳. 增氧灌溉对两种盆栽果树营养生长与果实品质的影响[D]. 银川: 宁夏大学, 2014.
LU Fang. Effect of aerated irrigation on vegetative growth and fruit quality of two potted fruit trees[D]. Yinchuan: Ningxia University, 2014.
[18] 白团辉, 马锋旺, 李翠英, 等. 苹果砧木幼苗对根际低氧胁迫的生理响应及耐性分析[J]. 中国农业科学, 2008, 41(12): 4 140-4 148.
BAI Tuanhui, MA Fengwang, LI Cuiying, et al. Physiological responses and analysis of tolerance of apple rootstocks to root-zone hypoxia stress[J]. Scientia Agricultura Sinica, 2008, 41(12): 4 140-4 148.
[19] 朱艳, 蔡焕杰, 宋利兵, 等. 加气灌溉改善温室番茄根区土壤通气性[J].农业工程学报, 2017, 33(21): 163-172.
ZHU Yan, CAI Huanjie, SONG Libing, et al. Oxygation improving soil aeration around tomato root zone in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 163-172.
[20] 崔冰晶, 牛文全, 杜娅丹, 等. 施氮和加气灌溉对黄瓜根区土壤环境及产量的影响[J]. 节水灌溉, 2020(4): 27-32.
CUI Bingjing, NIU Wenquan, DU Yadan, et al. Effects of nitrogen application and aerated irrigation on soil environment and yield in cucumber root area[J]. Water Saving Irrigation, 2020(4): 27-32.
[21] 马筱建. 不同滴灌方式对温室土壤环境及番茄生长的影响[D]. 北京: 中国农业科学院, 2018.
MA Xiaojian. Effect of Different drip irrigation methods on soil environment and growth of tomato in greenhouse[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2018.
[22] 雷宏军, 肖哲元, 张振华, 等. 水肥气耦合滴灌提高温室番茄土壤通气性和水氮利用[J]. 灌溉排水学报, 2020, 39(3): 8-16.
LEI Hongjun, XIAO Zheyuan, ZHANG Zhenhua, et al. Integrating drip fertigation with soil aeration to improve water and nitrogen use efficiency of greenhouse tomato[J]. Journal of Irrigation and Drainage, 2020, 39(3): 8-16.
[23] 张立成, 胡德勇, 杨敬林, 等. 增氧条件下施用有机肥对水稻土壤微生物的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(11): 55-62.
ZHANG Licheng, HU Deyong, YANG Jinglin, et al. Effect of organic fertilizer on paddy soil microorganism under aerobic conditions[J]. Journal of Northwest A&F University (Natrual Science Edition), 2018, 46(11): 55-62.
[24] 商子惠. 加气条件下温室番茄产量与温室气体排放的水肥调控效应[D]. 杨凌: 西北农林科技大学, 2020.
SHANG Zihui. Water and fertilizer regulation effect of greenhouse tomato yield and greenhouse gases emission under aerated condition[D]. Yangling: Northwest Agriculture and Forestry University, 2020.
[25] 曲植, 李铭江, 王全九, 等. 培养条件下微纳米增氧水添加对新疆砂壤土硝化作用的影响[J]. 农业工程学报, 2020, 36(22): 189-196.
QU Zhi, LI Mingjiang, WANG Quanjiu, et al. Effects of micro-nano oxygenated water addition on nitrification of Xinjiang sandy loam soil under controlled conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 189-196.
[26] 曹雪松, 郑和祥, 王军, 等. 微纳米气泡水地下滴灌对紫花苜蓿根际土壤养分和产量的影响[J]. 灌溉排水学报, 2020, 39(7): 24-30.
CAO Xuesong, ZHENG Hexiang, WANG Jun, et al. Effects of subsurface drip irrigation with micro-nano bubble water on rhizosphere soil nutrients and yield of Alfalfa[J]. Journal of Irrigation and Drainage, 2020, 39(7): 24-30.
[27] 李江, 潘艳川, 缴锡云, 等. 加气灌溉对麦秸秆还田后土壤还原性与水稻生长的影响[J]. 农业机械学报, 2021, 52(9): 250-259.
LI Jiang, PAN Yanchuan, JIAO Xiyun, et al. Effects of aerated irrigation rice growth and soil reducibility under wheat straw returning conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 250-259.
[28] 邱莉萍, 刘军, 王益权, 等. 土壤酶活性与土壤肥力的关系研究[J]. 植物营养与肥料学报, 2004(3): 277-280.
QIU Liping, LIU Jun, WANG Yiquan, et al. Research on relationship between soil enzyme activities and soil fertility[J]. Plant Nutrition and Fertilizer Science, 2004 (3): 277-280.
[29] 刘秀娟. 微纳米气加氧滴灌对春玉米生长及土壤环境健康的影响[D].北京: 中国农业大学, 2014.
LIU Xiujuan. Effects of oxygenation of subsurface drip irrigation with micro nano gas on corn growth and soil health[D]. Beijing: China Agricultural University, 2014.
[30] ZHANG Qian, DU Yadan, CUI Bingjing, et al. Aerated irrigation offsets the negative effects of nitrogen reduction on crop growth and water-nitrogen utilization [J]. Journal of Cleaner Production, 2021, 3: 313.
[31] 周云鹏. 温室蔬菜微纳米气泡水加氧灌溉效应和模式研究[D]. 北京: 中国农业大学, 2015.
ZHOU Yunpeng. Effect and mode of micro/nano bubble oxygation irrigation on greenhouse vegetables[D]. Beijing: China Agricultural University, 2015.
[32] BHATTARAI Sruya, MIDMORE Pendergast. Yield, water-use efficiencies and root distribution of soybean, chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols[J]. Irrigation Science, 2008, 26(5): 439-450.
[33] 杨文龙, 刘福胜, 刘恬恬, 等. 加气灌溉不同施肥水平对温室番茄影响效应研究[J]. 节水灌溉, 2019(7): 49-55.
YANG Wenlong, LIU Fusheng, LIU Tiantian, et al. Effects of different fertilization levels on greenhouse tomato under aerated irrigation[J]. Water Saving Irrigation, 2019(7): 49-55.
[34] 胡德勇, 廖健程, 陈哲, 等. 控制灌溉增氧对超级稻生理生化特性及水分利用效率的影响[J]. 排灌机械工程学报, 2020, 38(5): 500-505, 516.
HU Deyong, LIAO Jiancheng, CHEN Zhe, et al. Effects of controlled irrigation and oxygenation on physiological and biochemical characteristics and water use efficiency of super rice[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(5): 500-505, 516.
[35] 臧明, 雷宏军, BHATTARAI Sruya, 等. 不同增氧滴灌方式对蔬菜生长生理指标的影响[J]. 排灌机械工程学报, 2020, 38(3): 310-317.
ZANG Ming, LEI Hongjun, BHATTARAI Sruya, et al. Effects of oxygation techniques on growth and physiology of vegetable under subsurface drip irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(3): 310-317.
[36] 刘杰, 蔡焕杰, 张敏, 等. 根区加气对温室小型西瓜形态指标和产量及品质的影响[J]. 节水灌溉, 2010(11): 24-27.
LIU Jie, CAI Huanjie, ZHANG Min, et al. Effect of airjection irrigation on growth and yield of mini watermelon in greenhouse[J]. Water Saving Irrigation, 2010(11): 24-27.
[37] 李元. 加气灌溉对大棚甜瓜和番茄生长的影响及其机理研究[D]. 杨凌: 西北农林科技大学, 2016.
LI Yuan. Effect of rhizosphere aeration on growth and its physiological mechanism of muskmelon and tomato[D]. Yangling: Northwest Agriculture & Forestry University, 2016.
[38] 王莹. 曝气滴灌氧传质特性及其对辣椒生长和根区土壤环境的影响[D]. 烟台: 鲁东大学, 2019.
WANG Ying. Oxygen mass transfer characteristics of aeration drip irrigation and its effects on pepper growth and soil environment in root zone[D]. Yantai: Ludong University, 2019.
[39] 陈新明, DHUNGEL Jay, BHATTARAI Surya, 等. 加氧灌溉对菠萝根区土壤呼吸和生理特性的影响[J]. 排灌机械工程学报, 2010, 28(6): 543-547.
CHEN Xinming, DHUNGEL Jay, BHATTARAI Surya, et al. Impact of oxygation on soil respiration and crop physiological characteristics in pineapple[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(6): 543-547.
[40] ABUARAB Mohamed, MOSTAFA Ehab, IBRAHIM Mohamed. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil[J]. Journal of Advanced Research, 2013, 4(6): 493-499.
[41] 刘鑫, 刘智远, 雷宏军, 等. 不同增氧灌溉方式春小麦生长及产量比较[J]. 排灌机械工程学报, 2017, 35(9): 813-819.
LIU Xin, LIU Zhiyuan, LEI Hongjun, et al. Comparisons of growth and yield of spring wheat treated with different oxygation techniques[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(9): 813-819.
[42] 陈涛明, 姚帮松, 肖卫华, 等. 增氧灌溉对马铃薯产量及水分利用效率的影响[J]. 中国农村水利水电, 2013(8): 70-72.
CHEN Taoming, YAO Bangsong, XIAO Weihua, et al. Effect of aerobics irrigation on potato yield and water use efficiency[J]. China Rural Water and Hydropower, 2013(8): 70-72.
[43] 莫彦, 李光永, 蔡明坤, 等. 基于HYDRUS-2D模型的玉米高出苗率地下滴灌开沟播种参数优选[J]. 农业工程学报, 2017, 33(17): 105-112.
MO Yan, LI Guangyong, CAI Mingkun, et al. Selection of suitable technical parameters for alternate row/bed planting with high maize emergence under subsurface drip irrigation based on HYDRUS-2D model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 105-112.
[44] 谢恒星, 蔡焕杰, 张振华. 温室甜瓜加氧灌溉综合效益评价[J]. 农业机械学报, 2010, 41(11): 79-83.
XIE Hengxing, CAI Huanjie, ZHANG Zhenhua. Evaluation of comprehensive benefit in greenhouse muskmelon under aeration irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 79-83.
[45] 温改娟. 温室番茄加气灌溉技术模式研究[D]. 杨凌: 西北农林科技大学, 2013.
WEN Gaijuan. Research on technology mode of greenhouse tomato under aeration irrigation[D]. Yangling: Northwest Agriculture and Forestry University, 2013.
[46] BHATTARAI Sruya, HUBER Midmore David. Aerated subsurface irrigation water gives growth and yield benefits to Zucchini, vegetable soybean and cotton in heavy clay soils[J]. Annals of Applied Biology, 2004, 144(3): 285-298.
[47] 尹晓霞, 蔡焕杰. 加气灌溉对温室番茄根区土壤环境及产量的影响[J]. 灌溉排水学报, 2014, 33(3): 33-37.
YIN Xiaoxia, CAI Huanjie. Effect of aeration irrigation on soil environment and yield of tomato in greenhouse[J]. Journal of Irrigation and Drainage, 2014, 33(3): 33-37.
[48] 雷宏军, 臧明, 张振华, 等. 循环曝气压力与活性剂浓度对滴灌带水气传输的影响[J]. 农业工程学报, 2014, 30(22): 63-69.
LEI Hongjun, ZANG Ming, ZHANG Zhenhua, et al. Impact of working pressure and surfactant concentration on air-water transmission in drip irrigation tape under cycle aeration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 63-69.
[49] 程峰, 姚帮松, 肖卫华, 等. 不同增氧滴灌方式对香芹生长特性的影响[J]. 灌溉排水学报, 2016, 35(3): 91-94.
CHENG Feng, YAO Bangsong, XIAO Weihua, et al. Effects of different aerobic drip irrigation methods on growth characteristics of parsley[J]. Journal of Irrigation and Drainage, 2016, 35(3): 91-94.
[50] WANG Haitao, WANG Jiandong, LI Guangyong, et al.Performance test of venturi aerators for subsurface drip irrigation[J]. Journal of Irrigation Engineering, 2022, 148(3): 1-8.
[51] 张育斌, 魏正英, 朱新国, 等. 基于微纳米气泡增氧灌溉技术与设备分析[J]. 浙江水利科技, 2019, 47(6): 1-5.
ZHANG Yubin, WEI Zhengying, ZHU Xinguo, et al. Analysis of aerated irrigation technology and device based on micro-nano bubble[J]. Zhejiang Hydro Technics, 2019, 47(6): 1-5.
[52] 卢泽华, 蔡焕杰, 王健. 加气灌溉对温室番茄生长及产量的影响[J]. 节水灌溉, 2011(10): 67-70.
LU Zehua, CAI Huanjie, WANG Jian. Effects of aerated subsurface irrigation on plant growth and yield of greenhouse tomato[J]. Water Saving Irrigation, 2011(10): 67-70.
[53] 张敏, 蔡焕杰, 刘杰, 等. 根系通气对温室甜瓜生长特性的影响[J]. 灌溉排水学报, 2010, 29(5): 19-22.
ZHANG Min, CAI Huanjie, LIU Jie, et al. Effects of water and gas treatment on muslmen plant growth characteristics in greenhouse[J]. Journal of Irrigation and Drainage, 2010, 29(5): 19-22.
[54] 冯凯. 加氧灌溉作物生长响应及水分与养分利用特性[D]. 郑州: 华北水利水电大学, 2017.
FENG Kai. Study on the crop growth, water and nutrient use efficiency under aerated irrigation[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2017.
[55] 王振华, 陈潇洁, 吕德生, 等. 水肥耦合对加气滴灌加工番茄产量及品质的影响[J]. 农业工程学报, 2020, 36(19): 66-75.
WANG Zhenhua, CHEN Xiaojie, LYU Desheng, et al. Effects of water and fertilizer coupling on the yield and quality of processing tomato under aerated drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 66-75.
[56] 杜君, 臧明, 雷宏军, 等. 不同增氧水平对夏玉米生长及氮素利用的影响[J]. 核农学报, 2019, 33(3): 600-606.
DU Jun, ZANG Ming, LEI Hongjun, et al. Impacts of different dissolved oxygen levels in aerated irrigation water on summer maize growth and nitrogen utilization[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(3): 600-606.
[57] PENDERGAST Lance, BHATTARAI Surya, MIDMORE David. Benefits of oxygation of subsurface drip-irrigation water for cotton in a vertosol[J]. Crop and Pasture Science, 2013, 64(11-12): 1 171-1 181.
[58] 王天泽. 微纳米气泡水加氧地下滴灌条件下设施西甜瓜水肥气协同调控模式研究[D]. 北京: 中国农业大学, 2018.
WANG Tianze. Soil of water, fertilizer and gas synergistic controling for greenhouse melon under micro/nanobubble oxygenation with subsurface drip irrigation system[D]. Beijing: China Agricultural University, 2018.
Development in Aerated Subsurface Drip Irrigation: A Review
SUN Hao1, MO Yan2*, LI Guangyong1, ZHANG Yanqun2, GONG Shihong2
(1. China Agricultural University, Beijing 100091, China; 2. China Institute of Water Resources and Hydropower Research Institute of Water Conservancy, Beijing 100048, China)
Aerated subsurface drip irrigation is a new technology developed over the past decades to improve aeration in the root zone by mixing irrigation water with air bubbles to ameliorate the adverse effect of hypoxic on crops and boost crop yield and quality. The key to disseminate aerated subsurface drip irrigation is to understand its efficacy under different soil and cropping conditions to determine the rational aeration rate and the associated equipment. Based on the development in both research and application of subsurface drip irrigation and the associated aeration technologies, we systematically review the suitable aeration levels for improving oxygen in the root zone of crops to improve their growth. In particular, we focus on the development in technologies for mixing the irrigation water with gas bubbles and their application, the existing problems in aerated subsurface drip irrigation, and the potential applications of these technologies. This review aims to help those who are interested in aerated irrigation to understand the present state and research progress in aerated subsurface drip irrigation. Available results indicated that aerated subsurface drip irrigation indeed improves crop yield and quality considerably, but we also highlight the areas which need further research, including when the root zones need aeration, air - irrigation water - soil interaction, as well as how to improve efficiency of irrigated water and oxygen.
subsurface drip irrigation; oxygation; soil oxygen threshold;aerated mode; aerated equipment
孙昊, 莫彦, 李光永, 等. 地下滴灌加气技术研究进展[J] .灌溉排水学报, 2022, 41(10): 34-40.
SUN Hao, MO Yan, LI Guangyong, et al.Development in Aerated Subsurface Drip Irrigation: A Review[J]. Journal of Irrigation and Drainage, 2022, 41(10): 34-40.
1672 - 3317(2022)10 - 0034 - 07
TV93
A
10.13522/j.cnki.ggps.2021579
2021-11-23
中国水科院基本科研业务费项目(ID0145B042021);国家自然科学基金项目(51909276)
孙昊(1996-),女。硕士研究生,主要从事节水灌溉与新技术研究。E-mail: 1214612188@qq.com
莫彦(1988-),男。高级工程师,主要从事节水灌溉新技术与装备研究。E-mail: moyansdi@163.com
责任编辑:韩 洋