李奥凌,段辉高,3,贾红辉,李建华,胡跃强,2*
(1. 湖南大学 机械与运载工程学院 国家高效磨削工程技术研究中心,湖南 长沙 410082;2. 湖南大学 深圳研究院 微纳光学器件先进制造实验室,广东 深圳 518000;3. 湖南大学 粤港澳大湾区创新研究院(广州增城),广东 广州 511300;4. 试验物理与计算数学国家级重点实验室,北京 100076)
红外光谱因其应用领域的不同而划分,一般规定中红外波段为2.5~25 μm;3~8 μm 波段为中波红外波段,其中3~5 μm 部分为大气透过窗口,可观测到空中高温目标(飞机喷口、导弹尾焰等);8~15 μm 为长波红外波段,又称为“热成像”区域。在此区域,传感器可获得温度略高于室温的物体的完全被动图像,不需要太阳、月亮或红外照明器等照明,其中8~12 μm 为又一个大气窗口,可观测到地面常温目标(人、自然物等)。基于这两个大气透过窗口的研究在医学、军事和科学等领域发挥着重要作用,如红外成像、光谱、目标检测和生物传感等[1-2]。然而,传统的红外成像元件由于受其相位调控机理的限制,有效尺寸通常为波长的成百上千倍,因此体积和质量都很大,不易于集成,阻碍了未来的轻量化和集成化发展。
超构表面是一种由亚波长尺寸的、各向异性或各向同性的散射体(微纳米结构)以亚波长间隔阵列在一个衬底上而成的光学器件。根据光学的广义折射定律,通过改变这些微纳米结构的参数(形状、尺寸和方位角等)以及它们与周围介质之间的折射率对比度,超构表面可以实现几乎所有电磁波参量(相位、振幅、偏振和频率)的调控[3-6]。所以,利用超构表面可将传统光学元件重新设计成轻薄化、平面化且多功能集成的新型元件,有望大幅缩小器件尺寸、减少系统复杂性,并引入新的光学功能。
在超构表面的应用中,平面超构透镜是具有透镜功能的超构表面,以极薄极轻易集成的特性实现了传统透镜的性能与功能[7-9],成为最重要的研究领域之一。而目前大多数提出的超构透镜都在可见波段和近红外波段工作[10-13],中红外波段的超构透镜因面临着在加工和成本上的问题研究较少[14]。大多数用于制备超构透镜的光学材料,如氮化镓[15-16]、氧化钛[10-11,17]、二氧化硅[18]等在超过3 μm 的波长中不具备高透过率,难以满足效率要求。而一些在中红外波段具有良好性能的材料,如硅[19-20]、锗[21-22]、氟化物玻璃[23-24]等,往往成本昂贵且在加工上具有一定的难度。此外,用于中红外的实验设备如激光器和照相机等,比在近红外和可见光波段工作的设备要昂贵得多。而在不同波长工作的超构表面光学器件通常具有相似的设计方法,因此研究人员更倾向于选择在近红外和可见光波段进行概念证明。但相比于可见光波段和近红外波段,大面积的超构透镜在中红外具有更小的数据集,更容易实现大规模、低成本的批量生产。
超构透镜与普通透镜一样也存在像差问题[25],会导致色彩错误、图像失真和图像模糊等。因此,消除像差,包括单色像差和色差,对于成像和显示而言是极其重要的[26-27]。本文综述了基于中红外超构透镜成像的研究进展及应用,首先介绍超构透镜的4 种基本相位调控方式,以及利用中红外超构透镜实现高聚焦效率、消除色差或单色像差的基本原理,最后,分析了基于中红外超构透镜的成像应用,包括偏振相关成像、可调及可重构成像等。
当电磁波入射到金属与介质分界面,金属表面自由电子的振动频率与入射电磁波的频率相匹配时会发生共振,金属天线将光集中到比波长小得多的区域,并激发名为表面等离子体激元的电荷震荡[28-29]。通过设计金属天线的尺寸、形状和方向可实现不同的共振频率,进而改变某个频点的相位,产生相位突变。但是基于金属微纳米结构的超构透镜会不可避免地引入欧姆损耗,难以实现高效率的光场调控。由低损耗的介质材料构成的超构透镜可有效地解决这一问题,其调控电磁波的原理可分为三类:基于惠更斯原理的相位、传播相位与几何相位。
惠更斯原理表现为:行进中的波阵面上任一点都可看作是新的次波源,而从波阵面上各点发出的次波所形成的包络面,就是原波面在一定时间内传播得到的新波面。惠更斯超构透镜便是基于惠更斯原理实现的电磁超构透镜。惠更斯超构透镜通过在结构单元内部激发电磁响应,形成等效电流与磁流,以此构建惠更斯波源,从而使波前在经过超构透镜时受到调制[30]。其中,介质惠更斯超构透镜是基于米氏共振[31-32]和法布里-珀罗(Fabry-Pérot)共振[33]等激发共振相关的共振型相位实现的。在强米氏散射共振中,通过调整介质谐振腔(微纳米结构)的几何形状,同时激发具有相似振幅与相位的电偶极子与磁偶极子共振,可实现覆盖整个2π 范围的高透射相位变化[30]。但基于共振型相位超构透镜的相位突变来源于结构共振,这导致其工作带宽有限。此外,在相位梯度较大的情况下,相邻纳米结构之间的强共振模式耦合可能会引入很大的误差,从而降低聚焦性能[31]。
传播相位指的是电磁波在传播的过程中会产生光程差,利用这一光程差可实现对相位的调控。为了更好地了解相位调控机制,仅由波导效应产生的相位可表示为:
其中每个微纳米结构单元可近似为截断波导,neff为其有效折射率,H为传播距离,即结构的高度。在微纳米结构高度固定时,传播相位可通过微纳米结构的形状、尺寸和结构单元周期等进行调节[11-12]。基于传播相位原理设计的超构透镜,通常由各向同性的微纳米结构构成,具有高度对称的特点。因此,超构透镜自然赋有偏振不敏感性,即微纳米结构的相位响应与入射光的偏振类型无关,适用于大多数应用场景。
几何相位又被称为Pancharatnam-Berry(PB)贝里相位。不同于上述通过调整结构单元的几何尺寸来实现相位调控的原理,几何相位通过调整具有相同尺寸结构的面内旋转角来实现全2π 相位调控,该相位调控机理仅适用于圆偏振入射光[10,34]。当圆偏振光入射到各向异性的微纳米结构单元后,其透射电场可表示为:
与传统中红外透镜一样,聚集效率是评价超构透镜成像性能的重要指标之一。超构透镜的聚焦效率一般定义为焦平面三倍半高全宽范围内的光强除以入射的总光强[12]。到目前为止,提高超构透镜聚集效率的方法层出不穷,其中采用反射镜、高对比度折射率材料、高透过率材料、全介质材料或改变微纳米结构几何形状等多种机制已被证明是可行的。2016 年,Zhang 等展示了一种基于反射镜的高效中红外(λ=4.6 μm)反射型平面透镜[35]。反射式超构透镜是一种多层结构,其中平面微纳米结构阵列通过亚波长厚度的介质间距与接地金属平面分离,如图1(a)所示。实验与仿真聚焦效率分别为80%与83%。而由于反射式超构透镜在光路设计时会带来不便,通常将超构透镜设计为透射型。另一方面,由金属材料微纳米结构构成的超构透镜由于其材料存在固有的欧姆损耗,会影响最终的聚焦效率,并且欧姆损耗在透射模式的工作中又会被进一步地放大,因此大多数高聚焦效率的中红外超构透镜是基于全介质材料实现的。2017 年,Zuo 等设计了在4 μm 工作波长下的偏振不敏感全介质超构透镜,其实验聚焦效率高达78%[36]。如图1(b)所示,该透镜采用六边形衬底单元,这种形状有最密集的平面排列,基于此设计的超构透镜具有更加平滑的相位分布,相比方形衬底单元可实现更好的光学性能。同时,在这项工作中,结构阵列选用在中红外波段具有可忽略吸收率的氢化非晶硅α-Si∶H(n≈3.5)材料,并能与MgF2衬底(n=1.37)产生高折射率差异,使更多的光集中在微纳米柱内。2021 年,Leitis 等同样使用六边形衬底单元实现了6.5 μm 工作波长下的超构透镜,用Al2O3衬底与Ge 微纳米结构制备了聚焦效率为70.4%的超构透镜[37]。2018 年,Zhang 等报道了一种高效的透射式惠更斯超构表面[38]。该工作选用在中红外波段具有高透过率的CaF2衬底(n=1.4)与PbTe(n≈5)结构材料,保证了高折射率对比度。此外,作者创新性地采用了由矩形和“H”形微纳米结构组成的双组分微纳米结构单元设计,如图1(c)所示。相比于单一类型的圆形或矩形结构单元设计,惠更斯超构表面的整体光学效率得到了显著的提升。该工作最终在5.2 μm 工作波长下实现了高达75%的实验聚焦效率。同年,Fan 等基于BaF2衬底和Si 结构在10.6 μm 波长下实现了可变焦超构透镜,如图1(d)所示[39]。该透镜在水平偏振与垂直偏振入射光下,分别实现了72%与77%的聚焦效率。固体沉浸式超构透镜需将入射光聚焦在探测器材料中,它由与探测器衬底(这里是GaSb)相同的材料制成,因此可直接在探测器衬底材料的背面制备超构透镜。如图1(e)所示,Zhang 等将固体沉浸式超透镜阵列与红外焦平面阵列集成,提高了红外焦平面阵列的工作温度和灵敏度,在3~5 μm 波段实现了52%的最大实验聚焦效率[40]。
图1 中红外高聚焦效率超构透镜[36-40]Fig.1 High focusing efficiency metalens in mid-infrared[36-40]
表1 中红外高聚焦效率超构透镜性能Tab.1 Performance of mid-infrared high focusing efficiency metalenses
以超构透镜为例的衍射光学元件色散表现为:波长越长,偏转角越大,透镜焦距越短。即不同波长的光最终聚焦在不同的空间点上[41],间接导致成像、显示和检测性能的下降。在实际应用中,元件通常在一个波段内工作,因此消除色差,即让不同波长的光聚焦在同一点,是研究人员一直在探索的重要问题。目前有两种消除色差的方法,第一种通过将多个在特定波长工作的超构透镜叠加而实现[42-43],与普通透镜消除色差的方式类似,但这种方法只能在多个离散的波长下实现聚集。第二种方法则能在连续波段实现消色差聚焦,其基本原理主要分为两种:第一种是宽带消色差理论,即将透镜聚焦所需的相位分解成两部分:波长无关的基础相位和波长相关的补偿相位[16,44],如下:
其中:r为各微纳米单元到透镜中心的距离,λmax为目标波段中的最大波长,f为消色差后的统一焦距。可见,式子的第一部分为基础相位,只与最大波长λmax有关。第二部分则是工作波长λ的函数,可理解为该波长下的相位与最大波长处所对应的相位之差,该相位差可通过调控超构透镜各单元的相位响应进行补偿。第二种是宽带消色差理论[45-46],它将相位轮廓在设计频率处进行泰勒展开,如下:
式中ω,ωd分别为角频率和设计角频率。一阶导数项与二阶导数项分别定义为群延迟和群延迟色散,群延迟项补偿了波包到达焦点位置时间的差异,而群延迟色散项确保了波包形状的一致性,二者共同实现宽带色散调控功能。
基于上述原理,学者们展开了一系列中红外消色差超构透镜设计。Zhou 等采用PB 相位和传播相位分别控制光的波前和消除色差,提出了一种可以在3.7~4.5 μm 红外波段工作的消色差超构透镜,用于圆偏振光入射[47],如图2(a)所示。Ou 等基于一种通用的方法在中波红外实现了宽带消色差成像[48],即在纯硅片中构建双折射超构透镜。同时,通过选择由不同形状的微纳米结构支持的不同波导模式按需设计基础相位与补偿相位。作者采用的微纳米结构单元大多为具有旋转对称性的圆形结构,保证了偏振不敏感性,基于此设计制作了一个幅面D=370 μm,NA=0.42,在3.5~5 μm 波段工作的宽带消色差超构透镜,并展示了设计超构透镜对复杂图案(字母“SITP”)的成像结果,如图2(b)所示。结果表明,该方法成功地实现了中波红外宽带成像中色差的消除功能。 2021 年,Song 等选用3 种不同的微米结构单元构造超构透镜:一个微米柱对应矩形微型波导,两个微米柱对应狭缝微型波导,3个微米柱对应多狭缝微型波导,相比于常见的微米结构单元构造,这种构造使得设计具有更大的自由度,并支持广泛的波导模式,从而更精确地调节群延迟。基于这3 种结构在9.6~11.6 μm内实现了具有良好消色差性能的全锗偏振敏感型超构透镜,如图2(c)所示[49]。2022 年,Xiong 等采用了一种具有旋转对称性的中空十字形微纳米结构构造超构透镜,如图2(d)所示[50],而常用的方形、圆形或十字形等结构或多或少会发生共振吸收,甚至导致相位与频率之间的非线性关系。相反,作者构建的ZnSe 中空十字结构在中红外区域几乎没有透射率损失,并且具有高度的线性拟合关系。在整个3~5 μm 带宽内实现了平均聚焦效率接近70%的消色差超构透镜。
图2 中红外消色差超构透镜[47-50]Fig.2 High focusing efficiency metalens in mid-infrared[47-50]
表2 中红外消色差超构透镜性能Tab.2 Performance of mid-infrared achromatic metalenses
在大视场成像系统中,轴外像差(彗差、像散、场曲和畸变)随着入射角的增大而变得异常明显,从而导致成像的不清晰或几何变形等[51]。在大视场成像中,轴外像差的消除显得尤为重要,其中引起图像几何变形的畸变可通过后续的图像处理进行消除。最初基于超构表面的消单色像差设计是在弯曲基板上制作微纳米结构阵列实现的[52],其加工难度大且应用受限。因此,现今基于超构透镜的大视场成像设计以平面超构透镜为主[53-54]。常见的利用双曲线相位轮廓(式(5))生成的超构透镜只能对正入射光产生衍射极限聚焦,而在斜入射情况下焦点会发生强烈的畸变,因此需采用新的相位分布公式。大多数消单色像差超构透镜的设计均以Chevalier Landscape 镜头为参考[55],即在聚焦透镜前放置一个较小的孔径光阑,其将正入射与斜入射的光线分离从而由透镜的不同部分聚焦。而通过设计透镜的曲率和孔径光阑的放置位置可一定程度上消除轴外像差。依据平面衍射光学元件的三阶彗差和像散表达式,当孔径光阑放置在透镜前焦面时,可以有效消除彗差和像散,而衍射透镜的场曲始终为零。因此,将这种设计方法应用到超构透镜中,可以消除所有轴外像差。
其中:λ为设计波长,(x,y)为各微纳米结构单元以超构透镜中心为参考的坐标值,f为焦距。
近年来,研究人员利用光学软件ZEMAX 在理想条件下获得超构透镜的初始优化相位[26,56],相位分布定义为径向坐标ρ的偶数阶多项式,如下:
式中:M为衍射级次,为每一微纳米柱到超构透镜中心的径向距离,R0为超构透镜的归一化半径,an为优化系数,n为优化系数的个数。这种相位轮廓能在一段连续变化的入射角范围内实现高质量成像。也有学者基于二次相位设计超构透镜,如式(7)所示,其中θ为入射光的倾斜角,k0为电磁波自由空间波数。其基本原理是将斜入射平面波引入的线性相位转换为焦点的空间位移[57-58]。基于这两种设计方法,研究人员提出了一系列消单色像差的中红外超构透镜,这种特性使得透镜能工作在大范围视场,故又可称为大视场超构透镜。
2020 年,Shalaginov 等设计了一种视场范围超过170°的单层中红外(波长为5.2 μm)全景超构透镜[59],如图3(a)所示。该超构透镜是由惠更斯超构表面和集成在其衬底另一侧的孔径光阑组成的,而惠更斯超构表面由CaF2衬底和PbTe微纳米结构构成。其中,惠更斯超构表面的相位分布由式(6)定义,各an值则通过ZEMAX 光学追迹优化得到。经实验验证,设计得到的全景超构透镜在入射角从0°增大到85°的过程中,聚焦效率从45%变化到32%,角度敏感性相对较低,且不同视场下的斯特列尔比均在0.8 以上,满足衍射极限聚焦的要求。而基于式(6),光阑与超构透镜组合的设计更适用于小NA 的应用场景中[60],因为这种组合不能校正球差。在大NA 的应用场景中,通常会用一个全新的超构透镜代替孔径光阑。该超构透镜的相位公式满足式(6),具有类似于施密特板的相位分布,被广泛应用于球差校正[61]。这种两层超构透镜的组合又可称为级联超构透镜,能同时校正球差和单色轴外像差。如图3(b)所示,黄振宇在工作波长为10~11 μm内设计实现了工作视场为0~±30°全硅消色差级联超构透镜[62]。最终,制备的级联超构透镜在正入射时的平均聚焦效率为20.62%,30°角入射时平均聚焦效率为9.1%。此外,也有基于新型悬链结构设计而成的大视场超构透镜[58],这种具有类似于二次函数形状的结构可以生成连续的相位分布,且具有超高的衍射效率。Zhang 等利用这种悬链型结构设计并制备了长波红外超构透镜[63],并与红外探测器和红外带通滤波器集成为相机,在10.6 μm波长下实现了手性热成像,如图3(c)所示,广泛应用于环境传感、生物研究等领域。
图3 中红外大视场超构透镜[59-63]Fig.3 Wide field-of view imaging metalens in mid-infrared[59-63]
偏振是光的固有属性,它包含的信息通常被传统基于强度的红外热成像传感器所忽略,如目标的材质、结构、几何形状、粗糙度和表面取向等信息[64-65],因此偏振成像被广泛应用于目标检测和生物传感等领域。近年来,许多学者基于超构透镜实现了红外手性成像、偏振成像或依据入射光偏振态的不同实现变焦或焦点分离聚焦成像。偏振态可由斯托克斯参量S定义,S=(S0S1S2S3)T。S可由入射光各偏振分量的强度值组合表示,如下:
表3 中红外大视场超构透镜指标Tab.3 Index of mid-infrared wide field-of view metalenses
式中:Ix,Iy,I45分别为入射光沿x,y,45°方向线偏振分量的强度值,ILCP为LCP 分量的强度值。其中,S0为入射光的总光强,其值等于任意一对相对的偏振光分量的光强之和,如ILCP与IRCP之和、I45与-45°方向偏振光分量强度值(I-45)之和。因此,通过将入射光分成4 束或6 束上述基本偏振光并得到对应的光强,即可计算出入射光的斯托克斯参量,从而可知入射光的偏振态[66]。基于此原理可同时实现偏振成像与偏振检测[67-69]。Li 等用6 个焦点在波长5 μm 处实现了全斯托克斯偏振检测[70]。作者将3 个同维度的双焦超构透镜与能够测量光强的光电探测器集成,如图4(a)所示,其中3 个超构透镜分别聚焦x,y线偏振对,±45°线偏振对和LCP 与RCP 偏振对。对于任意偏振光的入射,通过测量这3 对偏振光分量的光强并基于式(8)即可得到入射光的偏振态。仿真结果表明,重构的斯托克斯参量的均方根误差小于0.005,工作效率达到75.42%。2019 年,Yan 等利用传播相位调控x,y线偏振光,利用传播相位与几何相位的结合调控LCP 与RCP,并基于此设计了能同时对这4 个偏振态进行离轴聚焦成像的全硅偏振成像器件[71]。与一般超构偏振成像器件不同,该超构透镜是基于交错结构而不是分区域结构[68-69]实现的,因此无需严格对准入射光便可使不同的分光束产生相同尺寸的像。图4(b)为该超构透镜在10.6 μm 工作波长下对“IOE”字样进行偏振成像测试。
2020 年,Ou 等提出了一种中红外(3.5~5 μm)超构器件(图4(c)),能实现携带不同拓扑电荷数的涡旋光束聚焦,而拓扑电荷数依赖入射偏振。作者还依据类似的方法实现了偏振分光器,可根据入射偏振的不同将入射光消色差地聚焦于同一焦平面上的两个离轴点[72]。2021 年,Ou等又提出能在3.5~5 μm 中红外波段实现宽带消色差变焦成像的全硅超构透镜。超构透镜由椭圆形硅微纳米柱组成,在x,y线偏振光的激励下实现了不同焦距的聚焦[48],如图4(d)所示。2019年,He 等提出了一种由角分布的螺旋柱状微纳米结构单元构成的圆二色性手性超构透镜[73],该超构透镜在3~5 μm 的中波红外波段工作,如图4(e)所示。其工作原理分为两种情况:假设RCP光入射到超构透镜,在透射方向上出射与其旋向相反的LCP 光并实现聚焦;另一种情况则是当圆偏振光(LCP)入射到同一超构透镜时,会反射与其旋向相同的LCP 光同样实现聚焦效果。
图4 中红外偏振相关成像[48,70-73]Fig.4 Polarization dependent imaging in mid-infrared[48,70-73]
上述超构透镜有一个共通的特性,即超构透镜一旦制成,其功能就固定且无法改变,其应用范围不能进一步扩展。于是具有可主动变化功能的可调谐超构透镜被提出。当下,有两种常用的方法以实现可调超构透镜[74],一种是通过改变微纳米结构单元间近场相互作用引起的电磁耦合和散射相位差[75-76],可对超构透镜的共振波长和输出波前进行相应的调制;另一种是将活性物质整合到超构透镜中[77-79],如铟锡氧化物(ITO)、相变材料、液晶和石墨烯等材料,它们的光学性质可以通过施加外部激励(电、热等)进行主动调谐。Ge2Sb2Te5(GST)和Ge2Sb2Se4Te1(GSST)等是比较常见的相变材料,能在非晶态与晶态这两种相态之间相互转换,通过两种不同状态下介电常数的不同实现动态可调的电磁波振幅和相位。如图5(a)所示,Guo 等利用GST 材料在8.5 μm 的工作波长下实现了基于超构透镜的动态聚焦[80]。通过改变环境温度或外部飞秒激光脉冲,对GST 结构的结晶水平(0~1 之间变化)进行调控,从而实现其折射率的调控。最终,在不改变超构透镜结构的情况下模拟实现了入射光在任意指定位置的聚焦。相比于GST 材料,GSST 材料在红外波段为其非晶态和晶态提供了异常的宽带透过性,这是降低光损耗的关键,同时在两种状态之间能实现较大的折射率对比度。Shalaginov 等设计的变焦超构透镜则利用GSST 材料,在晶态与非晶态这两种状态下均实现了无像差和无串扰的衍射极限成像[81],其中,GSST 材料从非晶态转换至晶态的过程是以退火炉工艺完成的。最终在工作波长5.2 μm 中实现了非晶态下23.7%的聚焦效率,晶态下21.6%的聚焦效率如图5(b)所示。2022 年,Xu 等基于GSST材料设计了3 种具有自旋依赖性的分裂超构透镜[82],分别能使LCP 和RCP 入射光在一定带宽范围内(未消色差)实现横向分离、纵向分离、横向与纵向同时分离的两个聚焦点。并能在GSST 从非晶态转化为晶态时实现“ON”和“OFF”状态的切换,图5(c)最右边图像展示的是自旋相关的横向分裂超构透镜在4.2 μm 波长下RCP 光入射时的开关效果展示,这种开关效果在上述3 种自旋相关的分裂超构透镜中均可实现。
图5 中红外可调及可重构成像[80-83]Fig.5 Tunable and reconfigurable imaging in mid-infrared[80-83]
除了相变材料,微机电系统(Micro-electro-Mechanical System,MEMS)也是实现可重构超构透镜的一种方法。Chen 等提出了基于光机腔实现的电调谐反射式超构透镜[83]。图5(d)显示了变焦超构透镜的具体组成,其中圆柱形微纳米柱阵列通过一个小的气隙与一个可变形的金属反射镜分离。硅微纳米柱阵列制备在玻璃基板上,与由氮化硅薄膜和金薄膜组成的可变形反射镜由一层SU-8 间隔开。在硅微纳米柱阵列和衬底之间,还有一层薄薄的ITO 作为透明电极,以驱动可变形反射镜并改变气隙(微纳米柱下表面与氮化硅薄膜上表面之间的间距),从而实现变焦功能。图5(d)最右边图像展示了器件在模式2(见图5(d)中间图像)下焦距随电压的变化趋势,从图可得焦距随着施加电压的增大而增大,大致呈线性变化,其工作波长为3.8 μm。动态可调的超构表面透镜特别适合成像和AR/VR 等应用,这些应用则倾向于具有大范围焦距的变焦透镜。
除了上述总结的比较常见的光学成像应用之外,基于超构透镜的成像领域还有许多其他功能。低萃取效率仍然是红外发光二极管寄生加热和性能下降的一个来源。超晶格发光二极管与红外焦平面阵列类似,红外场景投影仪由大量超晶格发光二极管组成,只不过它们的作用是热显示而不是热相机。2020 年,Bogh 等在3.6 μm波长下提出了一种基于超构透镜实现的发光二极管,并制备了41×41 个具有24 μm 间距的超构透镜组成的1 mm2阵列。如图6(a)所示,相比于未制备超构透镜图案的装置,从发射器中提取的光增强了接近330%[84]。此外,还可利用超构透镜提高探测器的灵敏度或效率。由于红外成像元件结构复杂,每个元件的光敏区域只占相当小的一部分,导致填充系数低,从而限制了入射光的利用效率。Hou 等制备的超构透镜可作为光集中器来提高检测灵敏度,如图6(b)所示。他们通过在长波红外探测器的成像元件中集成一个偏振无关的宽带聚焦全硅超构透镜[85],显著提高了有效填充因子,即感光面积与整个像元面积的比值。模拟测得所设计超构透镜的单色聚焦效率可达86%,在8~14 μm 宽光谱范围内的平均聚焦效率可达80%。在自然界中,飞蛾的眼睛具有非常精细的微纳米结构,同时自然赋有抗反射功能。2022 年,Zhou 等受蛾眼结构的启发,首次展示了一种仿生蛾眼超构透镜[86],如图6(c)所示,在任意偏振光的激发下,在中红外波段(3.1~8.0 μm)均能实现保偏、宽带和角度不敏感聚焦。仿真的最大调制和聚焦效率分别能达到92%和90%,此处的调制效率可理解为保偏度。这一功能在小型化夜视、生物传感和多光谱成像等领域具有巨大的应用潜力。
图6 中红外超构透镜其他成像应用[84-86]Fig.6 Other imaging applications with metalens[84-86]
本文对中红外超构透镜及其相关成像技术进行了综述,介绍了利用超构透镜分别实现成像中三个重要指标的原理,列举了中红外超构透镜在偏振成像、可重构及可调成像和其他成像中的一些应用。
超构透镜具备轻薄、易于集成和多功能化的特性,已被证实可以逐渐代替层叠、笨重、昂贵的传统成像系统,特别是在中红外波段,超构透镜的轻薄化优势更为明显。虽然超构透镜在中红外波段已经取得了长足的进展,特别是在制造和设计方面,但仍存在许多挑战。要实现更高的聚焦效率、更宽波段的消色差、更强的消单色像差能力等关键指标,才能满足其真正走向应用的需求。目前,超构透镜在中红外波段的应用鲜少报道。例如,深度测量[87-88]、层析成像[89-90]、光场成像[91-92]等,仍值得我们探索。同时,目前的成像应用实例大多实现的是单一功能,对于多种功能的叠加或切换需探索创新的工作原理和更复杂的设计方案。更值得一提的是,在进行大面积超构透镜的设计与制备时,需要处理海量数据,往往会耗费大量的时间和计算容量,仍需探究更成熟的数据处理方式、设计方法与制备工艺[93-94]。
在这篇综述中,均是通过成像系统即硬件部分对像差进行消除,现有工作提出将部分像差校正功能分担到软件的预处理与后处理上,这种将硬件与软件联合优化设计的方法被称为计算成像[95-96],为设计大面积、高性能、更集成化的超构透镜系统提供了新的可行性方案。大多数超构透镜都需要大量的微纳米结构单元参数来创建数据库,然后选择合适的元原子并组装成具有预期功能的超构透镜。最近,一种被称为逆向设计的方法被提出[97-98],其中期望的光学响应被定义为一个目标成本函数。遗传算法[99-100]、基于梯度的算法[101]和深度学习算法[102-103]等方法已经被证明。这一新兴的设计方法将有利于生成宽带、高效、多功能化超构表面光学器件。
总之,与体积较庞大且成本昂贵的传统中红外光学元件相比,超构透镜具有出色的波前调制能力且具有优良的特性。同时,其加工与半导体工艺兼容,有望实现大规模生产制造[104]。在可预见的未来,超构透镜可能会广泛采用在红外光学系统中,并在红外成像、机器视觉、遥感、医学诊断,生物成像和材料科学等领域发挥重要作用。