生物学的三种高端技术——基因编辑、荧光蛋白和光遗传学,都受到大自然的启发。那些数百万年来一直在为细菌、水母和藻类“服务”的生物分子工具,现在正被广泛用于医学和生物研究。可以说,它们直接或间接地改变着人们的日常生活,甚至生命。
细菌和病毒相互争斗。它们处于不断的生化战争中,争夺稀缺资源。
细菌武器库中的一个重要装备,就是CRISPR-Cas系统,其由从敌对病毒中随时间收集的短重复DNA 组成,与称为Cas 的蛋白质配对,该蛋白质可以像使用剪刀一样切割病毒DNA。在自然界中,当细菌受到DNA 存储在CRISPR“档案”中的病毒攻击时,CRISPR-Cas 系统会追捕、切割、破坏病毒。
科学家们拾起这一“武器”并用于科学用途,取得了开创性的效果。美国加州大学伯克利分校的生物化学家珍妮弗·道德纳和法国微生物学家埃玛纽埃勒·沙尔庞捷,因开发CRISPR-Cas 作为基因编辑技术,而共同获得了2020 年诺贝尔化学奖。
我们知道,人类基因组计划给出了一个几乎完整的基因序列,并为科学家提供了一个模板来对所有其他生物进行测序。然而在CRISPR-Cas 出现之前,研究人员没有工具去轻松访问和编辑生物体中的基因。现在,CRISPR-Cas 让过去需要耗时数月甚至数年并花费数十万美元的实验室工作,在不到一周的时间内完成,且只需几百美元。
有超过1 万种遗传疾病是由仅发生在一个基因上的突变引起的,即所谓的单基因疾病。它们影响了数百万人,镰状细胞性贫血、囊性纤维化和亨廷顿氏病是这些疾病中最著名的。而它们都是CRISPR 治疗手段的主要目标——修复或替换一个有缺陷的基因要简单得多,人们从此不需要纠正多个基因上的错误。
维多利亚水母在北太平洋漫无目的地漂流,这种生物没有大脑,没有肛门,也没有毒刺,按说它不太可能引发什么生物技术革命。
但事实恰恰相反,在它的伞的外围,有大约300个光器官,它们发出绿色的光点,这些光点像是黑暗里闪烁出来的信号一样,改变了科学的进行方式。
这种生物发光,源于一种称为水母发光蛋白的物质和一种称为绿色荧光蛋白或GFP 的荧光分子。在现代生物技术中,GFP 就像一个“分子灯泡”,可以与其他蛋白质融合,使研究人员能够追踪它们并查看生物体细胞中蛋白质何时何地生成。
现在,荧光蛋白技术每天在数以千计的实验室中使用,并因此在2008 年和2014 年获得了两项诺贝尔奖。科学家们也已经在更多的物种中发现了荧光蛋白。
而当研究人员创造出表达GFP 的转基因COVID-19病毒时,这项技术再次证明了其实用性。当病毒进入呼吸系统并与具有毛发状结构的表面细胞结合时,由此产生的荧光,可以追踪病毒的路径。
当依赖阳光生长的藻类被放置于黑暗房间里的大型水族箱中时,它们会失去目标地游来游去。但是如果打开一盏灯,藻类就会向光游去。这就是单细胞鞭毛虫,它们其实没有眼睛,但有一个称为眼点的结构,可以区分光明和黑暗。眼点布满了称为通道视紫红质的光敏蛋白。
在差不多二十年前,研究人员发现,当他们通过基因将这些视紫红质通道蛋白插入任何生物体的神经细胞时,用蓝光照射视紫红质通道蛋白,会导致神经元激活。这是一种被称为光遗传学的技术。当一束精确的蓝光照射在这些神经元上时,视紫红质通道就会打开,钙离子涌入神经元,神经元则被激发。
使用该工具,科学家可以选择性地重复刺激神经元组,从而更准确地了解要针对哪些神经元来治疗特定的障碍和疾病。现在,光遗传学被认为可能是治疗人类致命脑部疾病(如阿尔茨海默病和帕金森氏症)的关键。
而且,光遗传学不仅对理解大脑有用。研究人员还在使用该技术来部分逆转失明,并在使用其治疗视网膜色素变性疾病的临床试验中,看到了希望。
科学家们相信,除以上三种重要技术手段外,大自然的“工具箱”里应还保管着大量未被发现的技术。