不同阴极极化条件对L245的SRB腐蚀行为影响

2022-07-27 02:55李鑫尚东芝李子墨姜有文陈长风
表面技术 2022年7期
关键词:极化电位产物

李鑫,尚东芝,李子墨,姜有文,陈长风

不同阴极极化条件对L245的SRB腐蚀行为影响

李鑫1,2,尚东芝1,李子墨1,姜有文3,陈长风1

(1.中国石油大学(北京),北京 102249;2.中国石油管道局工程有限公司,河北 廊坊 065000;3.国家管网北方管道公司,河北 廊坊 065000)

通过模拟试验研究SRB环境中不同极化电位下L245管线钢微生物腐蚀(MIC)行为差异,探索极化电位对MIC过程的影响规律和微观机理。采用静态浸泡法研究了施加4种不同极化电位条件下的L245电极试样在SRB环境中浸泡腐蚀7 d过程。利用细菌计数法分析微生物膜中固着细菌数量随极化电位的变化情况,通过开路电位测量、电化学交流阻抗(EIS)技术,分析微生物膜随电位的变化情况。利用扫描电镜(SEM & EDS)和聚焦离子束扫描电镜(FIB–SEM&EDS)分析膜表面和纵截面结构变化和元素成分分布。利用激光共聚焦显微镜(CLSM)对膜下点蚀坑随电位变化情况进行了统计分析。弱阴极极化条件下,–0.75 V(vs. sce)和–0.875 V(vs. sce)明显促进了 SRB 的代谢活动,SRB细菌个体在材料表面的吸附和生长得到促进,膜中固着SRB数量大幅增加,细菌个体外围被硫化物和有机物覆盖,膜下点蚀程度随电位负移而加剧。–0.875 V(vs. sce)条件下表现相对更明显。随着电位负移,膜厚逐渐增大,S、P等代谢活动元素含量随之增高。强阴极极化条件下,–1.05 V(vs. sce)使SRB代谢活性得到抑制,固着细菌数目明显减少,点蚀现象基本消失。弱阴极极化作用有助于增加SRB腐蚀的倾向,强极化电位则抑制了细菌的代谢活性,减缓了点蚀。揭示了阴极极化电位通过影响膜中SRB代谢活性和数量促使点蚀程度加剧的机理。SRB代谢活性的增强和膜下点蚀的发生是SRB从金属表面直接获取电子而导致的结果。

阴极极化;SRB微生物膜;聚焦离子束扫描电镜;膜截面;点蚀

硫酸盐还原菌(SRB)是影响微生物腐蚀的主要类群之一[1-2]。SRB腐蚀金属可分为化学间接腐蚀(CMIC)和电化学直接腐蚀(EMIC)[3]。间接腐蚀是利用产生硫化氢[4-5]或其他酸性生物腐蚀金属[6]。直接腐蚀是直接消耗阴极氢和直接汲取金属电子获取能量[7]。腐蚀学者平时注重研究自然条件下的MIC,而油气管道、储罐通常处在阴极保护状态下,极化产生的电势诱导作用会使表面电化学状态发生改变,从而对SRB的表面吸附以及代谢活性产生影响[8-10]。Chen[11]研究了X70管线钢在无菌和SRB环境中的腐蚀行为,发现在无菌环境中X70钢的最佳保护电位为–775 mV(vs. Cu/CuSO4),而在含菌条件下该值不能有效抑制阳极反应,可见施加常规阴保电位使微生物腐蚀发生的风险增大。现场表明,环境中SRB的存在影响了管道最佳保护电位的选择,《GBT 21448—2017埋地钢质管道阴极保护技术规范》[12]指出,在含有SRB以及其他腐蚀性细菌环境中,管道阴极保护电位p应该在‒850 mV(vs. Cu/CuSO4),即‒770 mV(vs. SCE),甚至更负。

金属施加阴保电位后,表面产生电子富集层,根据EMIC理论SRB从表面直接得电子参与自身生命代谢活动,同步产生的溶解H可作为SRB用作电子载体的电子介质,在适当电位下阴极氢会促进氢化酶菌的生长[13-15]。研究表明,电极电势是影响电极表面和具有电活性SRB细胞之间电子传递的重要因素[16-17]。

本工作针对不同阴极极化电位下的L245管线钢SRB腐蚀过程,采用恒电位阴极极化开路电位、电化学交流阻抗谱(EIS)电化学方法,结合FIB– SEM&EDS、CLSM等技术,辅以细菌计数法表征4种不同极化电位(OCP、‒0.75、‒0.875、‒1.05 V,vs. sce)下试样表面微生物膜特征及介质–金属–微生物膜间界面现象,探索不同极化电位下SRB生长代谢状况以及试样表面的腐蚀行为差异,并以相同条件在无SRB环境下做空白对照试验。

1 试验

1.1 试验材料与试剂

将L245管线钢加工成10 mm×5 mm的圆盘作为工作电极,化学成分见表1。使用之前,为了防止偏析效应造成试样表面状态不均匀,进行正火处理。显微组织为均匀分布的铁素体和珠光体。电极导线连接面由环氧树脂密封,工作面用400#—1500#SiC砂纸逐级打磨抛光,用超纯水、无水乙醇依次超声清洗,去除电极表面的附着杂质。高纯N2吹干,放到超净台紫外灯下杀菌45 min,密封待用,同时确保试验过程中无杂菌污染。

表1 L245母材元素成分

Tab.1 Chemical compositions of the experimental steels L245 wt.%

SRB菌种取自中国西南某页岩气田,提纯培养备用。溶液选自API推荐的培养基,溶液按照1 L去离子水配比0.5 g KH2PO4+1.0 g NH4Cl+2.0 g CaSO4+ 2.0 g MgSO4·6H2O+3.5 mg乳酸钠+1.0 g酵母粉。将溶液置于小瓶中并在121 ℃下高压灭菌20 min,冷却后放入紫外超净台中,通氮气2 h除氧,密封备用。使用前,密闭厌氧箱内接种,温度37 ℃箱内培养72 h,培养基逐渐变黑,并有臭鸡蛋味气体挥发。

1.2 电化学测试

在37 ℃的SRB溶液环境中,电化学试验为三电极体系,将制备试样置于反应瓶中,暴露环氧树脂外10 mm的圆形面积,对电极为10 mm×10 mm铂片,参比电极为饱和甘汞电极(SCE),用盐桥连接。整个反应瓶用凡士林密封。将CP设定为开路电位(OCP)、‒0.75、‒0.875、‒1.05 V(vs. sce),分别连续浸泡7 d。其装置如图1所示。试验前所用溶液、容器、电极等均经紫外灯照射灭菌处理,以免杂菌污染。开路电位及电化学阻抗EIS在电化学工作站(CHI 660D)上进行。

图1 电化学体系试验装置图

1.3 表面形貌和腐蚀产物测试

对不同电位下极化7 d的试样取出后进行微生物固定及脱水处理。灭菌PBS溶液冲洗,然后立即放入5%的戊二醛固定120 min,再用质量分数为50%、70%、90%、99%的乙醇逐级脱水15 min,干燥喷金。使用扫描电镜(SEM,KYKY–EM6X00)对腐蚀产物膜表面状态进行分析,聚焦离子束扫描电子显微镜(FIB–SEM,Crossbeam 540)对膜截面结构和成分进行分析。

1.4 SRB含量分析

根据美国材料试验协会(ASTM)标准D4412–84,采用最可能数法(MPN)对培养基中浮游性SRB和固着性SRB进行计数分析。对于浮游性SRB,在培养液抽取使用多次稀释法测量。对于固着性SRB,使用灭菌刷刮下生物膜划入盛有10 ml的磷酸盐缓冲生理盐水(PBS)溶液的离心管中振荡处理,后续与测量浮游SRB细菌数的方法相同。

1.5 膜下点蚀情况分析

为观察试样微生物膜下点蚀形貌,将试样在500 mL盐酸+500 mL H2O+3.5 g六次甲基四胺中进行处理。利用扫描电镜、激光共聚焦显微镜(CLSM,OLS4100– SAF)对膜下表面点蚀坑进行统计分析,研究不同极化电位下点蚀特征差异和发展规律。

2 试验结果

2.1 电化学结果

通过开路电位测量和电化学阻抗谱来说明腐蚀产物膜状态结构随极化电位的变化。如图2所示,4组试样施加不同阴极电位1 d后,开路电位值开始降低,3~5 d时段内变化相对剧烈,推断该阶段界面处发生了较为复杂的生物电化学反应,说明电活性SRB的生命代谢活动受到了极化电位影响。从OCP到‒0.875 V(vs. sce),相同时段内开路电位值总体呈下降趋势,说明腐蚀倾向性增大。‒0.875 V(vs. sce)电位下负移程度最大,且波动剧烈,推断该电位值下腐蚀倾向性最大,‒0.75 V(vs. sce)电位下次之。‒1.05 V(vs. sce)电位下试样在浸泡过程中开路电位值甚至比OCP条件下偏正,且波动变化相对平稳,说明腐蚀产物膜结构特征变化不大,可以初步判定‒1.05 V(vs. sce)电位下试样表面腐蚀倾向性降低,可有效抑制SRB腐蚀。

图2 不同极化电位下试样浸泡过程中开路电位EOCP的变化趋势

图3为试样在开路电位下的Nyquist图和Bode图。根据阻抗谱的特点拟合形成中带有2个时间常数的拟合电路,如图4所示。其中,s为溶液电阻,f为腐蚀产物膜电容,f为腐蚀产物膜电阻,dl为双电层电容,ct为电荷转移电阻。电路拟合的ct值见表2,f值见表3。界面处电化学过程的影响因素主要包括腐蚀产物膜结构和性质变化、双电层的电荷转移过程等。在OCP、‒0.75、‒0.875 V(vs. sce)3个反应体系中,随着电位负移,容抗弧变化总体呈减小趋势。施加‒1.05 V(vs. sce)后,容抗弧又出现变大。Xu等[18]研究了Q235在施加阴极极化过程中生物膜的变化情况,在初始浸泡阶段,SRB的存在抑制了表面腐蚀,到中、后期生物膜增厚,膜内微生物又促进了点蚀发展。

图3 4种不同极化电位下试样Nyquist和Bode图随时间变化曲线

图4 SRB介质中阻抗谱拟合电路

表2 不同极化电位下阻抗谱拟合得到的ct值

Tab.2 The Rct values obtained from analysis of the electrode impedances Ω·cm2

表3 不同极化电位下阻抗谱拟合得到的f值

Tab.3 The Qf values obtained from analysis of the electrode impedances F/cm2

相比于OCP体系,施加阴极极化电位下浸泡初期的24 h内,随着施加电位负移,ct呈现先减小后增大的趋势,f值随之增大,生物膜的电荷转移能力逐步增强。在初期溶液中由于SRB浓度较低对电极表面攻击性较弱,阴极极化的保护效果还能起到主导作用。在3~4 d时,SRB含量达到高浓度,生命代谢活动加强,此时‒0.75、‒0.875 V(vs. sce)体系中试样表面腐蚀产物膜变厚,为膜中SRB提供了适宜的封闭环境,大量固着细菌通过直接得电子方式从Fe获得电子,此时ct处于低值区间,对应的f处于高值区间,说明膜转移电子能力增强,表面腐蚀程度加剧。在‒1.05 V(vs. sce)电位下,ct转为相对最大值,f转为相对最小值,说明腐蚀程度明显减弱。在6~7 d时,SRB的代谢达到相对稳定状态,阴极极化电位下的微生物膜结构和性质均发生变化。ct值和f量总体波动趋势表明极化电位和MIC之间紧密联系。

2.2 腐蚀产物膜表面结果

图5是极化7 d后的试样SEM&EDS分析结果。在OCP条件下,可清晰观察到电极表面产生的稀疏团簇,SRB个体和胞外聚合物呈现聚集状态,S质量分数达到13.46%;‒0.75 V(vs. sce)条件浸泡下,胞外聚合物的表面分布密度明显增大,腐蚀产物膜中S质量分数达14.25%,稍有提高;‒0.875 V(vs. sce)条件下,腐蚀产物膜已覆盖全部表面,可见少量点蚀坑,SRB代谢的硫化物持续增多,S质量分数达19.28%,说明SRB在该电位下生命活动得到加强。‒1.05 V(vs. sce)下,腐蚀产物膜由于矿化显得更加致密,存在少量EPS团簇附着,S质量分数降至1.85%,C含量保持稳定,O、P元素明显增加,推测生成了碳酸盐、磷酸盐等无机质,说明此电位使SRB生命活动大大减弱,但并未得到完全抑制。

图5 不同阴极保护电位下浸泡7 d的表面腐蚀产物SEM&EDS分析

2.3 腐蚀产物膜截面结果

选取‒0.875 V(vs. sce)和‒1.05 V(vs. sce)电位下试样腐蚀产物膜截面进行FIB–SEM观测。如图6所示,‒0.875 V(vs. sce)试样膜内部明显疏松,且厚度不均匀,为5~10 μm。EDS分析显示,膜外层富含C、P、O、S元素,一般被认为是EPS等有机物和碳酸盐、磷酸盐的聚集。膜内层Fe和S在产物膜与金属界面处的存在,则被认为是FeS产物。圈内中心部位有C、O、S、P等生命元素富集,推测为SRB个体固着膜内,上层基本被硫、磷化物等覆盖,下层贴近金属表面。为进一步证实细菌个体的存在,对其及周边环境进行元素线扫描,C、P、O、S、Ca分布线出现凸起,见图7。

图6 ‒0.875 V(vs. sce)电位下生物膜横截面的FIB–SEM&EDS分析结果

图7 ‒0.875 V(vs. sce)阴保电位下固着SRB细胞截面线扫描元素分布

图8和图9显示,‒1.05 V(vs. sce)下腐蚀产物厚度约达20 μm,明显增厚。根据EDS线扫描结果,从表层到内层C含量逐渐降低,外层P元素分布丰富,所以进一步推断表面并非只含有有机质的EPS。图9显示Ca的大量积累表明随着电位负移发生进一步矿化,推测形成了无机钙质层物质[19]。因为强阴极极化电位下产生的电流会促进钙质层如Ca3(PO4)2、CaCO3等无机产物生成。无论环境中存在SRB与否,极化条件下的腐蚀产物膜必然存在C元素。含SRB的环境中,随着阴极电位负移,使电极表面腐蚀产物由硫酸盐逐渐向碳酸盐转变[20],C增加说明转化成碳酸盐的量也随之增加[21]。FIB切面并未发现膜中存在SRB细胞个体存在。

hco3–+oh–→h2o+co32–(1)

ca2++co32–→caco3↓ (2)

图8 ‒1.05 V(vs. sce)阴保电位下生物膜横截面的FIB–SEM图像和线元素分析

图9 ‒1.05 V(vs. sce)阴保电位下生物膜横截面的 SEM 图像和面元素分布

2.4 SRB个体数量结果

图10显示了施加不同阴保电位7 d后的微生物膜中固着细菌和浮游细菌数量差异。图10a计数结果表明,膜内固着细菌数量随电位负移呈先升高后降低的趋势。OCP下的膜内固着细胞计数为3.5×106cells/cm2。在‒0.75、‒0.875 V(vs. sce)的电位影响下,固着细胞计数升至107水平,到‒1.05 V(vs. sce)降至104的量级。这表明阴极电位一定程度地施加可以刺激电极表面SRB细胞活性,增加其新陈代谢及繁殖能力。随着电位负移,膜中SRB细胞数量有所增加,但是当极化电位过负时,膜中细菌个体数量迅速减少。图10b显示了‒0.75~ ‒1.05 V(vs. sce)下溶液环境中浮游细胞计数,从起初的105级别缓慢增长,稳定在106级别再无明显变化,说明外加极化电位对培养基中的浮游细胞计数产生的影响并不大。

2.5 膜下点蚀坑结果

去除腐蚀产物后,利用SEM和CLSM分别对表面腐蚀坑状态和最大点蚀坑深度进行分析。图11和图12显示,OCP条件下点蚀坑分布分散,最大点蚀深度约为7 μm。在‒0.75和‒0.875 V(vs. sce)下,观察到表面点蚀程度相对严重且集中,最大点蚀深度达到20 μm以上。随着电位降至‒1.05 V(vs. sce),虽然局部腐蚀特征依然存在,但点蚀程度和分布密度均明显变小,最大点蚀深度降至4 μm,试样表面大部分区域清晰可见制备试样时的细微划痕,说明在强极化电位下表面均匀腐蚀已基本被抑制。

图11 不同阴极电位下去除腐蚀产物后的微生物腐蚀形貌

图13对有菌和无菌环境下的均匀腐蚀速率做了对比。无菌环境下,极化电位的施加起到有效保护作用,均匀腐蚀速率得到抑制。SRB环境下,弱极化电位加剧了MIC引发的点蚀,从而导致腐蚀速率增加。强极化电位‒1.05 V(vs. sce)下,腐蚀速率得到明显控制。

图12 不同极化电位下的试样最大点蚀坑深度对比图

图13 无菌(a)和有菌(b)条件下腐蚀速率图

3 讨论与分析

金属施加阴极极化电位后,表面形成电子富集层,使电子转移电阻大大降低,导致金属阳极电子转移电流密度相应增大,这非常利于为SRB代谢提供所需能量。鉴于SRB具有电活性[22],细菌个体在极化电位影响下会更加积极地附着金属表面,生产EPS成膜,图14所示。根据EMIC理论,膜封闭环境和极化电位提供的电子非常利于为膜中SRB个体代谢,使固着细菌数量增加[23-25]。同时,高浓度的EPS对Fe2+具有络合作用,能够促进Fe的阳极溶解[26]。极化条件下的微生物膜结构使电子转移电阻大大降低,金属阳极电子转移电流密度相应增大,从而诱发严重点蚀[27]。本研究认为SRB与极化电极之间的直接电子传递是造成试验结果的主要原因。

图14 点蚀坑形成机理示意图

一般认为,弱阴极极化作用有助于增加SRB腐蚀的倾向[29]。从EMIC理论讲,在外加电位影响下,具有纳米线结构的SRB可以直接与极化电极相互作用从电极表面得电子增强其代谢能力,具有跨膜电子传递机构的电活性SRB生物膜可以利用电子传递载体间接从电极金属获取电子;一些电子传递介质如维生素B12、核黄素、黄素腺嘌呤二核苷酸(FAD)等内生型介质,可从受阴极极化的金属表面获取电子,间接将电子通过膜蛋白物质转移至SRB细胞中,微生物腐蚀产物Fe–S物质也可作为 SRB 的电子传输通道,从而促进细菌代谢活性,过程中产生酸类物质(H2S或CO2)对金属表面造成局部的直接腐蚀[30]。可见,直接和间接电子传递在极化电位的影响下均可造成金属溶解[31-32],如图15所示。从CDT理论讲,因为弱极化条件可以发生阴极还原反应产生H,从而为SRB个体提供能量和物质供应[33-35]。在强极化电位(‒1.05 V,vs. SCE)作用下,虽然强电位从提供电子角度可以激发SRB生命活性,但是电极表面会发生强烈的析氢现象,使周边变为强碱性环境,其成因见反应式(3)—(5)。当pH>9.0时,不利于普通SRB个体的生长和代谢,所以MIC导致点蚀现象会基本消失[36]。

2h2o→o2+4h (3)

o2+2h2o+4e‒→4oh‒(4)

2h2o+2e‒→2oh‒+h2(5)

从工程角度讲,SRB环境下施加弱阴极保护电位,可能会增加管材MIC腐蚀穿孔的风险。但施加强阴极保护电位,产生的大量溶解H会增加管道的氢脆风险。含SRB菌环境中如何选择适宜阴保电位值还需根据材料和环境的不同做具体研究。

图15 阴保电位与SRB生命活动之间的反应示意图[28]

4 结论

1)阴极极化电位与SRB代谢活性和点蚀程度密切相关。弱阴极极化条件下,‒0.75 V(vs. sce)和‒0.875 V(vs. sce)明显促进了SRB的代谢活动,加剧点蚀程度。弱阴极极化电位可促进SRB细菌个体在材料表面的吸附和生长,使得腐蚀产物膜中SRB固着数量大幅增加。‒0.875 V(vs. sce)条件下表现最为明显。

2)弱阴极极化电位作用下,腐蚀产物膜固着的SRB细胞被硫化物和有机物覆盖,随着电位负移,膜厚度逐渐增大,S、P等生命活动元素含量增高。SRB代谢活性的增强和膜下点蚀的发生是SRB直接从金属表面得电子形成的结果。

3)强阴极极化条件‒1.05 V(vs. sce)作用下,固着SRB细菌的生命活性得到抑制,细菌数目明显减少,对应的点蚀现象基本消失。强极化电位可通过改变环境抑制细菌的代谢活性,从而减缓点蚀。主要原因是析氢反应产生的强碱环境抑制了SRB生长。

[1] MUYZER G, STAMS A J M. The Ecology and Biotech­nology of Sulphate-Reducing Bacteria[J]. Nature Reviews Microbiology, 2008, 6(6): 441-454.

[2] ZHANG D, WU Jia-jia. Research Progress on the Mecha­nisms of Microbiologically Influenced Corrosion in Marine Environment[j]. Oceanologia, 2020, 25: 658.

[3] ENNING D, VENZLAFF H, GARRELFS J, et al. Marine Sulfate-Reducing Bacteria Cause Serious Corrosion of Iron under Electroconductive Biogenic Mineral Crust[J]. Environmental Microbiology, 2012, 14(7): 1772-1787.

[4] YUAN Shao-jun, LIANG Bin, ZHAO Yu, et al. Surface Chemistry and Corrosion Behaviour of 304 Stainless Steel in Simulated Seawater Containing Inorganic Sulphide and Sulphate-Reducing Bacteria[J]. Corrosion Science, 2013, 74: 353-366.

[5] XU Da-ke, LI Ying-chao, GU Ting-yue. Mechanistic Mode­ling of Biocorrosion Caused by Biofilms of Sulfate Redu­cing Bacteria and Acid Producing Bacteria[J]. Bioelectro­chemistry, 2016, 110: 52-58.

[6] BAI Peng-peng, ZHAO Hui, ZHENG Shu-qi, et al. Initia­tion and Developmental Stages of Steel Corrosion in Wet H2S Environments[J]. Corrosion Science, 2015, 93: 109-119.

[7] BAO Qi, ZHANG Dun, LV Dan-dan, et al. Effects of Two Main Metabolites of Sulphate-Reducing Bacteria on the Corrosion of Q235 Steels in 3.5wt.% NaCl Media[J]. Corrosion Science, 2012, 65: 405-413.

[8] GUAN Fang, ZHAI Xiao-fan, DUAN Ji-zhou, et al. Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of High Strength Steel EQ70 under Cathodic Polarization[J]. PLoS One, 2016, 11(9): e0162315.

[9] 孙东菊, 王立达, 刘贵昌, 等. 阴极极化对微生物在电极表面附着的影响[J]. 辽宁化工, 2014, 43(8): 980-983.

[10] SUN Dong-ju, WANG Li-da, LIU Gui-chang, et al. Influ­ence of Cathodic Polarization on the Biofilm Adhesion on Electrode Surface[J]. Liaoning Chemical Industry, 2014, 43(8): 980-983.

[11] BUSALMEN J P, DE SÁNCHEZ S R. Electrochemical Polarization-Induced Changes in the Growth of Individual Cells and Biofilms of Pseudomonas Fluorescens (ATCC 17552)[J]. Applied and Environmental Microbiology, 2005, 71(10): 6235-6240.

[12] CHEN Xu, WANG Guan-fu, GAO Feng-jiao, et al. Effects of Sulphate-Reducing Bacteria on Crevice Corrosion in X70 Pipeline Steel under Disbonded Coatings[J]. Corr­osion Science, 2015, 101: 1-11.

[13] GB/T 21448—2017, 埋地钢质管道阴极保护技术规范[S].

[14] GB/T 21448—2017, Specification of Cathodic Protection for Underground Steel Pipelines[S].

[15] VINCENT K A, PARKIN A, ARMSTRONG F A. Investi­gating and Exploiting the Electrocatalytic Properties of Hydrogenases[J]. Chemical Reviews, 2007, 107(10): 4366-4413.

[16] GUEZENNEC J, THERENE M. A Study of the Influence of Cathodic Protection on the Growth of SRB and Corro­sion in Marine Sediments by Electrochemical Techni­ques[j]. J Microbial Corrosion, 1988, 45: 325.

[17] HERNANDEZ G, HARTL W H, VIDELA H A. Marine Biofilms and Their Influence on Cathodic Protection: A Literature Survey[J]. Corrosion Reviews, 1994, 12(1-2): 29-40.

[18] YU Lin, DUAN Ji-zhou, ZHAO Wei, et al. Charac­teristics of Hydrogen Evolution and Oxidation Catalyzed byBiofilm on Pyrolytic Graphite Electrode[J]. Electrochimica Acta, 2011, 56(25): 9041-9047.

[19] YU Lin, DUAN Ji-zhou, DU Xiang-qian, et al. Accele­rated Anaerobic Corrosion of Electroactive Sulfate-Redu­cing Bacteria by Electrochemical Impedance Spectros­copy and Chronoamperometry[J]. Electrochemistry Commu­nications, 2013, 26: 101-104.

[20] SUN C, XU J, WANG F H, et al. Effects of SRB on Cathodic Protection of Q235 Steel in Soils[J]. Materials and Corrosion, 2010, 61(9): 762-767.

[21] LUNARSKA E, BIRN J, DOMŻALICKI P. Hydrogen Uptake by Structural Steels at Cathodic Protection in Sea Water Inoculated with Sulfate Reducing Bacteria[J]. Materials and Corrosion, 2007, 58(1): 13-19.

[22] REFAIT P, JEANNIN M, SABOT R, et al. Electroc­hemical Formation and Transformation of Corrosion Products on Carbon Steel under Cathodic Protection in Seawater[J]. Corrosion Science, 2013, 71: 32-36.

[23] KONDO K, OKAMOTO A, HASHIMOTO K, et al. Sulfur-Mediated Electron Shuttling Sustains Microbial Long-Distance Extracellular Electron Transfer with the Aid of Metallic Iron Sulfides[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2015, 31(26): 7427-7434.

[24] 赵伟. 海洋沉积物中产电微生物筛选及其应用基础研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2011.

[25] ZHAO Wei. The Selection and Application of Electroc­hemically Active Microorganisms from Marine Sedi­ments[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011.

[26] BEESE-VASBENDER P F, NAYAK S, ERBE A, et al. Electrochemical Characterization of Direct Electron Uptake in Electrical Microbially Influenced Corrosion of Iron by the Lithoautotrophic SRBStrain IS4[J]. Electrochimica Acta, 2015, 167: 321-329.

[27] XU Da-ke, GU Ting-yue. Carbon Source Starvation Trig­gered more Aggressive Corrosion Against Carbon Steel by theBiofilm[J]. International Biodeterioration & Biodegradation, 2014, 91: 74-81.

[28] SHERAR B W A, POWER I M, KEECH P G, et al. Characterizing the Effect of Carbon Steel Exposure in Sulfide Containing Solutions to Microbially Induced Corrosion[J]. Corrosion Science, 2011, 53(3): 955-960.

[29] DONG Ze hua, LIU Tao, LIU Hong Fang. Influence of EPS Isolated from Thermophilic Sulphate-Reducing Bac­teria on Carbon Steel Corrosion[J]. Biofouling, 2011, 27(5): 487-495.

[27] PONS L, DÉLIA M L, BERGEL A. Effect of Surface Roughness, Biofilm Coverage and Biofilm Structure on the Electrochemical Efficiency of Microbial Cathodes[J]. Bioresource Technology, 2011, 102(3): 2678-2683.

[28] 管方. 阴极保护下硫酸盐还原菌腐蚀机理研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2017.

GUAN Fang. Research on the Corrosion Mechanism of Sulfate-Reducing Bacteria under Cathodic Protection[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2017.

[29] LIU Tao, CHENG Y F. The Influence of Cathodic Prote­ction Potential on the Biofilm Formation and Corrosion Behaviour of an X70 Steel Pipeline in Sulfate Reducing Bacteria Media[J]. Journal of Alloys and Compounds, 2017, 729: 180-188.

[30] 任建敏. 植物类黄酮的生理功能与抗菌机制[J]. 重庆工商大学学报(自然科学版), 2021, 38(6): 8-20.

REN Jian-min. Physiological Activities and Antimicrobial Mechanism of Plant Flavonoids[J]. Journal of Chongqing Technology and Business University(Natural Science Edition), 2021, 38(6): 8-20.

[31] 于林. 硫酸盐还原菌生物膜电活性及腐蚀机理研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2011.

YU Lin. The Electro-Active Characteristics of Sulfate- Reducing Bacteria and Its Influence on the Anaerobic Corrosion of Carbon Steels[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011.

[32] LOVLEY D R. The Microbe Electric: Conversion of Organic Matter to Electricity[J]. Current Opinion in Biotechnology, 2008, 19(6): 564-571.

[33] HERNANDEZ G, HARTL W H, VIDELA H A. Marine Biofilms and Their Influence on Cathodic Protection: A Literature Survey[J]. Corrosion Reviews, 1994, 12(1-2): 29-40.

[34] JEAN G. Influence of Cathodic Protection of Mild Steel on the Growth of Sulphate-Reducing Bacteria at 35 ℃ in Marine Sediments[J]. Biofouling, 1991, 3(4): 339-348.

[35] VILLANO M, DE BONIS L, ROSSETTI S, et al. Bioe­lectrochemical Hydrogen Production with Hydrogeno­philic Dechlorinating Bacteria as Electrocatalytic Agents[J]. Bioresource Technology, 2011, 102(3): 3193-3199.

[36] DE SARAVIA S G G, DE MELE M F L, VIDELA H A. Scanning Electron Microscopy Study of SRB Adherence on Cathodically Protected Stainless Steel[J]. International Biodeterioration & Biodegradation, 1996, 37(1-2): 129.

SRB Corrosion Behavior of L245 Pipeline Steel with Different Cathode Polarization Potential

1,2,1,1,3,1

(1. China University of Petroleum, Beijing 102249, China; 2. China Petroleum Pipeline Bureau, Hebei Langfang 065000, China; 3. Pipe China North Pipeline company, Hebei Langfang 065000, China)

The influence of cathode polarization on sulfate-reducing bacteria (SRB) corrosion behavior of pipeline steel has gained great attention from corrosion industry. The difference of microbial corrosion behavior of L245 pipeline steel with different cathodic polarization potentials in SRB containing environment was studied by simulation experiment, and the influence rule and microscopic pitting mechanism of the microbiologically influenced corrosion (MIC) process with polarization potential were explored. Laboratory tests were conducted to elucidate the cathodic reactions and MIC process by different potentiostatic cathodic polarization (OCP, –0.75 V, –0.875 V, –1.05 V) of L245 steel specimens for 7 days. MPN method were used to analyse sessile SRB quantity variation and its metabolism in biofilm, electrochemical measurements method such as open circuit potentiometry and electrochemical impedance spectroscopy (EIS) were applied to analyse the development and changes of morphology and composition of the corrosion product film. In order to investigate the surface and inner composition and structural changes, corrosion products film were cross-sectioned and detected by scanning electron microscope (SEM) and focused ion beam-scanning electron microscope (FIB-SEM&EDS) respectively. Laser scanning confocal microscope (CLSM) were used to analysis the difference of pitting behavior happening under the biofilm with different polarization potentials. This study focuses on MIC process, biofilm development and pitting corrosion caused by an SRB consortium with different CPs using FIB-SEM. Several concluding findings are listed as below: Proliferation of SRB bacteria was not inhibited in the presence of cathodic polarization and corrosion continued in the localized regions under biofilm. With the mild cathode polarization, applying –0.75 V and –0.875 Vsignificantly could promote the SRB metabolic activity, strengthen the adsorption and growth of SRB on the surface of the electrode, greatly increased the number of sessile SRB in biofilm, so the pitting degree was aggravated accordingly, The result at ‒0.875 V was the more significant. Sessile SRB cells, in the corrosion product film formed at mild polarization potentials, were covered with sulfide and organic substance. With the potentials changing from OCP to ‒0.875 V, the thickness of biofilm gradually increased, and the content of bacterial metabolite elements such as S, P also increased. With the condition of strong cathode polarization ‒1.05 V, the upper layer of the corrosion product film was enriched with C, O, Ca elements, which mean that mineralization has occurred. The metabolic activity of SRB was inhibited and the number of sessile SRB cells decreased significantly, so the pitting phenomenon disappeared accordingly. The strong polarization potential inhibited the metabolic activity of bacteria and prevented pitting corrosion happening.The mild cathodic polarization ocould increase the MIC tendency of SRB, while the strong polarization potential inhibited the metabolic activity of bacteria and prevented the pitting corrosion occurring. The mechanism that the pitting degree was aggravated by the effect of cathode polarization potential on the metabolic activity and quantity of sessile SRB in biofilm was revealed. The enhancement of metabolic activity of SRB underneath the biofilm are the results of SRB's direct acquisition of electrons from the metal surface, H+from microbial activities of SRB cells in biofilm accumulated underneath the biofilm and led to pitting corrosion.

cathode polarization; SRB biofilm; FIB-SEM; cross-section; pitting; field testing showed that

tg172

A

1001-3660(2022)07-0207-11

10.16490/j.cnki.issn.1001-3660.2022.07.020

2022-02-15;

2022–05–10

2022-02-15;

2022-05-10

李鑫(1983—),男,博士研究生,主要研究方向为管道工程。

LI Xin (1983-), Male, Ph. D., Research focus: pipeline technology.

陈长风(1974—),男,博士,教授,主要研究方向为腐蚀与防护。

CHEN Chang-feng (1974-), Male, Doctor, Professor, Research focus: corrosion technology.

李鑫, 尚东芝, 李子墨, 等. 不同阴极极化条件对L245的SRB腐蚀行为影响[J]. 表面技术, 2022, 51(7): 207-217.

LI Xin, SHANG Dong-zhi, LI Zi-mo, et al. SRB Corrosion Behavior of L245 Pipeline Steel with Different Cathode Polarization Potential[J]. Surface Technology, 2022, 51(7): 207-217.

责任编辑:万长清

猜你喜欢
极化电位产物
测量模拟土体zeta电位的简易流动电位装置及其使用方法*
活跃在高考中的一个恒等式
极化雷达导引头干扰技术研究
耳蜗微音器电位临床操作要点
极低场核磁共振成像系统中预极化线圈的设计
极低场核磁共振成像系统中预极化线圈的设计
时代的流行产物
美联储加息的产物研究
极化恒等式在向量数量积中的运用
地极布设对电位降法测量接地电阻值的影响