对两道抛物线考题的多视角思考

2022-07-09 01:15:16江苏省灌云高级中学222200施建波
中学数学研究(江西) 2022年7期
关键词:考题定值斜率

江苏省灌云高级中学 (222200) 施建波

对一些典型题目进行深度“思考”,进行“二次创作”,挖掘出所潜在的教育功能、拓展功能和应用功能,让学生做一道题会一类题、会一串题,对于提高学生举一反三、触类旁通的数学素养是十分有意义的.本文以两道抛物线模考题为例说明.

1.考题呈现

例1 已知抛物线C:y2=2x和点P(2,2),A、B是C上异于点P的两点,直线PA、PB的斜率kPA,kPB满足kPA+kPB=2,则直线AB过定点( ).

A.(1,0) B.(-1,0)

C.(0,-1) D.(0,0)

例2P(x0,y0)是抛物线C:y2=2px(p>0)上一定点,A,B是C上异于P的两点,直线PA,PB的斜率kPA,kPB满足kPA+kPB=λ(λ为常数,且λ≠0),且直线AB的斜率存在,则直线AB过定点( ).

点评:很显然,例1是例2的特例,例2是由例1拓展的一般结论(这里记作结论1).有了结论1,对于“过抛物线C:y2=2px(p>0)上一定点P(x0,y0)的两条直线PA,PB,与抛物线C交于A,B两点,若直线PA,PB的斜率kPA,kPB之和为非零定值,则直线AB过定点”这一类问题便迎刃而解了.

2.多视角思考

思考1 (横向类比拓展)对于抛物线“斜率之和为非零定值”这类试题有上述的结论,那么对于椭圆、双曲线是否也有类似的结论呢?

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.

由此高考题,可以将结论1类比到结论2,进而拓展得结论3.

思考2 (逆向探析)对于逆向试题:“过曲线上一定点P(x0,y0)的两条直线PA,PB,与曲线C交于A,B两点,若直线AB过定点(或直线AB的斜率为定值),则直线PA,PB的斜率kPA,kPB之和为定值”,是否也有类似结论1的一般性结论呢?

(1)试求椭圆M的方程;

由此例题,可以将结论1逆向拓展到结论4(结论3的逆定理).

思考3 (纵向思考)上述各结论中,均有条件“λ≠0”,若λ=0会有什么样的结论呢?

例5 已知抛物线C:y2=2x和点P(2,2),A、B是C上异于点P的两点,直线PA、PB的斜率kPA,kPB满足kPA+kPB=0,则直线AB的斜率为( ).

通过此例题并类比到椭圆和双曲线,还可以有下面的一般性结论:

思考4 (变向思考)上面研究的都是“斜率之和为定值”的情况,若将条件中的“之和”改为“之积”,是否也有定点结论呢?

例6 已知抛物线C:y2=2x和点P(2,2),A、B是C上异于点P的两点,直线PA、PB的斜率kPA,kPB满足kPA·kPB=2,则直线AB过定点( ).

进一步,也可以将“斜率之积”为定值情形,拓展到椭圆和一般曲线中.

猜你喜欢
考题定值斜率
圆锥曲线的一类定值应用
“正多边形与圆”考题展示
“正多边形与圆”考题展示
“大处着眼、小处着手”解决圆锥曲线中的定值问题
物理图像斜率的变化探讨
物理之友(2020年12期)2020-07-16 05:39:16
10kV线路保护定值修改后存在安全隐患
电子制作(2018年10期)2018-08-04 03:25:02
10kV线路保护定值修改后存在安全隐患
电子制作(2018年12期)2018-08-01 00:48:08
对一道研考题的思考
特别的考题
学生天地(2017年4期)2017-05-17 05:48:29
求斜率型分式的取值范围