白增柱 朱永国 胡烽 胡元帆
摘要:为精确规划激光跟踪仪的测量站位,提高飞机装配效率,本文提出基于虚拟力场的激光跟踪仪可测性量化判定方法。首先,根据测量中的距离约束、垂直测量角约束和障碍物可视性约束,构建激光跟踪仪可测性约束表达式。然后,引入虚拟力场,改进虚拟斥力公式,并定义阈值公式,构建障碍物可视性判定模型。最后,构建可测性矩阵,以实现激光跟踪仪的可测性量化判定。试验结果表明,与势能场法对比,基于虚拟力场的激光跟踪仪可测性量化判定方法具有較强的可行性和较高的准确率。
关键词:激光跟踪仪;站位;虚拟力场;可测性;飞机装配
中图分类号:V262.1文献标识码:ADOI:10.19452/j.issn1007-5453.2022.04.012
基金项目:国家自然科学基金(51865037);航空科学基金(2019ZE056004)
随着航空航天产品的制造与装配精度要求越来越高,激光跟踪仪等高精度数字化测量设备已被初步引入到航空航天产品研制过程中,并取得了较好的工程应用效果[1-2]。但由于采用的是光学测量原理,激光跟踪仪站位布设不合理易出现遮挡现象,导致测量任务无法顺利完成。因此,激光跟踪仪站位是否合理将直接影响到激光跟踪仪的测量效率[3-7]。激光跟踪仪站位是否合理可用激光跟踪仪的可测性进行判定。
激光跟踪仪可测性受激光跟踪仪与测量点之间的距离、垂直测量角和测量场障碍物等约束,其中,测量场障碍物用可视性分析方法进行量化描述。当前,可视性分析方法主要有[8-10]:(1)线面相交法,将多面体障碍物的各组成面进行分解,利用各组成面与测量光线是否相交来判定是否可视。(2)基于三维模型的体干涉判断法。将测量光线视为细长圆柱体,通过判断细长圆柱体与障碍物是否存在实体相交,进行可视性分析。这两种方法具有计算简单、流程清晰等特点,但两者均难以处理复杂的障碍物模型。姜瑞蒙等[11]提出了基于势能场的测量中仪器位置可行域求解方法。该方法将障碍物进行包络处理,再基于障碍物包络体的最大截面投影面积、障碍物距离和测量点处视角计算势能,以求解出测量中仪器位置可行域。但该方法存在计算阈值和可视性判断不准确的缺点。
虚拟力场法是机器人避障的有效算法,其基本思想是基于目标的引力和障碍物的斥力共同作用,使机器人避开障碍物运动。该方法避障准确率高,通用性强[12]。为此,将虚拟力场引入到激光跟踪仪可测性量化判定中,提出基于虚拟力场的可测性量化判定方法。
1站位布设可测性量化判定
图1为基于虚拟力场的激光跟踪仪可测性量化判定流程。首先,构建可测性约束表达式。基于距离约束、垂直测量角约束和障碍物可视性约束,构建激光跟踪仪可测性约束模型。其次,改进虚拟力场中的斥力公式,构建基于改进虚拟力场的障碍物可视性模型。然后,在定义距离约束矩阵、垂直测量角约束矩阵和可视性约束矩阵的基础上,定义可测性矩阵运算法则。最后,依据可测性矩阵的运算结果,实现激光跟踪仪的可测性量化判定。
2激光跟踪仪可测性量化判定模型构建
2.1激光跟踪仪可测性约束
激光跟踪仪可测性约束包括距离约束、垂直测量角约束和障碍物可视性约束。
2.1.1距离约束
2.1.3障碍物可视性约束
2.2基于虚拟力场的障碍物可视性模型构建
利用虚拟力场中的虚拟斥力表示障碍物对激光跟踪仪的排斥,判断障碍物是否对激光跟踪仪产生干涉,即测量点是否可视。障碍物可视性判断流程如图4所示,虚拟力场中激光跟踪仪站位与测量点及障碍物几何关系通过透视投影法构建,根据激光跟踪仪与测量点及障碍物几何关系计算虚拟斥力并进行可视性判断。步骤如下。
2.2.1投影平面构建
利用式(4)和式(5),计算激光跟踪仪各站位虚拟斥力和阈值,见表2。
基于虚拟力场的可测性量化判定方法可以准确判定激光跟踪仪的可测性,能够减少激光跟踪仪的转站次数,提高航空航天产品的装配效率和测量精度,缩短装配周期。当测量目标处于运动状态时,激光跟踪仪所受到的虚拟斥力会不断变化,本文所提方法的动态性存在一定的局限性。
5结论
通过研究,可以得出以下结论:
(1)针对激光跟踪仪站位布设中可测性判断不准确问题,将虚拟力场引入到激光跟踪仪可测性量化判定中,改进虚拟力场中的斥力公式,提出基于虚拟力场的可测性量化判定方法。
(2)以飞机翼身对接装配试验为例,进行激光跟踪仪的可测性量化判定,并与势能场法进行比较。试验结果表明,在激光跟踪仪可测性量化判定中,基于虚拟力场的可测性量化判定方法具有较高的可行性和准确率。
参考文献
[1]闫宝强,杨文举,张程.飞机外翼总装型架数字化设计技术研究与应用[J].航空科学技术, 2018, 29(10): 11-15. Yan Baoqiang, Yang Wenju, Zhang Cheng. Research and application of digital design technology for aircraft outer wing final assembly frame[J]. Aeronautical Science & Technology, 2018, 29(10): 11-15. (in Chinese)
[2]冯志刚,李泷杲,熊天辰,等.工业机器人视觉定位系统的实现[J].航空科学技术, 2018, 29(6): 48-53. FengZhigang,LiShuanggao,Xiong Tianchen,etal. Implementation of visual location system for industrial robot[J]. Aeronautical Science & Technology, 2018, 29(6): 48-53.(in Chinese)
[3]Zheng L Y,Yang F L,Ni A J. A general framework of measurement system configuration for large and complex components[C]//Proceedingsofthe6thCIRP-Sponsored International Conference on Digital Enterprise Technology. Springer,Berlin,Heidelberg,2010:983-997.
[4]王金栋,孙荣康,曾晓涛,等.激光跟踪多站分时测量基站布局研究[J].中国激光, 2018, 45(4): 231-238. Wang Jindong, Sun Rongkang, Zeng Xiaotao, et al.Research on base station layout of multi-station and time-sharing measurement by laser tracking[J]. Chinese Journal of Lasers, 2018, 45(4): 231-238. (in Chinese)
[5]Skibicki J D,Judek S. Influence of vision measurement system spatial configuration on measurement uncertainty,based on the example of electric traction application[J]. Measurement,2018(116):281-298.
[6]朱绪胜,刘蕾,陈雪梅.基于蒙特卡洛仿真的车間现场激光跟踪仪测量站位优化[J].计算机集成制造系统, 2020, 26(11): 3001-3010. Zhu Xusheng, Liu Lei, Chen Xuemei. Measurement station optimization for laser tracker in-situ based on monte-carlo simulation[J]. Computer Integrated Manufacturing Systems 2020, 26(11): 3001-3010. (in Chinese)
[7]张海荣,程擎.基于可视性算法的布站选址优化及仿真实现[J].工业控制计算机, 2021, 34(3): 53-55. Zhang Hairong, Cheng Qing. Simulation on optimized site based on visual field analysis algorithm[J]. Industrial Control Computer, 2021, 34(3): 53-55. (in Chinese)
[8]Suthunyatanakit K,Bohez E L J,Annanon K. A new global accessibility algorithm for a polyhedral model with convex polygonal facets[J]. Computer-Aided Design,2009,41(12):1020-1033.
[9]Liu M,Liu Y S,Ramani K. Computing global visibility maps for regions on the boundaries of polyhedra using Minkowski sums[J]. Computer-Aided Design,2009,41(9):668-680.
[10]朱緒胜,蔡志为,郑联语,等.基于屏幕空间变换的大型装配型架测量可视性分析[J].计算机集成制造系统, 2013, 19(6): 1321-1328. Zhu Xusheng, Cai Zhiwei, Zheng Lianyu, et al. Visibility analysis of large assembly fixture measurement based on screenspacetransformation[J].ComputerIntegrated Manufacturing Systems, 2013, 19(6): 1321-1328. (in Chinese)
[11]姜瑞蒙,郑联语,朱绪胜.基于势能场的大尺寸测量中仪器位置的可行域求解方法[J].航空精密制造技术, 2014, 50(1): 12-15. Jiang Ruimeng, Zheng Lianyu, Zhu Xusheng. Novel approach to solving feasible domain of large-scale measurement instruments based on potential rnergy field[J]. Aviation Precision Manufacturing Technology, 2014, 50(1): 12-15. (in Chinese)
[12]金英连,王斌锐,吴善强.机器人二维环境下仿人虚拟力场避障研究[J].计算机工程与应用, 2010, 46(34): 215-218, 231. Jin Yinglian, Wang Binrui, Wu Shanqiang. Avoiding obstacles using virtual force field with humanoid strategy for autonomous robotin2Denvironment[J].ComputerEngineeringand Applications, 2010, 46(34): 215-218, 231. (in Chinese)
[13]甘霖,李晓星.激光跟踪仪现场测量精度检测[J].北京航空航天大学学报, 2009, 35(5): 612-614. Gan Lin, Li Xiaoxing. Site measuring accuracy testing of laser tracker[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 612-614. (in Chinese)
Quantitative Judgment of Laser Tracker Measurability Based on Virtual Force Field
Bai Zengzhu1,Zhu Yongguo1,Hu Feng2,Hu Yuanfan1
1. Nanchang Hangkong University,Nanchang 330063,China
2. State Owned Wuhu Machinery Factory,Wuhu 241007,China
Abstract: In order to plan the laser tracker measuring station accurately and improve aircraft assembly efficiency, a method is proposed to judge the laser tracker measurability quantitatively based on the virtual force field. Firstly, the constraint expressions of the laser tracker measurability are constructed according to the constraints of distance, vertical measurement angle and obstacle visibility of measurement. Secondly, an obstacle visibility judgment model is constructed by introducing a virtual force field, improving the virtual repulsion formula and defining a threshold formula. Finally, the measurability matrix is constructed to realize the quantitative judgment of the laser tracker measurability. The experiment results show that the proposed method has better feasibility and higher accuracy than potential energy field method.
Key Words: laser tracker; station; virtual force field; measurability; aircraft assembly