TiO2纳米管改性

2022-05-28 02:30于广铎
辽宁化工 2022年5期
关键词:空穴催化活性异质

于广铎

(东北石油大学 化工学院,黑龙江 大庆 163319)

随着现代工业的发展,染料废水对环境的影响变得越来越严重。工业上使用物理、生物和化学等方法来处理染料废水,但是这些方法通常消耗大量的能源、降解染料不完全,甚至造成二次污染[1-3]。因此,这些常规方法不能完全去除染料废水中的有机污染物。目前,在众多废水处理技术中高级氧化技术(AOPs)是一种比较有效的方法,其中非均相光催化通过光催化氧化还原反应分解有机污染物而不会产生二次污染[4-5]。光电催化技术是一种增强型光催化氧化技术,与光催化技术相比其催化效率更高[6-8],是近年来提出的有效促进光电子和空穴的分离以及可利用的光电协同效应的技术。因此,非均相光电催化技术在去除染料废水中有机污染物是一种较理想的处理方法。用于光电催化降解电极材料也是非常重要的。与ZnO,Fe2O3,Cu2O,WO3等常用的电极材料相比,TiO2具有无毒、耐酸碱、纯度高、化学稳定性好等优点,在光电催化领域有着非常大的潜力。

自从1972年Fujishima 和Honda[9]首次报道在TiO2表面上光催化分解水以来,它已被广泛应用于光催化、染料敏化电池、生物医学等领域。TiO2被外部能量激发产生电子-空穴对(价带空穴是良好的氧化剂,而导带电子是良好的还原剂[10]),但单独在光催化作用下电子-空穴对会发生严重的复合,而向TiO2光阳极施加一定的偏置电压可使光生电子迁移到外部电路,由此抑制光生电子和空穴的复合。TiO2光电催化技术可将大多数有机污染物降解成二氧化碳和水,而不产生二次污染,可有效处理染料废水中的有机污染物。然而,纯TiO2在光电催化技术的应用中仍存在一些问题。纯TiO2的光催化效率较低,原因在于其电子-空穴对的快速重组,以及其带隙宽度(3.2 eV)仅能吸收太阳光中的少量紫外光[11]。对TiO2纳米管进行改性可以提高其光催化的活性,因此对TiO2纳米管进行改性以克服纯TiO2纳米管的使用问题是光电催化领域广泛研究的课题之一。

1 二氧化钛的改性

在过去的几十年里,研究者们为了降低光生电荷载流子的复合和提高其光敏性提出了多种有效的TiO2纳米管改性方法,例如掺杂可以减小TiO2的禁带宽度,构建异质结一方面可以缩小禁带宽度,一方面可以抑制电子-空穴对的复合,染料敏化利用部分有机染料对可见光的吸收性能将TiO2的光吸收区域拓展到可见光。

1.1 非金属掺杂

非金属元素掺杂一直是改性TiO2纳米管研究的重点领域,科研人员发现在TiO2中掺杂N、C、B等非金属元素可以成功地将纳米TiO2的光学响应范围扩展到可见光区域并且缩短其禁带宽度。其中,B 离子是特殊的,它既可以以B3+的形式代替晶格中的Ti4+,也可以以B2的形式取代晶格中的O2[12]。自从Asahi 等[13]第一次成功地将N 掺杂到TiO2中以来,通过N 掺杂增强TiO2纳米管的光催化活性机理的研究就变得越来越完善[14]。到目前为止,非金属元素掺杂最成功的研究也是N 掺杂,因为N 的原子大小与氧相当、电离能小、稳定性好,更容易掺杂到TiO2晶格中,缩小光学间隙并提高可见光的催化活性[15-16]。掺杂的N 还可以作为光生载流子的复合中心,降低紫外光下的光催化活性[17]。一般认为,C掺杂可以提高有机分子的吸附和TiO2的导电性[18]。因此,C 掺杂的TiO2纳米管在紫外线下显示出比TiO2纳米管更好的活性。可以通过在空气和天然气中连续煅烧无定形的TiO2纳米管来制备C 掺杂的TiO2纳米管,这减小了TiO2纳米管的带隙,并且在可见光下具有更高的活性[19]。然而,当C 掺杂量极高时,C 将成为电子和空穴的复合中心,催化性能将降低[20]。许多研究表明,C 掺杂是C 对O2-的替代,从而形成TiO2-xCx 型C 掺杂TiO2纳米管[21]。根据Valentin 等[22]的理论,在缺氧条件下C 优先取代O,在富氧条件下有利于C 原子取代Ti 原子。C 掺杂TiO2纳米管的直径可以通过改变载气流速来调节。掺杂后的光学带隙(2.2 eV)远小于锐钛矿型TiO2(3.20 eV)[23]。

1.2 金属掺杂

TiO2纳米管的金属掺杂可分为三类:过渡金属离子、稀土金属离子和贵金属离子。金属离子被掺杂到TiO2晶格中以替代Ti4+离子,从而影响能带结构并降低了TiO2的光吸收边缘能。Karvinen 等[24]研究了各种过渡金属离子(V3+、Cr3+、Fe3+等)对锐钛矿和金红石的掺杂效应,发现这些离子的掺杂可以明显减小锐钛矿的带隙,但对金红石没有影响。稀土元素具有独特的4f 轨道和5d 轨道,可以降低电子-空穴对的复合率,并可以有效地防止掺杂后的晶粒生长。与其他稀土离子相比,Gd 离子掺杂后的能带隙和晶粒尺寸最小,比表面积最大,光催化活性最高[25]。Mazierski 等[26]研究了镧系元素掺杂的TiO2纳米管,并得出了不同的结论。在可见光下,掺杂Ho 的TiO2纳米管具有最高的光催化活性。他们认为可见光照射下的光催化活性不是由氧中心引起的,而是由其他形式的活性氧(O2、HO2、H2O2)引起的。

贵金属沉积也是提高TiO2纳米管的光催化性能的最有效方法之一。Ag、Au 等贵金属可以通过光感应载流子,从而实现电子-空穴对和电子对的有效分离[27-28]。人们普遍认为,均匀掺杂可以提高元素掺杂的TiO2纳米管的性能[29],而不均匀掺杂会对性能产生不利影响,因为它可能导致掺杂元素的部分聚集,成为载流子的复合中心。然而,Zhang 等[30]发现不均匀掺杂Au 的TiO2纳米管中形成“铂岛”和界面分离效应,这有利于隔离光生电子和空穴,因此非均匀掺杂Au 的TiO2的光催化活性比均匀掺Au 的TiO2纳米管有所提高。尽管金属离子可以有效地减少TiO2的带隙,但是金属离子很容易成为电子-空穴对的复合中心,从而降低了光催化活性[31]。

1.3 多元素共掺杂

尽管单一元素的掺杂使TiO2纳米管的光催化性能优于未掺杂的TiO2纳米管,但是在可见光下的光催化活性仍有很大的提升空间。由于具有协同作用,多元素共掺杂TiO2纳米管的性能明显高于单元素掺杂TiO2纳米管[32-33]。多元素共掺杂包括金属-金属共掺杂、金属-非金属共掺杂和非金属-非金属共掺杂。

La、Ga 共掺杂的TiO2纳米管可以加速电子捕获和染料吸附。这是因为La 和Ga 替代Ti4+,导致大量的氧空位和表面缺陷,从而加速了光生电子-空穴对的分离并促进了光催化降解[34]。共掺杂Ti 和Ni改变了能带结构,将 TiO2纳米管带隙缩小到2.84 eV,并增强了光吸收。Ni 的掺杂使TiO2的价带变宽,这可以促进电荷载流子的分离和传输过程。其性能为未掺杂的TiO2纳米管的10 倍[35]。当金属元素Zr 与非金属元素N 共掺杂,并且Zr 与N 的元素比为2∶1 时,金属和非金属的结合作用可以有效地抑制TiO2纳米管中电子-空穴对的复合,从而使TiO2纳米管在可见光下具有更高的光催化活性[36]。Li等[37]将非金属元素B和金属元素Co首次成功地掺杂到TiO2纳米管中,由于表面羟基在不同的电流密度、pH 值、初始降解浓度和不同类型污染物的降解方面具有明显优势。因此,Co 的掺杂虽然对光催化活性有害,但可以显著增强TiO2纳米管的稳定性。

各种非金属元素,例如N 和F 共掺杂,会导致产生虫洞状的中孔,这有利于捕获更多的光子以刺激光生载流子的形成,以及更大的表面积和增强的光吸收,因此具有增强光催化活性的能力[38]。此外,通过与C、N 和F 等三种或更多种非金属元素共掺杂,TiO2纳米管的带隙从3.2 eV 缩短至3.04 eV。在所有掺杂的非金属元素中,C、N 掺杂提高了TiO2的可见光吸收,而F 掺杂导致氧空位的形成。此外,C 掺杂还可以提高TiO2纳米管的比表面积,从而在日光下具有更好的光催化活性[39]。

共掺杂的TiO2的一般光催化机理如图1所示。金属掺杂会在TiO2的导带附近产生缺陷能级,而非金属掺杂在TiO2价带上产生额外的缺陷能级。缺陷能级将缩短TiO2的带隙,从而有助于可见光的光活性。在共掺杂和多掺杂的TiO2中,电子可以从这些缺陷能级或TiO2的价带跃迁到金属缺陷杂质能级或到TiO2的导带的最高能级。氧化态可变的金属离子可用作电子俘获中心,俘获中心导致电荷载流子寿命的增加,从而增加了TiO2的光催化活性[40]。如何选择合适的共掺杂元素以发挥协同作用并提高TiO2纳米管的性能是共掺杂改性的理论前提,因为某些元素的共掺杂会降低TiO2纳米管的性能[41]。

图1 TiO2共掺杂的一般光催化机理[42]

1.4 构造异质结

TiO2激发产生的光生载流子易于复合,因此通过填充或表面改性以减少载流子复合从而提高催化活性是非常重要的。电荷e-和h+的重组减少,产生更多的羟基自由基和过氧化物(O2-),并促进有机物的光催化降解[43]。

据报道,许多TiO2纳米管被不同的外来物质修饰或填充[44-46]。近年来,通过构建异质结增强了TiO2纳米管的光催化活性(在同一衬底上依次沉积了两层以上的不同半导体薄膜)。Fe2O3可以与TiO2形成I 型异质结,增强了e-/h+对的分离,提高了光催化活性[47]。此外,与共掺杂类似,当多种具有协同作用的材料使TiO2纳米管敏化时,TiO2纳米管的性能要高于单一材料敏化的TiO2纳米管。然而,当没有协同效应的材料一起敏化时,性能降低[48]。Fe2O3和石墨氮碳化物(g-C3N4)被负载在N 掺杂的TiO2纳米管的表面上,TiO2纳米管的激发能量由于N 和Fe2O3的负载而降低,从而显示出比TiO2纳米管、N掺杂TiO2纳米管和g-C3N4负载的N 掺杂TiO2纳米管更低的禁带宽度值(2.15 eV)。另外,g-C3N4可以促进电荷迁移,因此具有更高的羟基生成和降解效率[见图2(a)]。这种协同作用也适用于具有其他结构的TiO2[见图2(b)]。

图2 不同TiO2纳米管[49]和TiO2样品[50]的紫外可见光谱

WO3的能带位置与TiO2相匹配,可以形成II 型异质结(如图3)。并且电子-空穴对的分离在可见光的光照下得到增强[52]。除了单独的WO3/TiO2异质结,BiVO4还被选择引入WO3/TiO2纳米管中,并且还引入了氧空位。随着BiVO4的引入,以羟基和空穴为主的固有降解路径转变为以氧空位和空穴为主的降解路径。利用稳定的氧空位构建非均相材料中电荷载体的分离和传输,从而实现复合膜在降解挥发性有机污染物中的高催化性能和稳定性[53]。

图3 (a)WO3/TiO2和(b)Fe2O3/TiO2的降解机理[51]

Ag2O 是能带隙为1.2 eV 的可见光活性光催化剂。与TiO2形成异质结(III 型异质结)[54]。Ag2O的导带中的光生电子转移到TiO2的导带中,并与吸附的O2反应形成O2-。此外,Ag2O 的价带中的光生h+与OH-反应形成羟基并参与降解[55]。

Z 型结构是上述三种半导体之间的另一种连接方式。Z 型结构可以减小半导体的带隙,并使导带电位更负,而价带电位更正。这种结构是改善光催化剂的一种有前途的策略[56]。与传统的II 型异质结构相比,Z 型结构不仅可以实现光生电子和空穴的有效分离,而且可以增强氧化还原能力[57]。通过构建Z 型结构TiO2纳米管-石墨烯(GR)-CdS 量子点的组成,TiO2纳米管的光吸收范围由于TiO2纳米管、GR 和CdS 量子点的耦合而扩展到更宽的太阳光区域[58]。MoSe2和TiO2纳米管形成的直接Z 型结构通过光催化降解4-硝基苯酚(4-NP)的原理如图4所示。MoSe2的导带中存储的电子(-0.93 V)主要被4-NP 离子捕获并还原形成4-氨基苯酚。此外,被吸收的水分子容易被积累在高电势TiO2价带中的空穴(2.91 V)氧化为自由基OH。然后,4-NP 的苯环容易受到自由基OH 的攻击并降解为小的有机分子。此外,高度有序的阳极TiO2纳米管有利于转移自由基OH 与吸附的有机分子的反应,从而有效去除4-NP[59]。

图4 在阳光下MoSe2@TiO2纳米管直接Z 型复合材料光催化降解4-NP 的机理[59]

当然,还有其他类型的异质结。通过构造GdS量子点/TiO2纳米管的0D/1D 异质结构,CdS 量子点和TiO2纳米管的组合显著加速了电子在异质结构中的俘获过程。此外,电子在带有空穴的浅阱和深阱中的复合寿命可以分别延长到73.2ps 和622.6ps[60]。

1.5 染料敏化

染料敏化是指光敏剂通过化学或物理吸附的方式结合在TiO2表面,使可见光的吸收波长向长波偏移,从而扩大了TiO2的激发波长响应范围,大大提高了太阳光的利用率[61-63]。吸收光子的分子(染料)被称为光敏剂,被改变的材料(TiO2)是受体或底物[64]。如图5所示,光敏化的机理是一旦染料通过吸收太阳光谱可见范围内的光子达到激发态,电子从染料的最高占据分子轨道(HOMO)转移到其最低未占据分子轨道(LUMO),随后转移到TiO2的导带(CB)[65-67]。此外,溶液中的染料在可见光下可被激发至三重态,并将过剩能量转移至O2。因此,LUMO 中的电子与溶解氧反应生成超氧阴离子自由基[68]。用于光敏化的染料必须满足以下特性:对可见光甚至部分近红外(NIR)区域的吸收强、光稳定(除非要求自敏化降解)、存在一些锚定基团(-SO3H、-COOH、-H2PO3等)和比TiO2的导带(CB)边缘更高的激发态能量[69-70]。

图5 染料敏化过程的机理[71]

光敏化的改性方法可以大大提高TiO2的光催化性能。但是,仍然有一些问题需要解决。例如,有机染料分子将由于光催化作用而逐渐降解。因此,有必要不断更换催化剂。此外,大多数光敏剂在近红外区吸收较弱,与污染物存在吸附竞争,限制了光敏剂的发展。因此,需要进一步研究来解决这些问题。

2 结 论

TiO2纳米管改性已成为提高环境处理效率的热门话题。本文全面讨论了TiO2纳米管的几种掺杂技术,介绍了光电催化的原理。毫无疑问,光电催化降解染料废水中的污染物是一种很有前途的废水处理技术,具有大规模应用的潜力。在许多情况下,光电催化过程的特征在于比光催化和电催化过程更高的效率。尽管如此,选择合适的废水处理方法不仅需要考虑污染物去除效率,还需要考虑废水的矿化度、污染物降解过程中可能形成的产物、水和催化剂的回收、与工艺成本相关的能耗等。

尽管在TiO2方面取得了重大进展,但仍然存在着巨大的问题和挑战。发展具有可见光响应性光催化剂的污染物处理非常迫切和必要。通过对TiO2纳米管进行改性可以大大提高TiO2纳米管的光催化性能。但是,在应用中仍有许多问题有待解决。未来的研究应集中在以下几个方面,以提高改性TiO2纳米管的适用性和可行性:(1)进一步开展改性TiO2纳米管光电催化降解水中有机污染物的中试研究。了解纳米和原子级固有的电荷转移动力学和光催化机理在设计增强TiO2纳米管的光催化性能的方法时非常有用。因此,研究人员应该了解处理实际污染物的机制。(2)必须提高改性TiO2纳米管的效率和光稳定性。目前,改性TiO2纳米管的性能受到这些材料的物理化学性质的限制。(3)必须找到或合成用于改性TiO2纳米管的材料,这些材料对环境的危害较小,并且可以以大面积使用。设计适当的光催化剂固定策略,提供经济高效的固液分离,可以节省成本并避免二次污染。(4)好的反应堆可以提高光的利用率并降低电力成本。因此,在实验之前必须对反应器进行良好的设计。(5)虽然改性的TiO2纳米管在实验室中对污染物具有良好的降解效果,但在实际应用中必须考虑催化剂的耐久性和可回收性。

猜你喜欢
空穴催化活性异质
二维As-SnS2垂直堆叠异质结的电子结构及光学性质
基于异质分组的信息技术差异化教学
喷油嘴内部空穴流动试验研究
团簇Co3FeP催化活性位点的研究
异质越野:多伦路——“艺术介入城市空间”系列项目
基于铁镍基材引出端可焊性空穴问题研究
Fe3O4@SiO2@TiO2@Ag粒子的表面增强拉曼光谱监测有机染料分子的光催化降解过程
大直径直拉单晶硅片退火前后工艺的研究
基于CuO/ZnO异质结纳米花的薄膜型丙酮传感器研究
基于对铂纳米粒子过氧化物模拟酶活性的抑制检测碘离子