基于分形维数的预腐蚀铝合金疲劳寿命预测

2022-02-09 09:55王勇刚郭一冰董逸君职山杰张景扩卢亚平李东亚
机械工程材料 2022年12期
关键词:维数分形形貌

王勇刚,郭一冰,董逸君,周 松,职山杰,张景扩,卢亚平,李东亚,王 爽

(1.苏州大学应用技术学院,苏州 215325;2.辽宁省生态环境监测中心,沈阳 110161;3.沈阳航空航天大学机电工程学院,沈阳 110136)

0 引 言

随着我国航空航天事业的发展,2xxx系列(Al-Cu-Mg系)铝合金的需求量逐年增加,成为飞机等的主要结构材料之一。该系列铝合金具有密度低、强度高、适用范围广等优点,但对腐蚀介质也较为敏感,在腐蚀环境下容易产生化学及电化学腐蚀,极易形成腐蚀坑,使得结构件表面形成损伤,加速结构件中疲劳裂纹的萌生。多位学者在研究中均发现疲劳裂纹多起源于腐蚀坑[1-3]。大量针对波音737和F-111A等飞机腐蚀失效事故进行的研究表明,腐蚀会大幅降低机体的使用寿命[4-5];美国国家运输安全委员会和瑞典民航局等机构关于飞机飞行事故的分析报告显示,有10%~16%的事故与腐蚀有关。可见腐蚀严重影响着飞机结构件的安全与服役寿命。

铝合金的腐蚀早期基本以点蚀为主,诸多学者围绕腐蚀坑形貌开展了广泛研究[6-9]。研究人员通过超声波、光散射、显微照相等多种无损检测技术获取腐蚀坑形貌参数,并利用数字图像处理技术将腐蚀坑从背景中分离出来,选取不同的描述方法对腐蚀坑形貌进行表征,得到不同的腐蚀坑损伤参量,从而实现对腐蚀坑形貌的定量分析。有些学者利用腐蚀坑深度、长宽比、投影面积等参数来描述腐蚀坑的几何尺寸[10-12];有些学者在腐蚀形貌分析中引入了用于描述自然界几何形貌不规则程度的分形维数,并发现腐蚀坑表面和截面轮廓线的分形维数与疲劳寿命存在线性关系[13-16]。腐蚀坑的尺寸和形状反映了其在某个方向的大小和不规则程度,通过引入不同的参数将腐蚀坑等效成初始裂纹,可用于计算剩余疲劳寿命;而腐蚀坑表面和截面轮廓线的分形维数反映了整体平均的腐蚀损伤情况,可用作疲劳寿命的影响参数[17]。以上常用方法都仅对腐蚀坑的部分形状参数进行描述,例如腐蚀坑长宽比和腐蚀坑截面轮廓线是将腐蚀坑截面形貌作为描述对象,而腐蚀坑投影面积和腐蚀坑表面分形是将腐蚀坑形状轮廓作为描述对象。这些腐蚀坑描述方法都具有一定的局限性,对于腐蚀坑的分布和三维形貌均没有进行详细描述。

盒维数法是一种通过采集某区域形貌信息得到平面图像,以像素点为单位进行计算的分形维数方法。在盒维数基础上对不同像素点的灰度值进行差分计算,得到包含轮廓形状及深度信息的分形维数的方法称为差分盒维数法。差分盒维数法在原有盒维数对图像轮廓描述的二维信息的基础上增加了对图像中深度描述的信息,可以描述整个区域的三维形貌。作者以试验为基础,利用差分盒维数法对预腐蚀2xxx系铝合金腐蚀表面三维形貌进行描述,建立以该方法计算出的分形维数为参量的疲劳寿命预测模型,为预腐蚀铝合金的疲劳寿命预测提供了新思路。

1 试样制备与试验方法

试验材料为厚度2.5 mm的T3态2xxx系高强铝合金,化学成分见表1,抗拉强度为485 MPa,规定非比例伸长应力为354 MPa,断后伸长率为18.2%。疲劳试样沿轧制方向截取,如图1所示,对试样表面进行磨削处理,将试样正反面均磨掉0.25 mm,去除表面包铝层。

表1 2xxx系铝合金的化学成分

根据美国材料试验协会(ASTM)标准,结合国内现役飞机使用过程中出现的主要腐蚀问题,在室温下用质量分数为3.5%的NaCl溶液对试样进行全浸泡加速预腐蚀试验,得到腐蚀0,24,240,480 h的4种预腐蚀疲劳试样。通过VHX-5000型超景深3D测量显微镜观察各预腐蚀试样表面腐蚀形貌。

图1 疲劳试样形状与尺寸Fig.1 Shape and dimension of fatigue specimen

根据HB 5287-1996,在室温下使用QBG-50型电磁谐振式高频疲劳试验机对预腐蚀不同时间的疲劳试样进行单轴拉伸疲劳试验,采用等幅加载方式,最大应力在160~200 MPa,应力比为0.06,加载频率为90 Hz,得到至少4组在不同应力幅之下的疲劳寿命数据。

2 试验结果与讨论

由图2可以看出,不同时间预腐蚀试样的表面腐蚀形貌存在较大差异,随着预腐蚀时间的延长,试样表面腐蚀坑的轮廓大小与深度都显著增大,腐蚀坑内残留物由粘连和相互挤压变成松动和完全脱落。

图2 不同时间预腐蚀前后试样的表面形貌Fig.2 Surface morphology of specimens before (a) and after (b-d) pre-corrosion for different times

利用MATLAB软件对预腐蚀试样表面形貌图像进行灰度变换及拉普拉斯滤波处理,如图3(a)所示;将处理后图像切割放大,切割后局部图像的长、宽分别是原始图像长、宽的1/2,如图3(b)所示。对两图解码后各像素点的灰度值进行统计分析,结果见图4。可见,不同灰度像素点的分布基本相同,在灰度145左右存在集中分布,且局部图像与原始图像在同一灰度的像素点数量比与实际面积(像素点总数)的比值相近(比值近似为1/4),证明了在一定范围内,所观测到的试样腐蚀表面的起伏变化情况是相似的,说明这一复杂、貌似无序的腐蚀表面实际上具有自相似性,具有分形特征。因此,2xxx系铝合金的预腐蚀表面形貌可用分形维数进行表征。

图3 预腐蚀试样表面形貌原始图像以及切割放大Fig.3 Original image (a) and enlarged partial image (b) by cuttingsurface morphology of pre-corroded specimens

图4 预腐蚀试样表面原始和局部图像灰度统计结果Fig.4 Gray level statistics of original (a) and partial (b) images of pre-corroded specimens

采用差分盒维数法表征2xxx系铝合金的预腐蚀表面形貌。图5为256阶灰度图像及其对应矩阵,256阶灰度图像内像素点呈黑色到白色不同的灰度,在矩阵中由0到256的数字表示。

图5 256阶灰度图像及其对应矩阵Fig.5 256-order gray image (a) and its correspondence matrix (b)

对预腐蚀时间分别为0,24,240,480 h的试样腐蚀形貌图像作数字处理后,采用差分盒维数法计算相应的分形维数。对同组预腐蚀试样腐蚀最严重区域形貌图像进行分形维数的测试,并取平均值。由表2可以看出,随着预腐蚀时间延长(损伤程度加大),由腐蚀形貌图像计算得到的分形维数平均值增大,二者趋势相同。

表2 预腐蚀不同时间试样的分形维数

对平均分形维数和预腐蚀时间进行拟合,拟合曲线如图6所示,可知平均分形维数与预腐蚀时间之间的关系可以用幂函数来表达,如下:

D=mtn

(1)

式中:D为不同预腐蚀时间试样的平均分形维数;t为预腐蚀时间;m,n为拟合参数。

试验用2xxx系铝合金疲劳试样的表面粗糙度为3.2 μm,可以认为其表面存在一定的加工损伤,即预腐蚀0 h时试样表面存在预损伤。加工预损伤作为表面损伤往往是疲劳裂纹萌生的重要因素之一,与预腐蚀损伤有类似作用,所以拟合从0 h开始。因为幂函数在拟合时对底数t小于1 h的计算结果会出现严重偏差,所以在D-t函数关系中预腐蚀损伤的起始时间设定为底数的最小值,1 h。

图6 试样的平均分形维数与预腐蚀时间的关系曲线Fig.6 Relation of average fractal dimension vs pre-corrosion time of specimen

图7给出了预腐蚀不同时间试样疲劳寿命和平均分形维数的关系,可以看出,试样的疲劳寿命与平均分形维数呈线性关系,线性拟合关系式为

Nt=N0-k(Dt-D0)

(2)

式中:Nt为预腐蚀时间为t的试样的疲劳寿命;N0为未腐蚀试样的疲劳寿命;D0为未腐蚀试样表面的分形维数;Dt为预腐蚀时间为t的试样表面的分形维数;k为疲劳寿命与平均分形维数线性关系的斜率。

此外,由图7还可以看出,疲劳寿命与平均分形维数线性关系的斜率随着疲劳加载最大应力的增大而增大。对lgk与最大应力σmax进行拟合,如图8所示,可见lgk与σmax呈线性关系。通过相同时间预腐蚀下不同最大应力的疲劳试验结果计算得到lgk与σmax的函数关系式为

lgk=-0.020 8σmax+10.294

(3)

由式(3)计算出不同应力下的斜率k,代入式(2)就可用于寿命的预测。

图7 不同最大应力下预腐蚀试样的疲劳寿命-平均分形维数关系曲线Fig.7 Relation curves of fatigue life vs average fractal dimension ofpre-corroded specimens under different maximum stresses

图8 lg k-σmax关系曲线Fig.8 Relation curves of lg k-σmax

3 疲劳寿命预测模型的验证与讨论

按照前文所述试样制备方法制作一组验证试样,预腐蚀时间为600 h。图9为不同试样腐蚀最严重区域的图像,该图像已经过灰度处理及拉普拉斯变换。利用差分盒维数法对图9中的腐蚀形貌图像进行分形维数计算,结果如表3所示。

表3 预腐蚀600 h试样表面形貌的分形维数

图9 预腐蚀600 h试样表面腐蚀形貌Fig.9 Surface morphology of specimens after pre-corrosion for 600 h: (a) specimen 1; (b) specimen 2; (c) specimen 3 and (d) specimen 4

对预腐蚀600 h试样在不同应力下进行疲劳试验,绘制疲劳寿命(S-N)曲线,如图10所示,可知腐蚀600 h试样的疲劳极限为89.7 MPa,由疲劳试验测得未腐蚀2xxx系铝合金的疲劳极限为143.7 MPa,预腐蚀后其疲劳极限必然低于该数值。由图8中σmax与lgk的线性关系,求得不同最大应力下的k值。将预腐蚀0 h与预腐蚀600 h试样的分形维数、未腐蚀试样的疲劳寿命N0代入式(2),计算得到预腐蚀600 h试样的疲劳寿命预测值为85.9 MPa。经对比可见,预测得到的疲劳极限与试验数据拟合所得疲劳极限差距不大,相对误差在5%以内。

图10 预腐蚀600 h试样的S-N曲线Fig.10 S-N curve of specimens after pre-corrosion for 600 h

由表4可见,试样低周疲劳区域预测寿命较高周疲劳区域更为保守,最大应力为190 MPa时的疲劳寿命预测值与试验值的相对误差在25%左右,而最大应力145 MPa下的预测值与试验值之间的相对误差减小到15%以内,其准确程度更高。

表4 预腐蚀600 h试样的疲劳寿命试验值和预测值

4 结 论

(1) 可用差分盒维数描述预腐蚀2xxx系铝合金试样表面局部三维腐蚀形貌,得到的分形维数与预腐蚀时间呈幂函数关系。

(2) 预腐蚀2xxx系铝合金试样的分形维数与疲劳寿命呈线性关系,其斜率对数与最大应力呈线性关系,通过不同预腐蚀时间试样的分形维数与未腐蚀试样的疲劳寿命可以预测不同腐蚀时间试样的疲劳寿命。

(3) 通过寿命预测公式计算出的疲劳极限与试验所得疲劳极限较为接近,相对误差在5%以内。疲劳寿命预测值在低周疲劳区较为保守,与试验值的相对误差在25%以内,在高周疲劳区与试验值的相对误差减小到15%以内。

猜你喜欢
维数分形形貌
β-变换中一致丢番图逼近问题的维数理论
球形三氧化钼还原产物形貌
纳米氧化铁的制备及形貌分析
感受分形
一类齐次Moran集的上盒维数
分形之美
分形——2018芳草地艺术节
分形空间上广义凸函数的新Simpson型不等式及应用
集成成像同名像点三维形貌获取方法
SAPO-56分子筛的形貌和粒径控制