张亚东,梁文化,赫磊,赵春芳,朱镇,陈涛,赵庆勇,赵凌,姚姝,周丽慧,路凯,王才林
水稻RIL群体高密度遗传图谱构建及粒型QTL定位
张亚东,梁文化,赫磊,赵春芳,朱镇,陈涛,赵庆勇,赵凌,姚姝,周丽慧,路凯,王才林
江苏省农业科学院粮食作物研究所/江苏省优质水稻工程技术研究中心/国家水稻改良中心南京分中心,南京 210014
【目的】水稻粒型是与产量直接相关的重要农艺性状,影响稻米的外观品质和商品价值。挖掘新的水稻粒型相关基因,对揭示水稻粒型调控的遗传机理研究有重要意义,同时可为水稻粒型分子育种提供新的基因资源。【方法】以极端粒型差异的粳稻TD70和籼稻Kasalath,以及杂交构建的186个家系的重组自交系群体为研究材料,利用高通量测序技术对亲本和RIL株系进行深度测序。统计186个RIL基因型数据,利用滑动窗法(SNP/InDel数目为15),将窗口内SNP/InDel信息转换成窗口的基因型,预测染色体上的重组断点构建RIL群体的BinMap遗传图谱,结合2年的粒长、粒宽、粒厚和千粒重的表型数据,运用QTL IciMapping软件,采用复合区间作图法对RIL群体的4个性状进行QTL定位。【结果】构建了一张包含12 328个Bin标记的高密度遗传图谱,该图谱各染色体Bin标记数为763—1 367个,标记间平均物理距离为30.26 kb。粒长、粒宽、粒厚和千粒重4个性状在RIL群体中呈近正态连续分布,且2年间的变化趋势相似,符合QTL作图要求。2018年对粒长、粒宽、粒厚及千粒重进行QTL分析,共检测到40个粒型QTL,其中,粒长12个,粒宽9个,粒厚8个,千粒重11个,2019年对粒长、粒宽、粒厚及千粒重进行QTL分析,检测到56个籽粒相关的QTL,粒长15个,粒宽11个,粒厚13个,千粒重17个。分析定位到的96个粒型QTL位点,连续2年都能检测到的QTL位点有11个,其中7个为已克隆的粒型基因位点,4个为未知的新位点,分别分布于第1、3、4、5染色体上,分别为粒长和、粒厚、粒宽。【结论】构建了一张包含12 328个Bin标记的分子遗传连锁图谱,解析大粒粳稻资源的粒型基因,获得了、、、等4个新的粒型QTL,可用于后续粒型调控基因的精细定位及克隆研究。
水稻;Bin图谱;粒型;QTL定位
【研究意义】水稻粒型是与产量性状直接相关的重要农艺性状,影响稻米的外观品质和商品价值[1-3]。重要农艺性状(如产量、品质性状)QTL定位、克隆是高产优质水稻分子育种的基础和前提;而连锁图谱,尤其是高密度遗传连锁图谱,又是QTL定位、克隆的基础。因此,构建高密度遗传连锁图谱对QTL定位和分子育种具有很大的实际意义[4]。【前人研究进展】基于传统方法的分子标记(如RFLP、AFLP、SSR、CAPs、STS、ETS)构建的遗传图谱存在标记数量少、分布不均、覆盖密度低等缺陷,对后续QTL精细定位和克隆极为不利[5-6]。随着高通量测序技术发展出来的SNP、Indel等标记,由于遗传稳定性高、分布广泛、多样性高、数量大等特点,在水稻复杂数量性状研究中得到了高度重视和广泛应用。随着下一代测序(next-generation sequencing,NGS)技术的发展,快速高效地进行SNP大规模开发及基因型分析的成本越来越低、质量越来越高。取一定数量的连续SNP标记作为判断染色体重组事件的最小单位(recombination bin),判断子代每个Bin的来源,得到每个子代的全基因组物理图谱,从而构建出的遗传图谱称之为Bin图谱[7]。Bin图谱是基于SSR/RFLP标记的传统遗传图谱后的新一代遗传图谱,通过高通量测序进行,自动化程度高、构建时间短、精确度高,可以直接进行QTL定位后续的候选筛选和分子标记的直接开发。Bin图谱已成功应用于谷子[8]、水稻[9]、玉米[10]等的QTL定位中。近年来,已有多个控制粒型的基因被克隆,几乎分布于水稻所有染色体上。证实了、、、等通过MAPK信号途径[11-15];、、、、等通过泛素蛋白酶体降解途径[16-20];、、等通过G蛋白信号通路[21-24];、、等通过植物激素途径[25-27];、、、、、、等通过转录调控途径来调控水稻粒型[28-35]。【本研究切入点】目前,粒型基因克隆较多,但已知水稻粒型仍不足以解释其复杂的分子调控机制。【拟解决的关键问题】本研究利用重测序技术,对特大粒粳稻TD70和小粒籼稻Kasalath构建的包含186个株系RIL群体为作图群体,采用基因分型测序(genotyping-by-sequencing,GBS)技术构建Bin标记的高密度遗传图谱,对粒型QTL进行检测,以期鉴定到新的、可稳定遗传的粒型QTL,为水稻粒型基因的克隆、功能解析及分子育种提供依据。
用来源于天鹅谷///9520//(72-496/御糯)后代粒重超亲本的粳型超大粒品系TD70和籼稻小粒型品种Kasalath杂交,通过单粒传法,从F2代开始构建TD70/Kasalath的重组自交系群体。群体包含186个株系,基因型鉴定为F8世代,表型调查为F9—F10世代。上述材料于2018—2019年种植在江苏省农业科学院试验田,每行8株,行距为26.7 cm,株距为16.7 cm(单苗种植),田间管理与大田相同。
稻谷成熟后,亲本及每个RIL株系按单株收取5个植株的种子进行粒型考察。每个单株随机挑选10粒饱满种子使用游标卡尺(精度0.01 mm)测量粒长、粒宽和粒厚,千粒重则利用电子天平(精度0.001 g)测定单株1 000粒风干种子的重量。每个性状以5株的平均值为最终的表型值。
2018年在水稻分蘖盛期采取幼嫩的叶片,进行亲本和RIL群体单株DNA的提取。用1%琼脂糖凝胶电泳检测基因组DNA完整性,用Nanodrop2000微量核酸蛋白检测仪检测DNA的浓度与纯度。质量检测合格的DNA,采用NEB Next® UltraTMII DNA文库制备试剂盒进行测序文库的构建,委托安诺优达基因科技(北京)有限公司负责完成测序,采用的测序平台为NovaSeq 6000,测序模式为Paired-end 150 bp。测序得到原始数据,用软件包FastQC(Ver 0.11.9)和fastp(Ver 0.20.0)对原始测序数据进行质量评估和质量过滤,主要去除接头污染的reads,低质量的reads以及含N比例大于5%的reads等,得到后续分析所用的高质量Clean Reads。
基于二代高通量测序,对亲本TD70和Kasalath及186个RIL株系进行深度测序。TD70和Kasalath的Reads与Nipponbare(ssp.)参考基因组的比对率分别为98.7%和97.2%,分别得到121 491 700和131 284 874个clean reads,测序量为18.22和19.69 Gb,平均测序深度分别为40×和44×。RIL群体共获得数据1 304 Gb的测序数据,每个株系获得的数据量为5.10—12.37 Gb,平均每个株系获得7.01 Gb的数据,测序深度为18.80×。测序质量评估显示,质控后Q30最低为93.45%,平均为94.53%。从以上的数据统计显示测序数据产量和质量均较好可以进行下一步分析。用软件BWA软件将测序reads与水稻日本晴参考基因组(IRGSP-1.0)进行对比。保留唯一比对的双端reads,通过GATK与Freebayes检测双亲间的SNP位点。对186个RIL基因型数据进行统计,利用滑动窗法(SNP/InDel数目为15),将窗口内SNP/InDel信息转换成窗口的基因型,通过窗口周围的基因型信息,对错误的基因型进行修正。进一步基于根据窗口基因型,预测染色体上的重组断点构建的RIL群体的BinMap图谱。
分别用2018和2019年RIL群体的粒长、粒宽、粒厚及千粒重表型进行QTL定位。采用软件QTL IciMapping(Ver 4.2.53)设定PIN为0.001,步长为1 cM,采用完备区间作图(inclusive composite interval mapping,ICIM)的方法检测全基因组内的粒型QTL[36];LOD阈值设定为2.5,以LOD峰值作为该QTL的LOD值,以LOD峰值位置的Bin标记估算QTL的效应,遵循McCouch[37]的原则命名QTL。
对2018和2019年亲本TD70、Kasalath及186个RIL株系进行粒长、粒宽、粒厚和千粒重的考察。结果显示,TD70、Kasalath和RIL株系粒型存在极显著差异(图1)。RIL群体2018年粒长平均为9.72 mm,变幅为7.77—13.00 mm;粒宽平均为3.12 mm,变幅为2.37—4.34 mm;粒厚平均为2.10 mm,变幅为1.71—2.63 mm;千粒重平均为30.60 g,变幅为17.95—55.4 g。
P1:TD70;P2:Kasalath;1—14:RIL群体部分株系
综合2018—2019年数据,发现粒长、粒宽和粒厚性状在RIL群体中存在超亲分离现象,但均值都在2个亲本表型值范围内,变异系数为7.35— 22.68(表1)。用SPSS(Ver 22.0)软件对各性状的正态性检验结果显示,粒长、粒宽、粒厚和千粒重4个性状在RIL群体中呈近正态连续分布,且2年间的变化趋势相似,符合QTL作图要求(图2)。
表1 亲本与RIL群体2年间粒型的表型变异
GL:粒长;GW:粒宽;GT:粒厚;TGW:千粒重。下同
GL: grain length; GW: grain width; GT: grain thickness; TGW: 1000-grain weight. The same as below
GL:粒长;GW:粒宽;GT:粒厚;TGW:千粒重;T:TD70;K:Kasalath
基于RIL群体186个株系的重测序PE reads,利用短序列比对软件BWA将PE reads比对到日本晴参考基因组上,过滤掉多位点和缺失率大于80%的SNP数据,保留唯一比对的SNP作图,以提高作图效率和精度。参考Huang等[7]方法用过滤后的SNP构建Bin标记。采用滑动窗法,将窗口内SNP/InDel信息转换成窗口的基因型,通过窗口周围的基因型信息,对错误的基因型进行修正。进一步基于根据窗口基因型,预测染色体上的重组断点,共得到12 328个Bin标记,标记为RBN0001— RBN12328,每条染色体Bin标记数为763—1 367个,平均为1 027个。
将Bin区段基因型数据导入软件R/qtl进行遗传图谱的构建。该遗传图谱总长为21 295.44 cM,包含12个连锁群,分别对应水稻的12条染色体,各染色体遗传距离为1 006.01—2 400.93 cM,其中第4染色体遗传距离最大,第10染色体的遗传距离最短,染色体平均遗传距离为1 774.62 cM;第7染色体Bin标记间平均遗传距离最大,为2.13cM,第3染色体Bin标记间距离最小,仅为1.22 cM,整个染色体组的标记间距离为1.71 cM。图谱标记间平均物理距离为30.26 kb(表2和图3)。
2.3.1 2018年粒型QTL定位 对2018年种植材料的
粒长、粒宽、粒厚及千粒重进行QTL分析,共检测到40个粒型QTL,其中粒长12个,粒宽9个,粒厚8个,千粒重11个(图4)。这些QTL除第6染色体外,其他11条染色体均有分布。其中,第3染色体上的QTL最多,为9个,其次是第2染色体,为7个,第8染色体仅检测到1个。这些QTL的LOD值为2.88—35.15,单个QTL的贡献率为1.61%—33.33%。检测到的12个粒长QTL,LOD值为3.59—27.88,贡献率最高为21.26%。共检测到9个粒宽相关的QTL,其中有3个QTL位于第4染色体。这些QTL LOD值为3.05—35.15,其中第2染色体上的位点LOD值为35.15,贡献率为28.82%,第5染色体上的位点LOD值为32.44,可解释25.59%的表型变异。粒厚相关QTL共检测到8个,其中第3染色体上检测到3个。LOD值为2.88—31.44,表型贡献率为2.10%—33.33%。千粒重共检测到11个QTL,位于第3染色体上的对表型贡献率最大为31.19%,其次为第2染色体上的位点可解释14.67%的表型变异。以上QTL的增效等位基因主要来自大粒亲本TD70,说明大粒亲本中的QTL位点对籽粒大小具有明显的增效作用(表3)。
表2 Bin图谱信息表
图3 Bin标记构建的遗传连锁图谱
黑色位点为2018年定位的粒型QTL,绿色位点为2019年定位的粒型QTL,红色位点表示2018和2019年均定位的粒型QTL
2.3.2 2019年粒型QTL定位 对2019年种植材料的粒长、粒宽、粒厚及千粒重进行QTL分析,检测到56个籽粒相关的QTL,粒长15个,粒宽11个,粒厚13个,千粒重17个(图4)。这些QTL的LOD值为2.53—33.76,单个QTL解释的表型变异为1.02%—30.07%。这些QTL分布在水稻的12条染色体上,第2染色体上最多,为11个,其次是第3染色体,为8个,第9染色体上最少,为1个。在第3和第7染色体上各检测到3个粒长QTL。这些QTL的LOD值为2.58—33.76,单个QTL的贡献率为1.02%—21.17%。其中第3染色体上、和第7染色体上的位点,分别可以解释15.44%、12.55%和21.17%的表型变异,加性效应分别为0.456、0.444和0.529。粒宽QTL的LOD值范围为2.53—32.03,贡献率为1.60%—30.07%。其中位点LOD值为32.03,可解释30.07%的表型变异,加性效应为0.214。13个粒厚QTL的LOD值范围为3.21—17.82,对粒厚的贡献率为2.51%—16.27%。其中第2染色体上的和位点LOD值分别为11.80和17.82,分别可解释9.67%和16.27%的表型变异。千粒重共检测到17个QTL,LOD值最大为27.16,共解释84.96%的表型变异。其中,、和的LOD值分别为22.27、27.16和23.36,可分别解释千粒重11.34%、14.59%和12.38%的变异(表3)。
2.3.3 2年粒型QTL定位结果的比较 2018—2019年连续2年通过连锁作图的方法对粒长、粒宽、粒厚以及千粒重4个性状进行QTL定位(表3)。结果显示,2年共检测到96个粒型QTL,其中28个QTL涉及重复交叉,关联在11个区间内,LOD值为2.53—35.50,贡献率为1.02%—35.15%。从染色体分布看,检测到的QTL在水稻的12条染色体上皆有分布。其中,第2、第3染色体上检测到的QTL较多,均为15个,第6和第9染色体检测到的QTL最少,均为2个。
2018年和2019年都检测到的QTL有11个,与粒长相关的QTL有6个。位于第2染色体,2年的LOD值分别为7.47和8.27,贡献率为4.26%和3.69%。和位于第3染色体,2年的LOD值分别为27.88和27.05,贡献率为20.94%和15.44%;2年的LOD值分别为27.5和22.49,贡献率分别为21.26%和12.55%。位于第4染色体,2年的LOD值分别为10.85和8.37,贡献率分别为6.66%和3.86%。位于第5染色体,2年的LOD值分别为5.81和4.31,贡献率分别为5.13%和4.55%。位于第7染色体,LOD值分别为10.13和33.76,贡献率分别为5.99%和21.17%。、和分别位于第2、4和5染色体上,是2年均检测到的粒宽QTL,2年的LOD值为3.22—35.15,可以解释粒宽3.05%—30.07%的变异。2018年检测到的与2019年检测到位于同一区间,LOD值各为8.56和6.32,分别解释了粒型性状6.07%和5.01%的变异;2018年检测到的粒长与2019年千粒重位于同一区间,LOD值各为3.60和22.34,分别解释了粒型性状3.15%和11.34%的变异。
续表3 Continued table 3
续表3 Continued table 3
*:同区间在不同年份定位出不同粒型性状;**:同一区间在不同年份定位出同一粒型性状
*: different grain traits were located in the same interval in different years; **: the same grain type trait is located in the same interval in different years
基于传统的分子标记如RAPD、RFLP、SSR所构建的遗传图谱过程耗时、繁琐,涉及引物设计、PCR扩增、核酸电泳等步骤。这些分子标记所构建的遗传图谱因分子标记密度较低,不能提供准确和完全的控制QTL的数目和座位信息[38-39]。随着高通量测序技术的发展,测序价格变得越来越便宜,使得高通量测序技术在植物科学研究中得到了越来越广泛的应用。高通量测序技术的应用极大地促进了高密度或超高密度遗传图谱的发展。与传统分子标记构建的遗传图谱相比,利用高通量测序技术构建的Bin图谱精确度高、构建时间短[7, 40]。YU等[41]对包含241个株系的RIL群体进行约0.06×的重测序,构建了一个超高密度的Bin遗传图谱。并与传统的SSR、RFLP分子标记构建的图谱进行了比较发现,利用Bin遗传图谱能够检测到更多的QTL,而且检测到的QTL更加精细。YANG等[40]利用简化基因组测序,构建了一个包含2 498个Bin标记的遗传图谱,定位到与种子萌发、早期生长相关的42个QTL,为培育适宜直播的水稻新品奠定了基础。YANG等[42]利用2 711个Bin标记的遗传连锁图对水稻幼苗活力性状进行了QTL定位,并结合RNA-Seq分析获得了37个候选差异表达基因。DU等[43]利用1 910个Bin标记的遗传连锁图,对水稻粒型性状进行了QTL定位,并通过CRISPR/Cas9基因敲除的方式进一步验证了候选基因的功能。本研究对RIL群体的186个株系进行重测序,获得平均覆盖深度约为18×的高质量数据,通过基因组重测序技术构建了包含12 328个Bin标记,标记间平均遗传距离为1.73 cM,物理距离为30.26 kb的Bin图谱。本研究通过高密度Bin图谱检测到的QTL数目与前人相比明显增多,该图谱2年共定位到96个粒型QTL位点,11个QTL连续2年都检测到,说明这些QTL遗传稳定,可以进行分子标记的开发和基因利用。
从染色体分布看,粒型QTL在水稻12条染色体上分布不一,本研究中第2和3染色体共发现30个粒型QTL,占总数近1/3,其次第4、5、7、11和12染色体检测的粒型QTL数量范围为7—9个。同时,粒型不同性状QTL在染色体上往往呈现集中分布,粒长、粒厚QTL在第3染色体上较多;粒宽QTL主要在第2和4染色体;千粒重的QTL主要集中在第2和3染色体。研究表明粒型基因往往存在一因多效现象,本研究中有11个QTL区间具有一因多效现象。、和为位点,对粒长、粒厚和粒重具有重要贡献;、和对粒长、粒厚和粒重具有作用;和为同一位点的QTL,该位点对粒长和粒宽均有贡献;和为位点对粒长和粒重具有明显的增效作用,增效位点来源于大粒水稻TD70。
开展水稻粒型基因的定位、克隆及效应研究,对产量的提高、加工品质的改良、外观品质的改善具有重要意义。据Gramene网站(http://archive.gramene.org/qtl/)统计,通过遗传作图、关联分析等方法,目前鉴定水稻粒型相关的基因/QTL已经超过400个,这些粒型基因/QTL几乎分布在水稻的12条染色体上[44-45],其中位于第2、3和5染色体上QTL较多。已报道的影响粒长的基因主要有[46]、[47-48]、/[49-50]、[51]、/[52-53]、[54]、[32]、[33]等;粒宽相关的基因有[16]、[26]、[55]、[25, 56]、[31]等;/[17, 57]是粒宽和粒厚调控基因;[58]和[59]是千粒重的主效QTL。此外,还有一些其他的生长调节因子对粒型有调控作用,如[60]、/[28, 30]等。
本研究通过高密度Bin图谱检测到的QTL,由于标记本身特定的物理位置,经比对发现多数位点与之前检测或者已克隆的主效粒型基因具有很好的区间一致性。定位的粒长QTL、和在2年均被检测到,与前期用该群体通过传统的方法检测到的位点一致,进一步分析发现这3个位点分别为已经克隆的粒型基因、及/位点[60-61]。、位点与前期定位区间一致,进一步分析证明这两个位点为已经克隆的粒宽主效基因和[16, 25, 62]。本研究通过高密度Bin图谱定位到大量的粒型QTL位点,既包含前人已经定位或克隆的、、、、、、等粒型基因[26, 28, 31, 48, 63-65],也有新发现的4个2年在同一区间控制粒型的、、新位点,这说明本研究结果是真实可靠的。
构建了一张包含12 328个Bin标记的分子遗传连锁图谱,利用该图谱对大粒资源的粒型性状进行了QTL定位,共得到96个粒型QTL。验证了大部分定位或克隆的粒型基因,同时新鉴定出等4个同区间粒型QTL,证实了多个粒型基因的组合可行性。
[1] 徐正进, 陈温福, 马殿荣, 吕英娜, 周淑清, 刘丽霞. 稻谷粒形与稻米主要品质性状的关系. 作物学报, 2004, 30(9): 894-900.
XU Z J, CHEN W F, MA D R, Lü Y N, ZHOU S Q, LIU L X. Correlations between rice grain shapes and main qualitative characteristics. Acta Agronomica Sinica, 2004, 30(9): 894-900. (in Chinese)
[2] 高志强, 占小登, 梁永书, 程式华, 曹立勇. 水稻粒形性状的遗传及相关基因定位与克隆研究进展. 遗传, 2011, 33(4): 314-321.
GAO Z Q, ZHAN X D, LIANG Y S, CHENG S H, CAO L Y. Progress on genetics of rice grain shape trait and its related gene mapping and cloning. Hereditas, 2011, 33(4): 314-321. (in Chinese)
[3] HARBERD N P. Shaping taste: The molecular discovery of rice genes improving grain size, shape and quality. Journal of Genetics & Genomics, 2015, 42(11): 597-599.
[4] 彭强, 李佳丽, 张大双, 姜雪, 邓茹月, 吴健强, 朱速松. 不同环境基于高密度遗传图谱的稻米外观品质QTL定位. 作物学报, 2018, 44(8): 1248-1255.
PENG Q, LI J L, ZHANG D S, JIANG X, DENG R Y, WU J Q, ZHU S S. QTL mapping for rice appearance quality traits based on a high-density genetic map in different environments. Acta Agronomica Sinica, 2018, 44(8): 1248-1255. (in Chinese)
[5] XIE W B, FENG Q, YU H H, HUANG X H, ZHAO Q, XING Y Z, YU S B, HAN B, ZHANG Q F. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proceedings of the National Academy of the Sciences of the United States of America, 2010, 107(23): 10578-10583.
[6] 王洪振, 王姝, 邝盼盼, 林政发, 程军, 赵永斌, 李长有, 于长春. DNA分子标记技术及其在植物育种中的应用. 吉林师范大学学报(自然科学版), 2016, 37(1): 108-111.
WANG H Z, WANG S, KUANG P P, LIN Z F, CHENG J, ZHAO Y B, LI C Y, YU C C. DNA molecular marker technology and its application in plant breeding. Jilin Normal University Journal (Natural Science Edition), 2016, 37(1): 108-111. (in Chinese)
[7] HUANG X H, FENG Q, QIAN Q, ZHAO Q, WANG L, WANG A H, GUAN J P, FAN D L, WENG Q J, HUANG T, DONG G J, SANG T, HAN B. High-throughput genotyping by whole-genome resequencing. Genome Research, 2009, 19(6): 1068-1076.
[8] HE Q, ZHI H, TANG S, XING L, WANG S Y, WANG H G, ZHANG A Y, LI Y H, GAO M, ZHANG H J, CHEN G Q, DAI S T, LI J X, YANG J J, LIU H F, ZHANG W, JIA Y C, LI S J, LIU J R, QIAO Z J, GUO E H, JIA G Q, LIU J, DIAO X M. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theoretical and Applied Genetics, 2021, 134(2): 557-572.
[9] 董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018, 44(6): 938-946.
DONG J C, YANG J, GUO T, CHEN L K, CHEN Z Q, WANG H. QTL mapping for heading date in rice using high-density bin map. Acta Agronomica Sinica, 2018, 44(6): 938-946. (in Chinese)
[10] ZHOU Z, ZHANG C, ZHOU Y, HAO Z, WANG Z, ZENG X, DI H, LI M, ZHANG D, YONG H, ZHANG S, WENG J, LI X. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. BMC Genomics, 2016, 17: 178.
[11] LIU S Y, HUA L, DONG S J, CHEN H Q, ZHU X D, JIANG J E, ZHANG F, LI Y H, FANG X H, CHEN F., a mitogen-activated protein kinase, influences rice grain size and biomass production. The Plant Journal, 2015, 84(4): 672-681.
[12] XU R, YU H, WANG J, DUAN P, ZHANG B, LI J, LI Y, XU J, LYU J, LI N, CHAI T, LI Y. A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. The Plant Journal, 2018, 95(6): 937-946.
[13] XU R, DUAN P G, YU H Y, ZHOU Z K, ZHANG B L, WANG R C, LI J, ZHANG G Z, ZHUANG S S, LYU J, LI N, CHAI T Y, TIAN Z X, YAO S G, LI Y H. Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice. Molecular Plant, 2018, 11(6): 860-873.
[14] DUAN P G, RAO Y C, ZENG D L, YANG Y L, XU R, ZHANG B L, DONG G J, QIAN Q, LI Y H., which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. The Plant Journal, 2014, 77(4): 547-557.
[15] GUO T, CHEN K, DONG N Q, SHI C L, YE W W, GAO J P, SHAN J X, LIN H X.negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. The Plant Cell, 2018, 30(4): 871-888.
[16] SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature genetics, 2007, 39(5): 623-630.
[17] HUANG L J, HUA K, XU R, ZENG D L, WANG R C, DONG G J, ZHANG G Z, LU X L, FANG N, WANG D K, DUAN P G, ZHANG B L, LIU Z P, LI N, LUO Y H, QIAN Q, YAO S G, LI Y H. Theregulatory module controls panicle size and grain number in rice. The Plant Cell, 2021, 33(4): 1212-1228.
[18] HUANG K, WANG D, DUAN P, ZHANG B, XU R, LI N, LI Y. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. The Plant Journal, 2017, 91(5): 849-860.
[19] SHI C L, REN Y L, LIU L L, WANG F, ZHANG H, TIAN P, PAN T, WANG Y F, JING R N, LIU T Z, WU F Q, LIN Q B, LEI C L, ZHANG X, ZHU S S, GUO X P, WANG J L, ZHAO Z C, WANG J, ZHAI H Q, CHENG Z J, WAN J M. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiology, 2019, 180(1): 381-391.
[20] ISHII T, NUMAGUCHI K, MIURA K, YOSHIDA K, THANH P T, HTUN T M, YAMASAKI M, KOMEDA N, MATSUMOTO T, TERAUCHI R. OsLG1 regulates a closed panicle trait in domesticated rice. Nature Genetics, 2013, 45(4): 462-465.
[21] FAN C, XING Y, MAO H, LU T, HAN B, XU C, LI X, ZHANG Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171.
[22] MAO H L, SUN S Y, YAO J L, WANG C R, YU S B, XU C G, LI X H, ZHANG Q I. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of the Sciences of the United States of America, 2010, 107(45): 19579.
[23] SWAIN, D M, SAHOO R K, SRIVASTAVA V K, TRIPATHY B C, TUTEJA R, TUTEJA N. Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta, 2016, 245(2): 1-17.
[24] MIAO J, YANG Z F, ZHANG D P, WANG Y Z, XU M B, ZHOU L H, WANG J, WU S J, YAO Y L, DU X, GU F F, GONG Z Y, GU M H, LIANG G H, ZHOU Y. Mutation of, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice. Plant Biotechnology Journal, 2019, 17(3): 650-664.
[25] LIU J F, CHEN J, ZHENG X M, WU F Q, LIN Q B, HENG Y Q, TIAN P, CHENG Z J, YU X W, ZHOU K N, ZHANG X, GUO X P, WANG J L, WANG H Y, WAN J M. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature plants, 2017, 3(5):17043.
[26] LI Y B, FAN C C, XING Y Z, JIANG Y H, LUO L J, SUN L, SHAO D, XU C J, LI X H, XIAO J H, HE Y Q, ZHANG Q F. Natural variation inplays an important role in regulating grain size and yield in rice. Nature genetics, 2011, 43(12): 1266-1269.
[27] SHI C L, DONG N Q, GUO T, YE W W, SHAN J X, LIN H X. A quantitative trait locuscontrols rice grain size and yield through the gibberellin pathway. The Plant Journal, 2020, 103(3): 1174-1188.
[28] HU J, WANG Y X, FANG Y X, ZENG L J, XU J, YU H P, SHI Z Y, PAN J J, ZHANG D, KANG S J, ZHU L, DONG G J, GUO L B, ZENG D, ZHANG G H, XIE L H, XIONG G S, LI J Y, QIAN Q. A rare allele ofenhances grain size and grain yield in rice. Molecular Plant, 2015, 8(10): 1455-1465.
[29] DUAN P G, NI S, WANG J M, ZHANG B L, XU R, WANG Y X, CHEN H Q, ZHU X O, LI Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature plants, 2015, 2(1): 15203.
[30] CHE R H, TONG H N, SHI B H, LIU Y Q, FANG S R, LIU D P, XIAO Y H, HU B, LIU L C, WANG H R. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature plants, 2015, 2(1): 15195.
[31] WANG S K, WU K, YUAN Q B, LIU X Y, LIU Z B, LIN X Y, ZENG R Z, ZHU H T, DONG G J, QIAN Q, ZHANG G Q, FU X D. Control of grain size, shape and quality byin rice. Nature genetics, 2012, 44(8): 950-954.
[32] SI L Z, CHEN J Y, HUANG X H, GONG H, LUO J H, HOU Q Q, ZHOU T Y, LU T T, ZHU J J, SHANGGUAN Y Y, CHEN E W, GONG C X, ZHAO Q, JING Y F, ZHAO Y, LI Y, CUI L L, FAN D L, LU Y Q, WENG Q J, WANG Y C, ZHAN Q L, LIU K Y, WEI X H, AN K, AN G, HAN B.controls grain size in cultivated rice. Nature genetics, 2016, 48(4): 447-456.
[33] ZHAO D S, LI Q F, ZHANG C Q, ZHANG C, YANG Q Q, PAN L X, REN X Y, LU J, GU M H, LIU Q Q.acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature communications, 2018, 9(1): 1240.
[34] LIU Q, HAN R, WU K, ZHANG J Q, YE Y F, WANG S S, CHEN J F, PAN Y J, LI Q, XU X P, ZHOU J W, TAO D Y, WU Y J, FU X D. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nature communications, 2018, 9(1): 852.
[35] ZHU X, ZHANG S, CHEN Y, MOU C, HUANG Y, LIU X, JI J, YU J, HAO Q, YANG C, CAI M, NGUYEN T, SONG W, WANG P, DONG H, LIU S, JIANG L, WAN J. Decreased grain size1, a C3HC4-type RING protein, influences grain size in rice (L.). Plant Molecular Biology, 2021, 105(4): 405-417.
[36] LEI M, LI H H, ZHANG L Y, WANG J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop Journal, 2015(3): 103-117.
[37] MCCOUCH S R. Gene nomenclature system for rice. Rice, 2008, 1(1): 72-84.
[38] YU H H, XIE W B, LI J, ZHOU F S, ZHANG Q F. A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnology Journal, 2013, 12(1): 28-37.
[39] BAYER P E. Skim-based genotyping by sequencing using a double haploid population to call SNPs, infer gene conversions, and improve genome assemblies//EDWARDS D. Plant Bioinformatics: Methods and Protocols. New York: Springer New York Press, 2016: 285-292.
[40] YANG J, SUN K, LI D X, LUO L X, LIU Y Z, HUANG M, YANG C L, LIU H, WANG H, CHEN Z Q, GUO T. Identification of stable QTLs and candidate genes involved in anaerobic germination tolerance in rice via high-density genetic mapping and RNA-Seq. BMC genomics, 2019, 20: 355.
[41] YU H H, XIE W B, WANG J, XING Y Z, XU C G, LI X H, XIAO J H, ZHANG Q F. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. Plos One, 2011, 6(3): e17595.
[42] Yang J, Guo Z h, Luo L X, Gao Q L, Xiao W M, Wang J F, Wang H, Chen Z Q, Guo T. Identification of QTL and candidate genes involved in early seedling growth in rice via high-density genetic mapping and RNA-seq. The Crop Journal, 2021, 9(2): 360-371.
[43] DU Z X, ZHOU H, LI J B, BAO J Z, TU H, ZENG C H, WU Z, FU H H, XU J, ZHOU D H, ZHU C L, FU J R, HE H H., a naturally varying QTL, regulates grain weight in rice. Theoretical and Applied Genetics, 2021.https://doi.org/10.1007/s00122-021-03857-4.
[44] PONCE K, ZHANG Y, GUO L B, LENG Y J, YE G Y. Genome-wide association study of grain size traits in indica rice multiparent advanced generation intercross (MAGIC) population. Frontiers in Plant Science, 2020, 11: 395.
[45] LO S F, CHENG M L, HSING Y C, CHEN Y S, LEE K W, HONG Y F, HSIAO Y, HSIAO A S, CHEN P J, WONG L I, CHEN N C, REUZEAU C, HO T D, YU S M. Ricepromotes cell division to enhance organ development, stress tolerance and grain yield. Plant Biotechnology Journal, 2020, 18(9): 1969-1983.
[46] FAN C C, YU S B, WANG C R, XING Y Z. A causal C-A mutation in the second exon ofhighly associated with rice grain length and validated as a functional marker. Theoretical and Applied Genetics, 2009, 118(3): 465-472.
[47] QI P, LIN Y S, SONG X J, SHEN J B, HUANG W, SHAN J X, ZHU M Z, JIANG L W, GAO J P, LIN H X. The novel quantitative trait locuscontrols rice grain size and yield by regulating Cyclin-T1;3. Cell Research, 2012, 22(12): 1666-1680.
[48] ZHANG X J, WANG J F, HUANG J, LAN H X, WANG C L, YIN C F, WU Y Y, TANG H J, QIAN Q, LI J Y. Rare allele ofassociated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of the Sciences of the United States of America, 2012, 109(52): 21534-21539.
[49] WANG Y, XIONG G, HU J, JIANG L, YU H, XU J, FANG Y, ZENG L, XU E, XU J, YE W, MENG X, LIU R, CHEN H, JING Y, WANG Y, ZHU X, LI J, QIAN Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature genetics, 2015, 47(8): 944-948.
[50] WANG S, LI S, LIU Q, WU K, ZHANG J, WANG S, WANG Y, CHEN X, ZHANG Y, GAO C, WANG F, HUANG H, FU X. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature genetics, 2015, 47(8): 949-954.
[51] WU W, LIU X, WANG M, MEYER R S, LUO X, NDJIONDJOP M N, TAN L, ZHANG J, WU J, CAI H, SUN C, WANG X, WING R A, ZHU Z. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature plants, 2017, 3: 17064.
[52] YING J Z, MA M, BAI C, HUANG X H, LIU J L, FAN Y Y, SONG X J., a major QTL that negatively modulates grain length and weight in rice. Molecular Plant, 2018, 11(5): 750-753.
[53] XIA D, ZHOU H, LIU R J, DAN W H, LI P B, WU B, CHEN J X, WANG L Q, GAO G J, ZHANG Q L, HE Y Q., a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts withto produce extra-long grains in rice. Molecular Plant, 2018, 11(5): 754-756.
[54] ZHANG Y P, ZHANG Z Y, SUN X M, ZHU X Y, LI B, LI J J, GUO H F, CHEN C, PAN Y H, LIANG Y T, XU Z J, ZHANG H L, LI Z C. Natural alleles offor grain length and awn development were differently domesticated in rice subspeciesand. Plant Biotechnology Journal, 2019, 17(8): 1547-1559.
[55] DUAN P G, XU J S, ZENG D L, ZHANG B L, GENG M F, ZHANG G Z, HUANG K, HUANG L J, XU R, GE S, QIAN Q, LI Y H. Natural variation in the promoter ofcontributes to grain size diversity in rice. Molecular Plant, 2017, 10(5): 685-694.
[56] SHOMURA A, IZAWA T, EBANA K, EBITANI T, KANEGAE H, KONISHI S, YANO M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature genetics, 2008, 40(8): 1023-1028.
[57] WANG S S, WU K, QIAN Q, LIU Q, LI Q, PAN Y J, YE Y F, LIU X Y, WANG J, ZHANG J Q, LI S, WU Y J, FU X D. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Research, 2017, 27(9): 1142-1156.
[58] ISHIMARU K, HIROTSU N, MADOKA Y, MURAKAMI N, HARA N, ONODERA H, KASHIWAGI T, UJIIE K, SHIMIZU B-I, ONISHI A, MIYAGAWA H, KATOH E. Loss of function of the IAA-glucose hydrolase geneenhances rice grain weight and increases yield. Nature genetics, 2013, 45(6): 707-711.
[59] SONG X J, KUROHA T, AYANO M, FURUTA T, NAGAI K, KOMEDA N, SEGAMI S, MIURA K, OGAWA D, KAMURA T, SUZUKI T, HIGASHIYAMA T, YAMASAKI M, MORI H, INUKAI Y, WU J Z, KITANO H, SAKAKIBARA H, JACOBSEN S E, ASHIKARI M. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 76-81.
[60] SEGAMI S, KONO I, ANDO T, YANO M, IWASAKI Y.gene encodes alpha-tubulin regulating seed cell elongation in rice. Rice, 2012, 5(1): 4.
[61] Wang C R, Chen S, Yu S B. Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theoretical and Applied Genetics, 2011, 122: 905-913.
[62] 张亚东, 张颖慧, 董少玲, 陈涛, 赵庆勇, 朱镇, 周丽慧, 姚姝, 赵凌, 于新, 王才林. 特大粒水稻材料粒型性状的QTL检测. 中国水稻科学, 2013, 27(2): 122-128.
ZHANG Y D, ZHANG Y H, DONG S L, CHEN T, ZHAO Q Y, ZHU Z, ZHOU L H, YAO S, ZHAO L, YU X, WANG C L. Identification of QTL for rice grain traits based on an extra-large grain material. Chinese Journal of Rice Science, 2013, 27(2): 122-128. (in Chinese)
[63] JIANG Y H, BAO L, JEONG S Y, KIM S K, XU C G, LI X H, ZHANG Q F.is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. The Plant Journal, 2012, 70(3): 398-408.
[64] RUAN B P, SHANG L G, ZHANG B, HU J, WANG Y X, LIN H, ZHANG A P, LIU C L, PENG Y L, ZHU L, REN D Y, SHEN L, DONG G J, ZHANG G H, ZENG D L, GUO L B, QIAN Q, GAO Z Y. Natural variation in the promoter ofdetermines grain width and weight in rice. New Phytologist, 2020, 227(2): 629-640.
[65] LYU J, WANG D K, DUAN P G, LU Y P, HUANG K, ZENG D L, ZHANG L M, DONG G J, LI Y J, XU R, ZHANG B L, HUANG X H, LI N, WANG Y C, QIAN Q, LI Y H. Control of grain size and weight by the GSK2-LARGE1/OML4 pathway in rice. The Plant Cell, 2020, 32(6): 1905-1918.
Construction of high-Density genetic map and QTL analysis of grain shape in rice RIL population
ZHANG YaDong, LIANG WenHua, HE Lei, ZHAO ChunFang, ZHU Zhen, CHEN Tao, ZHAO QingYong, ZHAO Ling, YAO Shu, ZHOU LiHui, LU Kai, WANG CaiLin
Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu High Quality Rice R&D Center/Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014
【Objective】Rice grain shape is an important agronomic trait directly related to yield , which affects the appearance quality and commercial value of rice. Research on new rice grain shape genes is of great value for revealing the genetic mechanism of rice grain shape, and it can provide some new genetic resources for molecular breeding.【Method】In the present study, a RIL population which constructed by an extra-large grainrice variety TD70 and a small-grainrice variety Kasalath was used as the research material. The phenotypic data of grain shape, such as grain length, grain width, grain thickness and thousand grain weight were investigated. Using the Genotyping-By-Sequencing approach to re-sequence the parents and RILs to obtain SNP information. The sliding window method (the number of SNP/InDel is 15) was used for genotype calling and recombination breakpoint determination. Based on these results, a high-density Bin map was constructed. Meanwhile, the compound interval mapping method of QTL IciMapping software was used to map the QTLs related to grain shape.【Result】A high-density genetic map containing 12 328 Bin markers was constructed. The number of Bin markers on each chromosome is 763 to 1367, and the average physical distance between markers was 30.26 kb. The frequency distribution of each trait for RIL population was continuous, which were consistent with the characteristics of quantitative characters, so it was suitable for the detection of QTL. QTL analysis of RIL population in 2018 showed that 40 grain-shape QTL were detected, including 12 grain length QTL, 9 grain width QTL, 8 grain thickness QTL, and 11 thousand-grain weight QTL. QTL analysis was performed of RIL population in 2019, and 56 grain-related QTL were detected, including 15 grain length QTL, 11 grain width QTL, 13 grain thickness QTL, and 17 thousand-grain weight QTL. Based on the two-year mapping results, we have mapped a total of 96 grain shape QTL. We found that 11 QTL could be detected for two consecutive years; among them, 7 QTL have been cloned and 4 new QTL were distributed on 1, 3, 4 and 5 chromosomes. Among the 4 new QTL,andwas related to grain length,related grain thickness andrelated to grain width.【Conclusion】We constructed a molecular genetic linkage map containing 12 328 Bin markers and used the map to analyze the grain shape loci of extra-large grain rice resources. Four new QTLs related to grain shape were obtained, which can be used for subsequent fine mapping, cloning and functional studies.
rice (L.); Bin genetic map; grain shape; QTL mapping
2021-06-07;
2021-08-03
国家自然科学基金(31771761)、江苏省现代农业重点项目(BE2019339)、现代农业产业技术体系建设专项资金(CARS-01-67)
张亚东,E-mail:zhangyd@jaas.ac.cn。通信作者王才林,E-mail:clwang@jaas.ac.cn
(责任编辑 李莉)