许 耿,顾海涛
南京医科大学第一附属医院(江苏省妇幼保健院)小儿心胸外科,江苏 南京210009
心血管疾病,如心肌梗死和心力衰竭,已成为全球死亡的主要原因[1]。据世卫组织报告,2016年死于心血管疾病的人数估计为1 790万,占全球死亡人数的31%[2]。随着人类年龄的增长,心脏功能下降给人类健康带来了沉重的负担。深入研究心血管疾病的发病机制、提高心血管疾病的诊疗水平以及开发新型药物成为学者们关注的焦点。长期以来,二维(two dimensional,2D)细胞模型和动物模型一直被用来研究心血管疾病。然而,这些传统模型都有着自身局限性并不完全适用于心血管疾病的研究。如2D细胞模型无法模拟免疫系统、无基质成分和器官特异性功能,以及在多次传代后原始细胞的遗传异质性逐渐丧失[3]。动物模型具有不同的结构和生理学,并且具有不同的特异性器官发育和发病机制[4]。
类器官是一种新的体外细胞模型,具有复杂三维(three dimensional,3D)细胞结构,它显示出与体内器官相似的结构和功能,可以在3D培养系统中,从胚胎干细胞、人诱导多能干细胞(human induced pluripotent stem cells,hiPSC)、成体干细胞甚至肿瘤细胞随机或者定向分化为不同细胞类型并组装形成[5-6]。到目前为止,已经成功地建立各种器官的健康及癌症类器官模型,如肺、胃、肠、肝、胰腺、肾、前列腺和脑[7-8]。类器官显示出基础研究和临床应用的巨大潜力。首先,类器官可以用来模拟和研究器官发育及相关疾病。其次,在药物实验及疾病治疗方面也有着广泛的应用空间。虽然在各种器官中已经开发了相应的类器官,但是心脏类器官领域的进展明显滞后,部分原因是早期心脏发育的复杂性。最近,一系列详细描述心脏类器官构建与其应用的文献发表,显示了心脏类器官领域的快速发展。
本文描述了心脏类器官的构建方法及其潜在的应用,包括疾病建模、药物实验、再生医学和治疗,同时对其未来的发展进行了展望。
类器官保留了细胞间的接触,从而促成了它们的相互作用和自我聚集,是一种简化后的微型器官,可以模拟器官体内的微环境、结构和原始器官的多谱系分化[9]。早期对于心脏类器官的探索开发中,常利用人类或小鼠的胚胎干细胞、hiPSC细胞等,通过悬浮培养成胚胎小体(embryoid body,EB),模拟人类胚胎的早期分化过程,但是其研究重点不在于胚胎发育形成心脏的机制,而是将干细胞诱导分化生成心肌细胞。Chen等[10]开发了hiPSC细胞聚集悬浮培养系统,通过采用添加小分子物质调节WNT信号通路及悬浮培养细胞的方法来引导hiPSC细胞向心肌细胞分化,可以产生纯度90%以上的心肌细胞。这些体外生产心肌细胞的方法为心脏类器官的研究奠定了基础。hiPSC细胞的出现极大地促进了心脏类器官的研究。通过从患者身上获得血液、皮肤及尿液样本,对其体细胞进行重新编程,以获得hiPSC细胞,随后将其用于生成类器官[5]。这种方法生成的类器官可以避免胚胎干细胞所带来的伦理问题,同时可以获得患者特异性疾病表型。随着对心脏类器官的进一步研究探索,逐渐出现通过组织工程技术构建的心脏类器官和自组织的心脏类器官,以及3D打印的人工心脏[11-12]。
通过将诱导生成的心肌细胞与水凝胶或细胞外基质等生物材料结合,研究者们可以生成一系列基于心肌细胞的环、带、片和补片组织[13-16],这些心肌组织有着近似于成人心肌的各种结构和收缩特性。Shadrin等[17]将hiPSC细胞诱导生成的心肌细胞与水凝胶相结合,置于模具中,生成了4 cm×4 cm的心脏补片,该心脏补片具有与成人心肌相似的电和机械特性。将该心脏补片植入大鼠心脏时,其可以与大鼠心脏牢固结合,维持植入前的电生理功能,并且不增加心律失常的发生率。Kumatov等[18]通过调节细胞粘附水凝胶的硬度,促进EB中血管化心肌样组织的形成,并形成收缩的心血管器官样结构。这些生成的心肌组织具有修复心脏,治疗心梗的良好应用前景,但是还不能用于研究心脏作为一个泵的压力和体积之间的基本关系,也不能用来研究心脏发育的机制,同时在作为心脏的疾病模型方面具有一定的局限性。
心室的形成是心脏发育的关键步骤,一些研究小组通过几何约束、支架、模具等组织工程技术生成了带有腔室的体外心肌模型,这种腔室的出现形成了真正意义上的心脏类器官,它模拟了心脏的心室形成的过程。Lee等[19]将凝胶基质与细胞悬液相互混和,置于硅胶球囊模具中,生成了具有模拟心室形成的腔室心脏类器官。由此产生的心室自发搏动,将主动壁张力转化为心室压力,表现出自然心脏生理学和心室力学的标志性特征,包括残余应力、机电耦合、正冲程功。这种心脏类器官为心脏泵功能和心脏修复机制的高通量体外研究提供了一个较好的模型。Ma等[20]使用聚乙二醇作为底物,通过将hiPSC细胞几何限制在微模板中,产生了周边包含肌成纤维细胞而中心包含心肌细胞腔室心脏类器官。Andersen等[21]利用小鼠胚胎干细胞衍生出具有两个心脏区域的“心前类器官”,这两个心脏区域的细胞与体内胚胎相应发育阶段的对应细胞有高度相似性。Hoang等[22]将生物材料细胞图形化技术与干细胞类器官工程技术相结合,通过引导2D hiPSC细胞集落形成3D心脏微室,该心脏微室经过光刻微加工,可以作为发现新药试验的体外模型。这些微室近似于早期发育的心脏,具有独特的空间组织。
心脏发生是胚胎形成中心脏发育的过程,涉及不同细胞类型的分化,包括称为心肌细胞的心房和心室肌细胞,构成传导组织的特定肌细胞,如浦肯野纤维和平滑肌细胞,以及非肌细胞(内皮细胞和神经元细胞)。心脏发生的过程还包括形成成熟心脏所需的形态变化,包括心管的形成、心管环化以及具有心房和心室细胞的心脏形成[23-25]。以组织工程技术为基础的3D类器官技术可以帮助人类建立心脏类器官模型,但是在自然过程中,器官的生成并不是人为控制的,而是细胞自发组织形成的。在这一过程中,各个细胞之间会相互作用,随着器官结构的出现而生长移动并改变形状。外界的干扰并不能真正反映心脏的发育形成过程[11]。最近一些研究通过添加一些心脏发育必备的生长因子,促使干细胞自组织形成心脏类器官,并展示了心脏的发育过程。Lee等[26]开发了一种从小鼠胚胎干细胞衍生的胚状体产生心脏类器官的方法。在层粘连蛋白-内皮抑素复合物和成纤维细胞生长因子4(fibroblast growth factor 4,FGF4)的刺激下,形成的类器官通过自组织的方式,展示了连续的形态学变化,包括心脏新月形结构、心管形成、心管环化与腔室形成等过程,所产生的体外心脏类器官具有心房和心室部分,包含心肌、传导组织、平滑肌和内皮细胞,该类器官的心肌可以自主收缩和产生动作电位。这种自组织的心脏类器官在超微结构、组织化学和基因表达特征上与体内发育心脏非常相似。Drakhlis等[27]通过在基质胶中嵌入hiPSC细胞聚集体,使用小分子调控WNT通路来定向分化出心肌,产生复杂和高度结构化的心脏类器官。这种心脏类器官由心内膜样细胞排列的心肌层组成,被原始横隔样间叶原基包围,并包含前肠内胚层组织和血管网,结构上非常类似于心管形成前的心原基,而心原基与前肠内胚层的发育密切相关,该类器官的形成展示了人类心脏早期发育的过程。Hofbauer等[11]则进一步实现了在没有非心脏组织和外源性细胞外基质的情况下,成功开发了完全自组织的心脏类器官。通过加入6种心脏发育的关键信号通路因子(Activin、BMP、FGF、retinoic acid和WNT),使hiPSC细胞来源的心脏类器官经历图形化和形态发生以形成空腔,这种类器官分化出单独的心肌层和内皮层,并与迁移和分化的心外膜相互作用,从而模拟早期的心腔发育。自组织心脏类器官可以展示心肌、内皮和心外膜等部位形态发生及细胞分化的过程,为研究人类心脏发生和先天性心脏病的发生机制提供了一个强有力的系统。
3D生物打印作为一种新兴的技术,可以实现细胞和生物材料的精准空间排列,易于快速构建大尺寸(厘米级)含细胞外基质的仿生组织结构,近年来取得了重要的突破,比如打印图案化的组织,可灌注的血管样网络以及可植入支架等[28]。Noor等[29]报道了一种3D打印的血管化的心脏补片,该补片完全匹配患者心脏的免疫、细胞、生化和解剖特性。首先,把患者的网膜组织细胞重新编程为hiPSC细胞,然后把产生的hiPSC细胞分化为心肌细胞和内皮细胞,再把细胞外基质加工成个性化的水凝胶,然后将这两种细胞分别与水凝胶结合,形成心脏实质组织和血管的生物墨水,运用3D生物打印技术打印出带有血管的块状心脏组织。Lee等[30]采用人类胚胎干细胞来源的心肌细胞及胶原蛋白作为生物墨水3D打印心脏,打印的心脏具有瓣膜、小梁、大静脉和动脉,微小血管等完整的解剖结构。并且心室组织显示同步收缩、定向动作电位传播和收缩高峰期高达14%的壁增厚等特性。这种工程化的心脏具有人类心脏的机械与电生理特性,但存在成本高、需要耗费的心脏细胞数目多以及伦理等问题。
类器官保留了体内器官的表型及其体外的可操作性,可以帮助我们以传统细胞培养方法和动物模型所不允许的方式更好地研究人类疾病的发生机制。
心肌梗死是由于阻塞的冠状动脉限制了含氧血液向下游心肌的输送,导致大量细胞死亡,并使血液泵入体内的能力降低,从而触发神经系统恢复心输出量的代偿活动[31]。心肌梗死或损伤的类器官模型是最早建立的心脏类器官疾病模型。Lee等[19]在建立腔室类器官模型时,采用冷冻损伤方法,建立心脏梗死类器官模型,发现心脏类器官整体功能受到抑制,损伤区的局部双轴缩短变为延长,反映了由于邻近肌细胞收缩导致压力增加,受损组织被动拉伸,这种心脏类器官的形态改变类似于心肌梗死动物模型中的心脏室壁变形。Richards等[12]使用不同浓度的去甲肾上腺素刺激心脏类器官,在心脏类器官中建立了一个“凋亡中心-功能失调内部边缘”的结构,来模拟梗死心脏的“梗死边缘-远端区域”的结构。对该心肌梗死类器官的转录组分析显示,其与人类心肌梗死和急性心肌梗死动物模型的心脏组织基因变化高度相似。目前的心肌梗死类器官模型缺乏炎症细胞并使用了不成熟的心肌细胞,不能突出免疫系统在心肌梗死中的作用。
肥厚型心肌病(hypertrophic cardiomyopathy,HCM)是一组影响患者心脏收缩功能的疾病,其发病机制复杂,难以研发普遍有效的治疗方法,给社会及医保带来巨大的成本负担[32]。Lan等[33]的研究表明,从HCM患者的hiPSC细胞分化而来的心肌细胞含有肌球蛋白重链7(myosin heavy chain 7,MYH7)的突变基因,并具有细胞肥大和异常钙处理活性的特征,可以产生不规则搏动和心律失常。Filippo等[34]使用携带MYH7突变的HCM患者来源的hiPSC细胞诱导分化出心脏类器官,发现与正常人群来源的心脏类器官相比,HCM患者来源的心脏类器官具有心律失常、搏动时间较短等心肌病的特点。这种HCM类器官疾病模型可能成为高通量检测和验证治疗HCM的新型治疗药物的平台。
据报道,心脏类器官既能产生自发的动作电位,又能产生诱发的动作电位,并且与二维细胞模型相比具有更快的传导速度[35]。相比正常心脏组织,类器官的整体电生理学显得不成熟,但该技术提供了对节律激活和致心律失常过程可视化和记录的机会。此外,心脏类器官可从遗传性心律失常患者的特异性hiPSC细胞产生。Shinnawi等[36]使用hiPSC细胞诱导分化出短QT综合征(short QT intervalsyndrome,SQTS)的心脏类器官疾病模型,诱导的hiPSC细胞来自家族遗传性的短QT综合征患者,患者的亚家族型电压门控钾通道(potassium voltagegated channel subfamily H member 2,KCNH2)基因有1个杂合错义突变,该心脏类器官的动作电位持续时间明显短于正常hiPSC细胞诱导分化的心脏类器官。这证实了类器官技术具有体外模拟SQTS的能力,并为病理性QT间期缩短提供了新的机制见解。
人类药物开发的主要挑战之一是临床药物试验在后期的失败风险,这与巨大的成本负担有关。心律失常等心脏不良反应是66种药物停药的最常见原因[37]。据估计,约45%的停药和约30%的药物应用限制是由于不必要的心血管效应[38]。这些药物不良事件通常仅发生在临床阶段,因为药物反应和不良反应的临床前评估是在常规2D细胞或非转化动物模型中进行的[39]。传统的体外2D培养是无数科学发现的基础,但并不能准确地概括体内3D细胞微环境。与3D系统相比,在2D生长的细胞经历了培养基表面形态、培养基质硬度、细胞-细胞/细胞-基质相互作用以及可溶性生物调节因子的作用。因此,2D条件下培养的细胞的转录组和蛋白质组可以发生显著改变,可能产生不代表体内细胞生理学的实验结果[40]。用于临床前药物研究的动物模型有很大的局限性,动物模型与人体具有物种差异性,可能会带来伦理问题,同时这些模型成本较高,难以控制,并且通常无法准确模拟人体代谢、药物疗效和免疫功能[41]。生物工程3D细胞平台,如由人类原代细胞和干细胞衍生细胞组成的组织器官,模拟了许多存在于天然人类组织中的微环境条件,也有助于减少心脏研究中实验动物的使用,因此可能是临床前研究和转化医学的优秀工具。Skardal等[42]对一些美国食品和药物管理局召回的药物进行毒性检测,心脏类器官表现出心率下降、不同部位的细胞死亡等毒性反应,同时心脏类器官与2D细胞耐受药物毒性的剂量有明显差异。Milis等[43]通过建立高通量生物工程心脏类器官平台,对105个具有促增殖潜力的小分子物质进行了功能筛选,发现了两种对心脏功能无明显影响的促增殖小分子物质。
现代再生医学旨在通过同种异体移植,用相应的健康组织替代病变组织,然而,健康供体组织供应的不足和固有的免疫排斥对受体患者体内移植组织的长期存活和功能提出了挑战。hiPSC细胞和类器官技术赋予研究人员从少量的患者体细胞或容易获得的组织中开发同基因或与人类淋巴细胞抗原匹配的类器官的能力。许多研究已经证明了类器官技术具有替代器官的潜力。Nie等[44]发现当肝脏类器官移植到急性肝衰竭小鼠中时,可以恢复小鼠的肝功能并提高小鼠的存活率。Gao等[45]将hiPSC细胞诱导生成的心肌细胞制造成人类心肌补片,将其植入患有心肌梗死的猪体内,可以显著改善猪的心脏功能,减少心脏梗死面积,提高心肌细胞的存活率。类器官技术也可能成为遗传基因缺陷疾病的一种治疗措施。Shinnawi等[36]通过CRISPR技术纠正SQTS患者心脏类器官细胞中的KCNH2基因的突变,产生了正常的心脏类器官。
心脏类器官作为新一代的研究模型,在过去10年迅速发展,具有传统细胞和动物模型不具备的优势,极大地促进了心血管疾病的相关研究,在疾病建模、机制研究、药物试验、再生医疗和治疗等方面有着广泛的应用前景,但目前心脏类器官的研究仍然存在一些问题。第一,心脏类器官大多数只含有单一的细胞,没有组织微环境,如免疫系统和神经系统[46];第二,目前心脏类器官的生成需要添加外在生长因子或分子抑制剂,可能会影响到其药物实验的结果;第三,目前的心脏类器官构建方案众多,标准不一,高效、高质量、标准化的心脏类器官的生成较为困难;第四,现有的心脏类器官仍不成熟,形成的心肌细胞处于胎儿或新生儿的状态[47]。尽管目前这项技术仍存在一些缺陷,但其在疾病机制研究及相应药物试验等方面有着巨大潜力。随着类器官技术的进一步完善与发展,将加快心脏药物的研发和实现心脏疾病的个性化治疗,类器官技术也可能成为器官移植的一个新的发展方向。