李 娜,刘 煜
南京医科大学附属逸夫医院内分泌科,江苏 南京 211166
生物钟是生命为适应地球光照以及温度等环境因子周期变化而演化的内在自主计时机制。地球自转决定了这些环境因子以大约24 h 为周期循环变化,从而导致生命过程也形成了以大约24 h为周期的近昼夜节律。在分子水平上,机体的昼夜节律是由生物钟基因规律性表达产生,即使在没有周期性环境刺激的情况下,机体的昼夜节律也能保持一定的自主节律。生物钟系统可以影响基因的表达、激素的分泌、机体的代谢和行为等[1],其中性激素水平也呈昼夜节律性。另外,生物钟也受一部分外在环境因素的影响。很多研究表明,性激素在受生物钟系统影响的同时,也能反过来作用于生物钟系统[2]。生物钟的紊乱会使机体内环境发生改变而导致包括生殖系统疾病在内的一系列疾病的发生[3-4],而性激素也可以通过影响生物钟基因的表达,来影响机体的代谢和生殖等功能[5]。近年来,性激素和生物钟的相互作用在生殖系统疾病发生和发展中的作用越来越受到关注。因此,为了更好地了解性激素生物节律紊乱在生殖系统的作用,本文就性激素与生物钟系统之间的关系予以综述。
生物钟是生物适应光线、温度等环境因子昼夜周期性变化的一种内在机制。哺乳动物生物钟系统的中心起搏器或振荡器位于下丘脑视交叉上核(suprachiasmatic nucleus,SCN),也被称为中枢生物钟起搏器,其还决定了大脑其他部分以及外周组织的生物节律。外周生物钟网络遍布于机体几乎所有的器官与组织中,包括肝脏、胰腺、心、肾、肺、肠道、脂肪、骨骼肌与平滑肌等。而生物钟系统受一组特殊基因的转录/翻译自动调节反馈环调控,称为生物钟基因,且机体很多细胞都存在着生物钟基因转录因子的自我调节转录/翻译反馈回路[6]。
生物钟基因主要包括芳香烃受体核转位蛋白样1(brain and muscle ARNT⁃like protein 1,Bmal1)基因、时钟基因(CLOCK)、隐色素(cryptochrome,Cry)1基因、Cry2 基因、周期(period,Per)1 基因、Per2 和Per3 基因等。转录增强子Bmal1 和CLOCK 是振荡器的中心,Bmal1⁃CLOCK二聚体结合到目的基因启动子E⁃box序列(CACGTG)中,并促进Pers和Crys基因的转录。而在经过酪蛋白激酶磷酸化等修饰后,Pers 和Crys 蛋白二聚体可以从细胞质转移至细胞核并抑制Bmal1⁃CLOCK 基因的转录,从而抑制其自身的表达[7]。另外,Bmal1⁃CLOCK二聚体还能够促进反红细胞增多病毒(reverse⁃erythroblastosis,REV⁃ERB)和视黄酸受体相关孤儿受体(retinoic ac⁃id receptor⁃related orphan receptor,ROR)的表达,但当REV⁃ERB 和ROR 蛋白在转移至细胞核后,REV⁃ERB 蛋白抑制Bmal1的表达,而ROR蛋白则促进其表达[8]。因此,在生物钟基因转录/翻译的基础上,细胞内形成了一个相对保守的自我调节反馈回路。
女性分泌的性激素主要包括雌激素、孕激素及少量雄激素。成年女性性激素水平存在明显昼夜节律、月经周期、更年期等周期变化,而且在卵巢滤泡功能的不同生理阶段存在较大差距[9]。17β⁃雌二醇(estradiol,E2)在女性初潮前有明显的昼夜节律,上午达最高点,而午夜至最低点,但在初潮后1年其节律性消失。卵泡刺激素(follicle stimulating hor⁃mone,FSH)在早期卵泡期和晚期卵泡期均呈现明显的昼夜节律性,且FSH 水平在夜间较高[10],但有人认为两者的波动仅与睡眠有关[11]。
另外,青春期前男性激素一直处于较低水平,青春期开始快速上升,青春期后分泌逐渐上升并表现出昼夜节律变化,但老年男性的睾酮水平降低且其昼夜节律消失。游离睾酮(free testosterone,FT)即未与性激素结合球蛋白(sex hormone binding glob⁃ulin,SHBG)结合的睾酮浓度在深夜和早晨的差异很大,FT在早晨较高,傍晚后降低,但与SHBG 结合的睾酮一般变化不大,而青春期前和青春期女性体内睾酮的日变化也显示出与男性睾酮水平相同的规律[12]。一般而言,SCN决定了昼夜节律的时相,该时相控制各种生殖激素释放的时间,从而导致机体的激素水平呈现昼夜节律性分布[13]。
2.2.1 雌激素对生物钟系统的影响
雌激素的分泌存在明显的生物节律,且生物钟基因也影响雌激素合成,而雌激素对维持生物钟稳定也发挥重要作用。雌激素可以影响不同组织生物钟基因的表达,包括脑、子宫和卵巢等[14]。在雌激素的诱导下,SCN 组织Per2 mRNA 表达的峰值提前出现,而Per1 mRNA 的表达节律则没有改变,但大脑皮层组织Per1 和Per2 mRNA 表达均无明显改变,这一结果可能是雌激素在各组织的雌激素受体分布不同而导致对这2 种基因的转录调节存在差异[15]。Quintela等[16]发现雌激素通过与雌激素受体结合可以增加脉络丛中Bmal1、Per1 和Per2 的表达。此外,去卵巢雌性小鼠的时差发生紊乱后,其代谢水平也随之改变,包括内脏脂肪组织重量增加、脂肪细胞变大和脂肪相关基因表达增加,而皮下注射雌激素后未见类似改变,这一现象可能与雌激素对Cry1、Per2和Per3等生物钟基因的影响有关[17]。由此可见,雌激素不仅同时影响中枢生物钟和外周生物钟,而且对外周不同组织生物钟基因的调节也存在明显差异。
2.2.2 雄激素对生物钟系统的影响
有学者认为睾酮不受光暗周期和SCN 的控制,而是直接依赖于睡眠。在一些哺乳动物中,睾酮可以通过结合SCN 内表达的雄激素受体来调节SCN的结构与功能,包括SCN 对光的反应[18]。另外,雄性大鼠青春期活动等昼夜节律的改变较雌性大鼠更为显著[18],而且人类在青春期时会倾向于夜间睡眠模式,男性比女性更明显[19],以上均提示雄激素水平可能影响机体生物钟的调节。
雄激素对生物钟基因的表达也起到重要作用。在无脉冲光时,对照组、二氢睾酮处理组和去雄小鼠SCN的Per1和Per2表达无明显差异,而在经过脉冲光处理后,去雄小鼠SCN Per2的表达在傍晚时减少,Per1的表达在午夜增加,表明雄激素对SCN的影响依赖于光照刺激[19]。另外,CLOCK 和Per2蛋白在卵巢颗粒细胞的有腔卵泡中广泛表达,且在睾酮刺激后,CLOCK 和Per2 呈周期性表达[20],而且在大鼠多囊卵巢综合征(polycystic ovarian syn⁃drome,PCOS)模型中,雄激素影响各个外周生物钟间的同步性[3],这可能是PCOS发病机制之一。
生物钟基因能够在生殖组织中广泛表达,如卵巢组织[21]。大鼠黄体细胞(luteal cell,LC)中Per2蛋白呈节律性表达,而其在窦前卵泡和窦卵泡颗粒细胞(granulosa cells,GC)中的表达无节律性。青春期前大鼠卵巢组织Per1和Bmal1表达水平较低且无节律性,而在卵泡发育过程中,促性腺激素刺激后的生物钟基因开始呈节律性表达[22]。而且有研究发现人类窦卵泡GC 表达CLOCK 和Per2 蛋白,但两者在原始卵泡和窦前卵泡中并不表达[20]。另外,FSH和黄体生成素(luteinizing hormone,LH)可以在体外影响颗粒细胞生物钟基因的表达[23]。因此,生物钟基因的节律性仅局限于成熟的GC及LC中,反映了细胞生物钟的发展过程。
近年来,很多研究开始关注卵巢时钟的生理意义,且大多是利用啮齿类动物的GC 和卵泡膜细胞(theca cells,TC)来研究的。Mereness 等[24]在小鼠体内分别特异性敲除TC 和GC 中的Bmal1(敲除后分别简称为TCKO 和GCKO)后发现,生殖周期、排卵前LH、孕酮、卵巢形态及行为均未见明显改变,而黄体生成素/人绒毛膜促性腺激素受体(luteinizing hor⁃mone/choriogonadotropin receptor,LHCGR)在TCKO小鼠卵巢中的表达节律与对照组和GCKO 组不同,且TCKO 小鼠的排卵数和生育力下降,提示TCKO小鼠对LH的敏感性下降,因此表明Bmal1对生殖系统的重要性。另外,卵巢的时钟还影响甾体类激素的合成。用小干扰RNA(small interfering RNA,siR⁃NA)抑制GC 中Bmal1 的表达后发现,Per1、Per2、REV⁃erbα、FSH 受体、Cyp11a1、Cyp19a1 及StAR 的表达均下降,且Bmal1可以通过PI3K/AKT/mTOR 途径来降低孕酮和E2 的分泌[25]。另外,有学者用CLOCK siRNA 处理GC 后发现雌激素和细胞色素P450 芳香化酶(cytochrome P450 aromatase,P450arom)mRNA 均显著降低,其可能的机制是P450arom基因启动子区域含有的E⁃box元件能够与CLOCK⁃Bmal1 二聚体结合,而CLOCK敲除后,P450arom mRNA 及雌激素水平亦降低;而用Per2 siRNA 处理GC 后发现孕酮和StAR mRNA 表达升高,可能是因为StAR 启动子区域含有的E⁃box元件也与CLOCK⁃Bmal1二聚体结合发挥作用,而此时Per2基因减少,因此StAR与CLOCK⁃Bmal1结合增加而使孕酮和StAR mRNA表达升高[26]。REV⁃ERBα在生物钟系统中是一种重要负性因子。在成熟GC 中,GSK4112(一种REV⁃ERBα激动剂)可以抑制Bmal1及Per2 的表达,而且REV⁃ERBα还可以通过与启动子区域ROR 反应元件结合而抑制氨基酮戊酸合成酶1、过氧化物酶体增殖激活受体共激活因子1α和白介素⁃6的表达,从而影响排卵和孕酮的产生[27]。
一些学者在许多组织的细胞中发现了控制时钟基因的分子机制,随后又提出时钟也对生育生殖能力有影响[28-29]。生育能力是由下丘脑⁃垂体⁃性腺轴(HPG 轴)和2 个下丘脑神经元调控的,包括亲吻肽神经元和促性腺激素释放激素(gonadotropin⁃re⁃leasing hormone,GnRH)神经元[30-31]。HPG轴上各个生物钟的协调维持正常的生殖功能,而生物钟基因多态性等原因导致HPG 轴上的生物钟失同步,很可能是一些生殖系统疾病的病因之一。此外,外周的生物钟模式与褪黑素和皮质醇的生物节律相一致,且激素水平机体稳态[32-35]。轮班工作、时差综合征及睡眠不足等因素会影响女性性激素的生物节律,进而影响子宫、卵巢和SCN 生物钟基因的表达水平,并进一步导致机体生殖功能的紊乱[36],如受孕率下降、流产率上升和乳腺癌风险增加等[37]。其中,PCOS是育龄期女性常见的内分泌疾病[38],以无排卵、稀发排卵和高雄激素为特征[39],但其发病机制并不明确。有研究发现PCOS患者GC中Bmal1的表达较正常女性降低,提示PCOS 的发病可能与生物钟有着重要联系[20]。Chen 等[20]用睾酮刺激人类黄体颗粒细胞后发现Per2和CLOCK基因呈节律性表达,且与甾类激素生成有关的Cyp11A1、Cyp19A1 和StAR 表达增加,其中StAR呈昼夜节律性表达,表明PCOS患者高雄状态不仅影响激素水平,而且可能引起机体昼夜节律的紊乱。另外,有人用雄激素处理雌性大鼠模拟PCOS,发现雄激素不仅扰乱大鼠的发情周期,而且使各个外周生物钟(包括生殖和代谢相关的结构)出现不同步的现象,从而可能导致体内疾病状态的发生[3]。因此,PCOS患者体内雄激素水平的升高对生物钟系统的影响可能加速了患者疾病的进程。
近年来,HPG轴上的分子时钟对生殖功能的影响备受关注。生物钟系统在维持HPG 轴功能的过程中发挥重要作用,同时生物钟的紊乱与各种病理生理状态密切相关。人们对性激素和生物钟系统关系的研究可能有助于揭示一些生殖系统疾病的发病机制。然而性激素与生物钟相互作用及其机制仍不清楚,生物钟在SCN中分子调节机制、生物钟系统通过影响促性腺激素的分泌对卵巢时钟和甾体类激素合成的作用机制也有待进一步研究。