非编码RNA与糖尿病血管病变的关系

2021-12-05 21:38万淑君孔祥吕坤
关键词:微血管高糖内皮细胞

万淑君,孔祥,吕坤

皖南医学院重大疾病非编码RNA转化研究安徽普通高校重点实验室,皖南医学院弋矶山医院中心实验室,芜湖241001

糖尿病是以高血糖为主要病理特征的慢性代谢性疾病,已严重威胁人类健康。超过50%的糖尿病患者死于血管病变,且随病程延长,糖尿病患者血管病变的发生率显著升高[1]。糖尿病血管病变包括微血管及大血管病变,其微血管病变主要包括糖尿病视网膜病变、糖尿病肾病及糖尿病微血管病变引发的糖尿病神经病变[2]。据报道,近60%的2型糖尿病患者在确诊后的10年内出现各种程度的视网膜病变[3]。肾脏微血管病变是导致糖尿病患者终末期肾病的主要原因[4]。此外,病程超过5年的1型糖尿病患者及早期的2型糖尿病患者中,约50%会发生糖尿病神经病变[5]。因此,早期诊断和治疗糖尿病血管病变,对于预防疾病发展,降低其致死率和致残率具有重要意义。近年来的研究[6]表明,非编码RNA(noncoding RNA,ncRNA)存在于多种组织细胞及循环血液中,在多个水平调控基因表达,参与各种生理病理过程。ncRNA按其片段大小主要分为微RNA(microRNA,miRNA)、长 链 非 编 码RNA(long non coding RNA,lncRNA)及 环 状RNA(circular RNA,circRNA)。miRNA在糖尿病微血管并发症患者血液中发生显著变化,有成为潜在生物标志物的可能性[7]。lncRNA存在于多种血管内皮细胞(endothelial cell,EC)中,可在转录、转录后及表观遗传学水平调控基因表达,参与细胞的增殖、分化及凋亡,其异常表达与糖尿病血管病变的发生、发展密切相关,可成为潜在治疗靶点。circRNA广泛存在于真核细胞中,具有显著的基因调节功能,可与miRNA竞争结合位点,参与糖尿病血管病变的多种分子机制[1]。本文阐述miRNA、lncRNA及circRNA在糖尿病血管病变中作用的研究进展,以期为糖尿病血管病变的诊断和治疗提供新思路。

1 miRNA

miRNA为一类长20~22 nt的非编码小分子单链RNA,通过完全或不完全互补配对原则与相应靶基因信使RNA(mRNA)的3′端结合,并在转录后水平调控靶基因表达,参与机体的多种生理病理过程[7]。miRNA可调控体内约60%的mRNA表达,单一miRNA可影响上百种不同基因的表达,而单一靶基因又可受多种miRNA的调控。miRNA与糖脂代谢异常存在重要联系,多种异常表达的miRNA可参与糖尿病及其血管并发症的发生、发展[8-9]。

1.1 miRNA参与糖尿病微血管病变的发展

1.1.1 miRNA参与糖尿病视网膜病变EC异常增殖是糖尿病视网膜病变发生的主要诱因,而miRNA在EC异常增殖中发挥重要作用。链脲霉素(streptozotocin,STZ)诱导的糖尿病大鼠视网膜中的miR-200b表达显著降低,进而导致血管内皮生长因子相关mRNA及蛋白表达增加,促使糖尿病视网膜发生病变[10]。过表达miR-200b不仅逆转上述过程,还可抑制高糖诱导下血管内皮生长因子升高所引起的人脐静脉内皮细胞异常增生和血管通透性增加,进一步证实了miR-200b参与糖尿病视网膜病变的发生、发展[11]。低氧条件下,miR-126在糖尿病视网膜细胞中低表达,过表达miR-126可抑制血管内皮生长因子及基质金属蛋白酶-9高表达,阻断EC增殖,抑制血管异常增生[12]。过表达miR-21可抑制促凋亡介质-死亡结构域相关蛋白表达,从而逆转高糖诱导的内皮细胞凋亡;反之,抑制miR-21表达可显著增强高糖诱导的内皮细胞损伤[13]。在糖尿病大鼠中,miR-320可负向调控高糖诱导的血管内皮生长因子和纤维连接蛋白(fibronectin,FN),抑制小管形成和内皮细胞迁移[14]。

1.1.2 miRNA参与糖尿病肾脏病变STZ诱导的糖尿病小鼠肾脏中miR-1表达降低后,内皮素-1(endothelin-1,ET-1)和FN表达增加。FN可介导细胞增殖与分化,作为细胞黏附和迁移的支架,致使肾脏微血管血栓形成[15],引发糖尿病肾病。miR-29c和miR-93可通过特异性机制调控糖尿病肾病的发生、发展。在糖尿病小鼠模型中,抑制miR-29c表达可靶向作用生长因子同源蛋白1(sprouty homolog 1,Spry1),减少蛋白尿和肾脏系膜中基质沉积。Spry1是丝裂素活化蛋白激酶抗血管生成作用的重要调节因子,因此miR-29c可能与血管生成存在联系,影响糖尿病肾脏微血管形成[16]。与前者相比,miR-93参与糖尿病肾病发生、发展的方式更直接。糖尿病小鼠肾脏足细胞中过表达miR-93可靶向作用于有丝分裂原和应激激活激酶2(mitogen and stress-activated kinase 2,Msk2),影响其底物组蛋白H3 Ser10(Histone H3 Ser10,H3S10)磷酸化,进而调节相关染色质重组,显著改善糖尿病肾病。此外,高糖抑制肾脏miR-93表达,加强其下游血管内皮生长因子信号转导,促使胶原蛋白及FN合成增多,加速糖尿病肾病的发生、发展[17]。糖尿病肾病患者血清中游离miRNA存在差异性变化,同时其miRNA复合体及胞间囊泡(extracellular vesicle,EV)miRNA也发生显著变化。糖尿病肾病患者血清中miR-660-Ago-2(protein Argonaute-2)复合体及EV中miR-21和miR-126水 平 升 高,miR-132-HDL(high-density lipoprotein)复合体水平降低[18]。这些非游离差异表达miRNA的发现,提高了miRNA作为糖尿病肾病临床标志物的敏感性。

1.1.3 miRNA参与糖尿病神经病变多种miRNA参与糖尿病神经病变的发生、发展。miR-146a与微血管及糖尿病神经病变密切相关,能特异性抑制内皮细胞的炎症反应和改善神经元功能[19]。miR-146a在糖尿病小鼠坐骨神经组织中低表达,致使其靶蛋白白介素-1受体相关激酶1(IL-1R-associated kinase-1,IRAK1)、肿瘤坏死因子受体相关因子6(tumor necrosis factor-associated factor 6,TRAF6)及活化B细胞核因子光链增强子活性增强,其下游促炎因子单核细胞趋化蛋白-1(monocyte chemotactic protein-1,MCP-1)和血管细胞黏附分子-1(vascular cell adhesion molecule-1,VCAM-1)水平升高。此外,有研究[20]表明,对周围神经病变的糖尿病小鼠系统性给予外源性miR-146a可显著抑制IRAK1及TRAF6表达,使其下游核因子κB(nuclear factor-κB,NF-κB)信号通路失活,MCP-1及VCAM-1水平降低,从而改善坐骨神经组织局部血流和功能。胸腺素β4(thymosin-β4,Tβ4)治疗糖尿病小鼠,可升高坐骨神经组织中miR-146a含量,抑制其下游促炎因子表达,显著改善坐骨运动神经和感觉神经传导速度。体外实验中,抑制miR-146a可减弱Tβ4促背根神经元轴突和毛细血管生长的功能[21]。因此,Tβ4可能通过miR-146a调控IRAK1、TRAF6表达,促使下游NF-κB炎症通路失活,降低MCP-1及VCAM-1水平,从而改善糖尿病小鼠神经血管重塑和功能。miRNA在糖尿病微血管及周围神经病变的发生、发展中发挥重要作用,但其机制有待进一步研究。

1.2 miRNA参与糖尿病大血管病变的发展

心血管疾病(cardiovascular disease,CVD)是糖尿病最常见的大血管病变[22]。体内及体外研究均表明高糖引起的miRNA异常表达可导致CVD相关的EC、血管平滑肌细胞(vascular smooth muscle cell,VSMC)、血小板及巨噬细胞功能障碍和脂质代谢异常[23]。并且,某些miRNA可作为糖尿病大血管病变的潜在生物标志物和治疗靶点[24]。

miR-126在内皮细胞凋亡体中丰富表达,可调控趋化因子CXCL12的产生及血管内皮生长因子的应答,对血管具有一定的保护作用[25]。miR-126和miR-132作为内皮细胞特异性miRNA,具有促进血管再生的作用。相关研究[26]表明,与正常对照相比,2型糖尿病小鼠心肌组织中miR-126和miR-132表达减少,可使血管内皮生长因子水平降低,抗血管生长因子相关EVH1结构域蛋白1(sprouty-related EVH1 domain-containing protein1,Spred1)和p120 Ras鸟苷三磷酸酶激活蛋白(p120 Ras GTPase-activating protein,p120RasGAP)表达增加,促使糖尿病心脏病发生;此外,2型糖尿病心脏病前期患者循环血液中miR-126和miR-132异常表达,有成为早期预测指标的潜能。与2型糖尿病患者及健康对照相比,2型糖尿病冠状动脉性疾病患者血清miR-342及miR-450差异性表达,可作为其诊断及预测指标;且miR-342、miR-450及NADPH氧化酶(NADPH oxidases,NOX-4)之间存在密切联系,miR-342上调及miR-450下调可增强NOX-4活性,导致活性氧(reactive oxygen species,ROS)产物增加,形成有利于动脉粥样硬化斑块和2型糖尿病冠状动脉性疾病发生的炎症环境[27]。miR-4513 rs2168518与糖尿病患者血压、血脂及血糖具有一定相关性,miR-499 rs3746444和miR-423 rs6505162与血压及高密度脂蛋白相关[28]。miR-1和miR-21可预测2型糖尿病无症状患者急性心力衰竭的发生,与糖尿病大血管病变有密切的联系,可能参与其发生、发展[24]。

2 lncRNA

目前,人们对lncRNA的了解远未达miRNA水平。但近年来,lncRNA作为机体重要的生物调控因子越来越受到关注。lncRNA是一类长度超过200 nt的RNA分子,不编码蛋白,但其呈现结构和功能的异质性,可在转录、转录后及表观遗传学水平调控基因表达,参与细胞的增殖、分化及凋亡,其异常表达与多种疾病的发生、发展密切相关,如癌症、神经系统疾病及糖脂代谢异常等[29]。lncRNA可作为邻近或远距离蛋白编码基因的调控因子,参与转录后调控、蛋白质复合物组织、细胞间信号传递及蛋白质变构调节等生物过程。有研究[30]显示,lncRNA可与其他因子协同打开染色质结构,参与各种基因的转录激活,并与转录因子(transcription factor,TF)结合,加强以上生物过程。此外,lncRNA也可与特殊位点结合或与TF位点重合,抑制基因转录;并且lncRNA可裂解成长度更短的沉默RNA(silencing RNA,siRNA),抑制相关基因表达[31]。

2.1 lncRNA参与糖尿病微血管病变的发展

lncRNA影响基因表达,是机体重要的生物调控因子,可参与多种疾病的生理病理过程[32]。lncRNA可通过影响内皮细胞氧化应激、纤维化及凋亡等,参与糖尿病微血管病变的发生、发展。此外,某些lncRNA在糖尿病肾病、视网膜病变及神经病变中异常表达,有成为糖尿病微血管病变潜在生物标志物的可能[33]。

2.1.1 lncRNA参与糖尿病视网膜病变高糖可使糖尿病视网膜内皮细胞中lncRNA MIAT高表达。MIAT可抑制内皮细胞增殖、迁移和血管形成,沉默MIAT基因可改善糖尿病引起的视网膜微血管功能障碍。MIAT作为一种竞争性内源性lncRNA,与血管内皮生长因子及miR-150-5p形成反馈通路,调控内皮细胞功能。细胞凋亡是糖尿病视网膜病变的特征性表现[34]。有报道[35]称,糖尿病视网膜病变患者体内MIAT和NF-κB含量均升高,MIAT可与NF-κB结合介导细胞凋亡。此外,MIAT与miR-29b之间存在调控关系,抑制MIAT表达可显著逆转高糖所致的miR-29b低表达、miR-29b靶蛋白Sp1高表达及细胞凋亡。以上研究表明,MIAT可通过NF-κB和miR-29b调控细胞凋亡,从而参与糖尿病视网膜病变的发生、发展。

高血糖可使视网膜内皮细胞lncRNA ANRIL高表达,影响血管内皮生长因子的表达及功能。在糖尿病动物的视网膜内皮细胞中,ANRIL通过与组蛋白乙酰化因子p300和多梳抑制复合物2(polycomb repressive complex 2,PRC2)相互作用,使血管内皮生长因子表达增加,促使视网膜中微血管再生;反之,敲除小鼠ANRIL或抑制人视网膜内皮细胞中ANRIL表达,可显著降低EC生长因子组蛋白甲基化转移酶(enhancer of zeste homolog 2,EZH2)和p300 mRNA的含量,从而抑制视网膜中微血管再生[36]。

2.1.2 lncRNA参与糖尿病肾脏病变有研究[37]表明,糖尿病小鼠的肾组织中约有1 018个lncRNA异常表达,其中lncRNA CYP4B1-PS1-001显著下调;过表达lncRNA CYP4B1-PS1-001可抑制糖尿病肾组织系膜细胞的增殖及纤维化,改善糖尿病肾脏微循环,从而抑制糖尿病肾病的发生、发展。LncRNA MALAT1在多种细胞中表达,并在糖尿病大鼠和STZ诱导的糖尿病小鼠模型中高表达[38]。STZ诱导的糖尿病大鼠肾组织及高糖培养的人近端肾小管上皮细胞中MALAT1表达上调,而miR-23c表达含量降低;同时,抑制MALAT1或过表达miR-23c可使ELAV样RNA结合蛋白1(ELAV like RNA binding protein 1,ELAVL1)、NOD样受体热蛋白结构域-3(NOD-like receptor pyrin domain containing-3,NLRP3)、凋亡蛋白酶-1(Caspase-1)及促炎因子白介素-1β(interleukin-1β,IL-1β)表达降低,肾小管上皮细胞凋亡改善[39]。此外,STZ诱导的糖尿病肾病小鼠肾脏皮质层中的MALAT1高表达[40],进一步表明MALAT1与糖尿病肾病有着密切的联系,可能参与糖尿病肾病的病理生理过程,对未来糖尿病肾病的潜在治疗靶点研究具有重要意义。

2.1.3 lncRNA参与糖尿病神经病变高糖和高游离脂肪酸环境可使交感神经样嗜铬细胞瘤(pheochromocytoma,PC12)中lncRNA NONRATT021972表 达 增 加,抑 制lncRNA NONRATT021972可显著降低高糖高脂环境PC12细胞中升高的白介素6(interleukin-6,IL-6)和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α),改善糖尿病神经周围血管病变[41]。此外,该研究还发现糖尿病大鼠颈上神经节中lncRNA NONRATT021972表达增加,应用siRNA特异性抑制lncRNA NONRATT021972可降低TNFα表 达,抑 制 胰 岛 素 受 体 底 物1(insulin receptor substrate1,IRS1)丝氨酸磷酸化,促使IRS1含量增加,改善神经功能。糖尿病神经细胞中存在差异表达的lncRNA,其靶基因通常位于细胞因子-细胞因子受体相互作用的复合体、趋化因子信号通路及细胞黏附分子中,通过调控免疫应答、细胞迁移、防御反应及趋化等过程中相关基因表达,参与糖尿病神经周围血管病变的发生、发展[42]。

2.2 lncRNA参与糖尿病大血管病变的发展

lncRNA在不同病理生理状态下特异性表达,提示其作为疾病潜在生物标志物和治疗靶标的可能性;且发现越来越多的lncRNA参与糖尿病CVD的发生、发展[43],但其病理机制仍不明了。

lncRNA不仅参与心血管正常发育过程,差异表达的lncRNA在CVD中也发挥重要作用。lncRNA SENCR和lncRNA H19广泛存在于各种CVD中,SENCR可促进VSMC增殖和迁移,其过表达可抵抗高糖对VSMC的氧化应激作用。此外,SENCR在2型糖尿病小鼠模型VSMC中低表达,与早期冠状动脉性心脏病(coronary heart disease,CAD)的 发 生、发 展 密 切 相 关[44]。LncRNA H19可抑制细胞增殖,是哺乳动物发育和疾病发展过程中的重要调节因子。胰岛素样生长因子2(insulinlike growth factor 2,IGF2)/H19位点的甲基化与糖代谢、糖尿病的发生和发展、肾脏的发育、先兆子痫及主动脉狭窄存在一定的相关性[45]。LncRNA E330013P06在2型糖尿病小鼠巨噬细胞中高表达,促进免疫炎症反应及泡沫细胞形成,与2型糖尿病动脉粥样硬化性疾病密切相关。糖尿病患者体内增加的血管紧张素Ⅱ可使VSMC中的lncRNA Ang362上调,促进下游miR-221及miR-222表达增加,进而使血管平滑肌细胞增殖,与糖尿病高血压及动脉粥样硬化性疾病的发生有关[46]。此外,lncRNA ANRIL可通过激活NF-κB信号通路,增强血管内皮生长因子对血管的增生作用,参与糖尿病大血管病变[47]。

3 circRNA

circRNA是一类首尾共价相连的圆形RNA分子,近年来逐渐受到关注。circRNA具有显著的基因调节功能,可与miRNA竞争结合位点,参与包括肿瘤在内的多种疾病的发生、发展[48]。

3.1 circRNA参与糖尿病微血管病变的发展

有研究[49]表明,circRNA HIPK3在糖尿病视网膜中显著升高,可作为竞争性内源RNA与miR-30a相互作用,促进视网膜内皮细胞增殖,导致血管功能障碍。circRNA PWWP2A和miR579通过内源性竞争作用上调血管生成素1/封闭蛋白/去乙酰化酶1蛋白,促进糖尿病视网膜病变的发生。circRNA 0005015在糖尿病视网膜病变患者血浆、玻璃体及纤维血管膜中表达增加;沉默circRNA 0005015可抑制人视网膜EC的增殖、迁移和血管形成,改善糖尿病视网膜病变[50]。研究[51]表明,糖尿病视网膜病变小鼠模型中circRNA ZNF609表达量升高,促使炎症介质IL-6和TNF-α分泌增加,导致视网膜血管渗透性增加和毛细血管退化;沉默ZNF609基因可减少病理性血管生成和改善视网膜血管功能;此外,高糖及缺氧应激可显著上调视网膜血管中circRNA ZNF609的表达量。因此circRNA ZNF609与糖尿病视网膜病变密切相关,可成为糖尿病视网膜病变的潜在治疗靶点和诊断标志物。

circRNA 15698在糖尿病小鼠及高糖诱导的小鼠肾脏系膜细胞中高表达。并且,通过生物信息学及荧光素酶报告发现circRNA 15698与miR-185竞争结合位点,调控转化生长因子-β1(transforming growth factor-β1,TGF-β1)表达,促进肾脏细胞外基质相关蛋白的合成及糖尿病肾病的发展[52]。此外,有研究[53]表明,circRNA 008045可与miR-24-3p相结合,抑制系膜细胞的增殖和纤维化,改善糖尿病肾脏病变。

circRNA HIPK3不仅在糖尿病视网膜病变中发生变化,其在糖尿病神经病变患者血清中也存在差异性表达。鞘内注射circRNA HIPK3抑制剂可显著改善糖尿病大鼠周围性神经痛。在糖尿病周围神经病变的体外模型中,自噬相关circRNA可通过下调miRNA-145-3p缓解神经细胞凋亡、自噬和氧化应激,改善糖尿病神经病变[54]。

3.2 circRNA参与糖尿病大血管病变的发展

糖尿病小鼠心脏和血管紧张素Ⅱ诱导的小鼠心脏成纤维细胞中circRNA 000203高表达,可作为糖尿病心脏纤维化的潜在诊断指标和治疗靶点[55]。有研究[56]表明,circRNA 010567可通过调控miR-141/TGF-β1通路促进糖尿病心肌纤维化。circRNA 0076631(细胞caspase-1-相关circRNA)在高糖培养的心肌细胞及糖尿病患者血清中高表达,可通过miR-214-3p/caspase-1通路介导糖尿病性心肌细胞的炎症性坏死,促进糖尿病CVD的发生[57]。此外,circRNA ANKRD36在糖尿病炎症性CVD中异常表达,可作为其监测指标[58]。循环血液中circRNA 11783-2与冠状动脉性疾病及2型糖尿病具有一定相关性[59]。总之,circRNA参与糖尿病CVD的发生、发展,但其具体机制尚处于初步探究阶段。

4 结语

miRNA影响体内大部分mRNA表达,可在转录后水平调控糖尿病血管病变的多种病理过程。并且,miRNA在组织细胞及循环血液中稳定表达,具有组织特异性,能较好地反映病变组织器官功能状态,且变化较早,有望成为糖尿病血管病变患者的早期诊断标志物及监测指标。lncRNA可在转录、转录后及表观遗传学水平调控基因表达,参与细胞的增殖、分化及凋亡,其异常表达与糖尿病血管病变的发生、发展密切相关。相较于miRNA,lncRNA进化保守程度及稳定性较低,且数量较少;但lncRNA具有高度的组织特异性和时间特异性,可随疾病的发展不断变化,及时反映疾病发展过程。近年来,circRNA在糖尿病血管病变中的作用逐渐受到关注。circRNA的环形闭合结构有异于其他线性RNA,使其具有高度的稳定性和进化保守程度,并且其在糖尿病血管病变中异常表达,有成为其诊断标志物的潜能。此外,circRNA与miRNA相互作用,竞争结合位点,可在转录后水平调控基因表达,参与糖尿病血管病变的发生、发展,但其具体机制仍需进一步阐明。ncRNA作为一类不编码蛋白的RNA分子,在糖尿病血管病变中差异表达,并参与调控其多种分子机制;对ncRNA的深入研究将为探索糖尿病血管病变非侵袭性诊断标志物及制定个体化治疗方案提供思路。

参·考·文·献

[1]Beltrami C,Angelini TG,Emanueli C.Noncoding RNAs in diabetes vascular complications[J].J Mol Cell Cardiol,2015,89:42-50.

[2]Cefalu WT,Buse JB,Tuomilehto J,et al.Update and next steps for realworld translation of interventions for type 2 diabetes prevention:reflections from a diabetes care editors expert forum[J].Diabetes Care,2016,39(7):1186-1201.

[3]Rübsam A,Parikh S,Fort P.Role of inflammation in diabetic retinopathy[J].Int J Mol Sci,2018,19(4):942.

[4]Tang J,Yao DY,Yan HY,et al.The role of MicroRNAs in the pathogenesis of diabetic nephropathy[J].Int J Endocrinol,2019,2019:8719060.

[5]Ahmed F,Bakhashab S,Bastaman I,et al.Anti-angiogenic miR-222,miR-195,and miR-21a plasma levels in T1DM are improved by metformin therapy,thus elucidating its cardioprotective effect:the MERIT study[J].Int J Mol Sci,2018,19(10):3242.

[6]DiStefano JK.Beyond the protein-coding sequence:noncoding RNAs in the pathogenesis of type 2 diabetes[J].Rev Diabet Stud,2015,12(3/4):260-276.

[7]Howangyin KY,Silvestre JS.Diabetes mellitus and ischemic diseases:molecular mechanisms of vascular repair dysfunction[J].Arterioscler Thromb Vasc Biol,2014,34(6):1126-1135.

[8]Feng J,Xing WL,Xie L.Regulatory roles of MicroRNAs in diabetes[J].Int J Mol Sci,2016,17(10):1729.

[9]Paul P,Chakraborty A,Sarkar D,et al.Interplay between miRNAs and human diseases[J].J Cell Physiol,2018,233(3):2007-2018.

[10]Liu TT,Hao Q,Zhang Y,et al.Effects of microRNA-133b on retinal vascular endothelial cell proliferation and apoptosis through angiotensinogen-mediated angiotensin II-extracellular signal-regulated kinase 1/2 signalling pathway in rats with diabetic retinopathy[J].Acta Ophthalmol,2018,96(5):e626-e635.

[11]Li EH,Huang QZ,Li GC,et al.Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene[J].Biosci Rep,2017,37(2):BSR20160572.

[12]Costantino S,Paneni F,Lüscher TF,et al.MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart[J].Eur Heart J,2016,37(6):572-576.

[13]Zhong X,Chung ACK,Chen HY,et al.miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes[J].Diabetologia,2013,56(3):663-674.

[14]Chandy M,Ishida M,Shikatani EA,et al.C-Myb regulates transcriptional activation of miR-143/145 in vascular smooth muscle cells[J].PLoS One,2018,13(8):e0202778.

[15]de Gonzalo-Calvo D,Cenarro A,Civeira F,et al.microRNA expression profile in human coronary smooth muscle cell-derived microparticles is a source of biomarkers[J].Clínica E Investig En Arterioscler,2016,28(4):167-177.

[16]Long JY,Wang Y,Wang WJ,et al.MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1,and its in vivo knockdown prevents progression of diabetic nephropathy[J].J Biol Chem,2011,286(13):11837-11848.

[17]Badal SS,Wang Y,Long JY,et al.miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy[J].Nat Commun,2016,7:12076.

[18]Florijn BW,Duijs JMGJ,Levels JHM,et al.Diabetic nephropathy alters the distribution of circulating angiogenic microRNAs among extracellular vesicles,HDL,and ago-2[J].Diabetes,2019,68(12):2287-2300.

[19]Cheng HS,Sivachandran N,Lau A,et al.MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways[J].EMBO Mol Med,2013,5(7):1017-1034.

[20]Liu XS,Fan BY,Szalad A,et al.MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice[J].Diabetes,2017,66(12):3111-3121.

[21]Wang L,Chopp M,Lu XR,et al.miR-146a mediates thymosinβ4 induced neurovascular remodeling of diabetic peripheral neuropathy in type-II diabetic mice[J].Brain Res,2019,1707:198-207.

[22]de Gonzalo-Calvo D,Vilades D,Martinezcamblor P,et al.Circulating microRNAs in suspected stable coronary artery disease:a coronary computed tomography angiography study[J].J Intern Med,2019,286(3):341-355.

[23]Barber JL,Zellars KN,Barringhaus KG,et al.The effects of regular exercise on circulating cardiovascular-related microRNAs[J].Sci Rep,2019,9(1):7527.

[24]Al-Hayali MA,Sozer V,Durmus S,et al.Clinical value of circulating microribonucleic acids miR-1 and miR-21 in evaluating the diagnosis of acute heart failure in asymptomatic type 2 diabetic patients[J].Biomolecules,2019,9(5):193.

[25]王磊,王红娜,祖晓麟.血浆miR-126水平与冠状动脉慢血流现象的关系[J].中华医学杂志,2019,99(17):1323-1327.

[26]Rawal S,Munasinghe PE,Shindikar A,et al.Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy[J].Cardiovasc Res,2017,113(1):90-101.

[27]Seleem M,Shabayek M,Ewida HA.MicroRNAs 342 and 450 together with NOX-4 activity and their association with coronary artery disease in diabetes[J].Diabetes Metab Res Rev,2019,35(5):e3130.

[28]Pernomian L,Moreira JD,Gomes MS.In the view of endothelial microparticles:novel perspectives for diagnostic and pharmacological management of cardiovascular risk during diabetes distress[J].Exp Diabetes Res,2018,2018:9685205.

[29]Davidovich C,Cech TR.The recruitment of chromatin modifiers by long noncoding RNAs:lessons from PRC2[J].RNA,2015,21(12):2007-2022.

[30]He XY,Ou CL,Xiao YH,et al.LncRNAs:key players and novel insights into diabetes mellitus[J].Oncotarget,2017,8(41):71325-71341.

[31]Salviano-Silva A,Lobo-Alves SC,de Almeida RC,et al.Besides pathology:long non-coding RNA in cell and tissue homeostasis[J].Non-Coding RNA,2018,4(1):3.

[32]Zhu AD,Sun YY,Ma QJ,et al.lncRNA-ATB promotes viability,migration,and angiogenesis in human microvascular endothelial cells by sponging microRNA-195[J].J Cell Biochem,2019,120(9):14360-14371.

[33]Feng YM,Chen S,Xu JR,et al.Dysregulation of lncRNAs GM5524 and GM15645 involved in high glucose induced podocyte apoptosis and autophagy in diabetic nephropathy[J].Mol Med Rep,2018,18(4):3657-3664.

[34]Abdulle LE,Hao JL,Pant OP,et al.MALAT1 as a diagnostic and therapeutic target in diabetes-related complications:a promising longnoncoding RNA[J].Int J Med Sci,2019,16(4):548-555.

[35]Zhang JY,Chen MC,Chen JW,et al.Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis[J].Biosci Rep,2017,37(2):BSR20170036.

[36]Thomas AA,Feng B,Chakrabarti S.ANRIL:a regulator of VEGF in diabetic retinopathy[J].Invest Ophthalmol Vis Sci,2017,58(1):470.

[37]Wang M,Wang SY,Yao D,et al.A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy[J].Mol Cell Endocrinol,2016,426:136-145.

[38]Yang Y,Lv X,Fan QL,et al.Analysis of circulating lncRNA expression profiles in patients with diabetes mellitus and diabetic nephropathy:differential expression profile of circulating lncRNA[J].Clin Nephrol,2019,92(1):25-35.

[39]Li X,Zeng L,Cao CW,et al.Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy[J].Exp Cell Res,2017,350(2):327-335.

[40]Hu MS,Wang R,Li XB,et al.LncRNA MALAT1 is dysregulated in diabetic nephropathy and involved in high glucose-induced podocyte injury via its interplay withβ-catenin[J].J Cell Mol Med,2017,21(11):2732-2747.

[41]Yu W,Zhao GQ,Cao RJ,et al.LncRNA NONRATT021972 was associated with neuropathic pain scoring in patients with type 2 diabetes[J].Behav Neurol,2017,2017:2941297.

[42]Fachrul M,Utomo DH,Parikesit AA.lncRNA-based study of epigenetic regulations in diabetic peripheral neuropathy[J].Silico Pharmacol,2018,6(1):1-5.

[43]Pant T,Dhanasekaran A,Fang J,et al.Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy[J].BMC Cardiovasc Disord,2018,18(1):1-10.

[44]Wu G,Cai J,Han Y,et al.LincRNA-p21 regulates neointima formation,vascular smooth muscle cell proliferation,apoptosis and atherosclerosis by enhancing p53 activity[J].Circulation,2014,130(17):1452-1465.

[45]Reddy MA,Chen Z,Park JT,et al.Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA[J].Diabetes,2014,63(12):4249-4261.

[46]Das S,Senapati P,Chen Z,et al.Regulation of angiotensin II actions by enhancers and super-enhancers in vascular smooth muscle cells[J].Nat Commun,2017,8(1):1467.

[47]Zhang B,Wang D,Ji TF,et al.Overexpression of lncRNA ANRIL upregulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-κB signaling pathway in a rat model[J].Oncotarget,2017,8(10):17347-17359.

[48]Zaiou M.CircRNAs signature as potential diagnostic and prognostic biomarker for diabetes mellitus and related cardiovascular complications[J].Cells,2020,9(3):659.

[49]Yan QJ,He XY,Kuang GY,et al.CircRNA cPWWP2A:an emerging player in diabetes mellitus[J].J Cell Commun Signal,2020,14(3):351-353.

[50]Zhang SJ,Chen X,Li CP,et al.Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy[J].Investig Ophthalmol Vis Sci,2017,58(14):6500-6509.

[51]Liu C,Yao MD,Li CP,et al.Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction[J].Theranostics,2017,7(11):2863-2877.

[52]Hu W,Han Q,Zhao L,et al.Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1[J].J Cell Physiol,2019,234(2):1469-1476.

[53]Liu HF,Wang X,Wang ZY,et al.Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11[J].J Cell Physiol,2020,235(5):4520-4529.

[54]Wang L,Luo TY,Bao ZH,et al.Intrathecal circHIPK3shRNA alleviates neuropathic pain in diabetic rats[J].Biochem Biophys Res Commun,2018,505(3):644-650.

[55]Tang CM,Zhang M,Huang L,et al.CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p,Col1a2 and CTGF,in cardiac fibroblasts[J].Sci Rep,2017,7:40342.

[56]Zhou B,Yu JW.A novel identified circular RNA,circRNA_010567,promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1[J].Biochem Biophys Res Commun,2017,487(4):769-775.

[57]Yang F,Li A,Qin Y,et al.A novel circular RNA mediates pyroptosis of diabetic cardiomyopathy by functioning as a competing endogenous RNA[J].Mol Ther Nucleic Acids,2019,17:636-643.

[58]Xu HY,Guo S,Li W,et al.The circular RNA Cdr1as,via miR-7 and its targets,regulates insulin transcription and secretion in islet cells[J].Sci Rep,2015,5:12453.

[59]Li CY,Zhao L,Jiang W,et al.Correct microarray analysis approaches in'Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus'[J].Diabetes Vasc Dis Res,2018,15(1):92-93.

猜你喜欢
微血管高糖内皮细胞
有氧运动和精氨酸补充对高血压的干预作用及其与内皮细胞功能的关系
基于OCTA图像分析对糖尿病视网膜病变患者黄斑区微血管病变观察
上调SIRT1减少同型半胱氨酸诱导的血管内皮细胞凋亡
血管病,“大河小溪”一起治
HMGB1基因对高糖诱导的血管内皮细胞损伤的影响
白藜芦醇改善高糖引起肾小球系膜细胞损伤的作用研究
2型糖尿病微血管病变患者血清VEGF、Hcy、HbA1c水平变化及临床意义
miR-495-3p联合黄氏总皂苷对高糖诱导的成骨细胞增殖、凋亡的影响及其机制研究
2型糖尿病患者血脂水平与微血管病变相关性研究
孕期高脂高糖饮食与儿童多动症有关