赵丹 叶桦
【摘要】非酒精性脂肪性肝病(NAFLD)已发展为慢性肝病的主要病因,严重影响着公众健康。NAFLD通常与肥胖症及其并发症相关,但近几年发现非肥胖性NAFLD患病率逐渐增加,这可能表明,除了肥胖、糖尿病、血脂异常等代谢因素外,其他因素也可能在脂肪肝的发展及其向NASH的发展过程中起重要作用。最近有研究表明睡眠及昼夜节律紊乱可通过干扰脂质代谢、影响胰岛素抵抗及肠道菌群等,从而在NAFLD发病机制中发挥重要作用。本文是对睡眠及昼夜节律与NAFLD关系的研究进展进行综述。
【关键词】非酒精性脂肪性肝病;睡眠;昼夜节律;代谢性疾病;生物钟
基金项目:浙江省自然科学基金(LGF19H030006);宁波市自然科学基金(2019C50100)
1.NAFLD及其发病机制
非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是指排除过量饮酒、病毒感染或其他肝脏疾病,以肝脏脂肪异常累积为特点的临床病理综合征。目前NAFLD全球发病率约为25%,亚洲地区则高达约29.6%。NAFLD涵盖了从非酒精性单纯性脂肪肝(NAFL)到非酒精性脂肪性肝炎(NASH)的广泛范围的肝损伤,部分NASH甚至更进一步发展为肝硬化乃至肝细胞癌(HCC),其在美国等发达国家日益成为肝移植的指标。
NAFLD与胰岛素抵抗和遗传易感性十分相关,但其确切致病机制目前尚不清楚。1998年Day和James首次提出NAFLD发病机制的“二次打击”学说。该学说认为“初次打击”是各种因素导致脂质代谢紊乱,进而促进肝脏细胞脂肪变,其中心环节是胰岛素抵抗(insulin resistance,IR)。其后的“二次打击”是通过各类炎症介质造成肝损伤的过程。近年越来越多的研究更加支持“多重打击”理论,即在具有遗传倾向的个体中,炎症的发生往往先于脂肪变性,炎症可能与多种因素如氧化应激、细胞因子的改变、游离脂肪酸(FFA)、内质网应激(ERS)、肝脏脂毒性、铁超载、肠道菌群失调、表观遗传、生活及饮食方式、睡眠与昼夜节律等共同促进NASH的发生。
2.睡眠
睡眠占据了我们人类约1/3的时间,对于人类的生活、工作及身体健康的重要性不言而喻。《2020-2021年中国睡眠指数报告》调查显示在社会变迁、城市化发展、信息大爆炸及其他越来越多的因素影响下,国人的睡眠质量不断下降,睡得晚、睡得短、睡得浅成为国人睡眠的现实写照。
当前睡眠不足与睡眠障碍已经成为现代社会的常态,且与2型糖尿病、心血管病、非酒精性脂肪性肝病及肿瘤等各类疾病的发生发展有密切的相关性。胰岛素抵抗是公认的代谢性疾病的重要环节,而睡眠不足与睡眠障碍都会诱发葡萄糖耐受异常和胰岛素抵抗。一项系统性回顾11项研究的Meta分析显示,2型糖尿病的患病风险与睡眠时长呈U型关系,短睡眠时长与长睡眠时长都与2型糖尿病的患病风险增加显著相关。韩国的一项人群追踪调查发现,与保持7小时睡眠的女性相比,睡眠时长不足的女性发生高血压的风险更高。Yazdanpanah 等在伊朗进行的一项横断面研究,通过Framingham风险评分来预测心血管事件,发现睡眠少于6小时的受试者患心血管疾病的风险增加,且睡眠为8-8.9小时的受试者心肌梗死患病率最低。一项关于睡眠时间与癌症特异性死亡率和全因死亡率的荟萃分析发现,睡眠时间过长会增加所有癌症的特异性死亡率,同时乳腺癌患者的全因死亡率也会增加。睡眠改变在许多常见的消化系统疾病中也发挥重要作用,例如非酒精性脂肪肝、胃食管反流病、肠易激综合征和炎症性肠病等。
3.睡眠与NAFLD
3.1睡眠不足
睡眠不足主要是由睡眠时间短和睡眠質量不佳二者造成。Kim等人通过评估69463名中年工人及其配偶的睡眠时间,并通过收集生化、BMI等数据,及通过B超判断脂肪肝的存在,在控制相关混杂因素后发现睡眠时间短与NAFLD风险增加显著相关。近年的几项大数据人群研究也同样发现,睡眠时间短与NAFLD发病风险之间呈负相关性。日本的一项对12306名参与者进行为期7年左右的随访研究,将参与者按睡眠时间分为4组:>7、6-7、5-6、≤5,发现与睡眠时间>7小时的人群相比,睡眠时间≤5小时是发生NAFLD的显著风险因素。一项系统性回顾16项研究的Meta分析显示,短睡眠时间(≤6h)不仅可增加NAFLD的发病风险,且睡眠时间越短NAFLD的患病率越高。然而也有其他研究显示了不同结果,Chou等的研究认为睡眠时间与NAFLD无独立关系,甚至有研究认为睡眠时间短可降低男性NAFLD发病的风险。
睡眠质量不佳与NAFLD之间的相关性也已被证实。中国台湾的一项队列研究表明,在男性中睡眠质量差与患NAFLD的风险增强有关。Takahashi等采用匹兹堡睡眠质量指数(PSOI)对4828名受试者的睡眠情况进行评价,该研究发现睡眠质量与NAFLD相关,且存在性别差异。系统性回顾研究的一项Meta分析结果显示,在女性中睡眠质量差可能增加NAFLD发病风险。
基于这些研究,我们推断睡眠不足导致NAFLD的发病机制有以下几个可能。首先,白细胞介素-6(interleukin 6,IL-6)和肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)等炎性细胞因子的参与是NAFLD发病机制的重要一环,而已有研究证实睡眠不足会引起多个炎性细胞因子的改变。其次,睡眠不足会促使部分激素变化,进而增加食欲,如胃饥饿素(ghrelin)水平升高和瘦素(leptin)水平降低。同时睡眠不足的人往往也会因为繁忙的生活节奏或身体疲劳而减少日常锻炼。第三,研究表明慢性睡眠不足会激动下丘脑-垂体-肾上腺轴,升高血浆中皮质类固醇的水平,进而造成胰岛素抵抗。此外,已知皮质醇和其他糖皮质激素可促进外周脂肪组织的脂质动员,并促进肝脏中的脂肪形成。
3.2过长睡眠
虽然目前大多数研究都支持短睡眠时间与NAFLD患病率增加有相关性,但近几年也有不少人群研究发现,过长睡眠才是导致NAFLD发生发展的又一因素。一项在韩国中年人中进行的队列研究(n=8841)发现,在调整其他基本因素后,睡眠时间较长组的NAFLD得分高于睡眠时间较短组的,这表明睡眠时间越长,NAFLD的发病率越高。在武汉进行的一项研究,通过比较8965名不同睡眠时间的健康受试者在5年随访期间内NAFLD的患病率,发现夜间睡眠时间短(<7小时/天)与NAFLD无明显关联,而长时间的夜间睡眠反而与NAFLD风险的适度增加有关。此外,也有相关的假说支持这一结果。总能量消耗包括静息代谢率、体力活动和饮食诱导的产热,而已知睡眠时比清醒时消耗更少的能量,因此更有可能促进NAFLD的形成。
3.3其他睡眠
白天午睡在亚洲地区是一种常见的社会现象,但在西方文化中却很少见。迄今为止,人们对午睡与健康之间的影响知之甚少,尤其是对代谢性疾病。Ghazizadeh等在中东进行的一项人群研究中,发现午睡与代谢综合征存在着显著的关联。Peng等在上海市嘉定区进行的研究发现在中老年人中白天午睡时间长与患NAFLD的风险增加呈正相关。随着快节奏的社会生活,工作日减少睡眠时间,而周末补觉越来越成为年轻人中的一种常态。Son等的研究表明,每天保持充足的睡眠时间有利于预防代谢性疾病,并发现在每天睡眠少于6小时的韩国成年人中,周末补觉与降低代谢综合征患病率相关。
3.4阻塞性睡眠呼吸暂停综合征(OSAHS)与NAFLD
阻塞性睡眠呼吸暂停综合征(obsctructive sleep apnea hypopnea syndrome,OSAHS)是指在睡眠过程中由多种病因引起上呼吸道狭窄或阻塞塌陷,引起反复发生呼吸暂停及间歇低氧血症,出现低氧血症、高碳酸血症、睡眠结构紊乱及多系统损害的临床综合征。慢性间歇性低氧(intermittenthypoxia,IH)是OSAHS引发多器官病理改变的基础,长期IH可导致慢性肝脏损害、炎症反应和纤维化的发生,从而导致NAFLD及NASH的发生发展。临床上OSAHS患者与NAFLD常合并存在。肥胖与OSAHS密切相关,肥胖人群中OSAHS患病率高达40%-60%,而在肥胖症患者中NAFLD患病率为60%-90%。Ding等研究表明,单纯鼾症和轻、中、重度OSA组患者并发NAFLD的比例分别为37.21%、69.09%、68.34%、78.08%,且脂肪肝的程度与OSAHS的严重程度正相关。尽管现有的研究表明OSAHS对NAFLD的发生发展是有影响的,但目前仍缺乏足够高质量的临床及动物研究证明两者之间相互作用的多重机制。
4.昼夜节律与NAFLD
地球绕太阳进行公转形成光(昼)和暗(夜)之间的周期性改变,为了适应这种环境变量,包括哺乳动物在内的大多数物种已经进化出一种称为生物钟(Circadian clock,CC)的近24小时内源性计时装置,是一种细胞自主的分子机制,在分子水平上也是有层次的运行,细胞节律振荡使大量时钟基因有节律的表达,导致机体生理和行为的明显改变。
4.1 昼夜节律调节机制
昼夜节律主要是由视网膜神经节细胞(retinal ganglion cells,RGC)检测到的光引起的,由下丘脑视交叉上核的中央钟驱动。昼夜节律不局限于大脑,也存在于外周组织中,如脂肪组织、肝脏、肠道、免疫系统等。昼夜节律钟的关键机制是转录-翻译负反馈环路(transcription-translationfeedbackloops,TTFL),目前比较明确的反馈环路主要有两条。其一,时钟基因(Period,Per)和隐花色素基因(Cryptochrome,Cry)由CLOCK/BMAL1和NPAS2/BMAL1異二聚体激活并转录,其翻译的PER和CRY蛋白进入细胞核并抑制其自身的转录,然后新的昼夜节律周期再次开始。其二,由核受体亚家族1D(nuclearreceptorsubfamily 1 group D member,NR1D,亦称为REV-ERBα)与RAR相关的孤儿受体(RAR relatedorphanreceptor,RORα)家族组成,CLOCK/BMAL1异二聚体激活Rev-erbα和Rorα的转录,同时竞争性与ROR反应元件结合位点(RORE)结合,以调控BMAL1基因的节律性表达。REV-ERBα蛋白属于负调控因子,与Bmal1启动子结合并抑制其转录,而RORα蛋白与启动子区域结合可促进Bmal1的转录。最新研究发现的第三条自主反馈环路——DECs,其表达发挥了时钟基因的功能,并且DECs可以通过与BMAL1结合或与CLOCK/BMAL1竞争结合E-box位点来抑制其自身转录。通过以上这些各种分子构成了完整的转录-翻译负反馈环路,使生物体内部环境与外部环境得以同步,维持正常的节律与功能。
4.2 昼夜节律与NAFLD
Turek等人首次发现昼夜节律基因突变的小鼠出现昼夜摄食节律紊乱,同时有高脂血症、高瘦素血症、肝脂肪变性、高血糖等改变。昼夜节律基因的缺失与肝脏脂肪变性的关系在多种小鼠模型中已得到证实。关于小鼠体内CLOCK、BMAL1基因的研究发现其可以影响肝脏脂肪的合成、分解、储存及利用。另外,REV-ERBα或HDAC3的缺失同样也会导致高甘油三酯血症和肝脏脂肪变性。在黑暗期,低浓度的REV-ERBα使HDAC3与肝脏代谢基因的关联性降低,进而更利于脂质的生物合成和储存;在光照期,高浓度的REV-ERBα增加了HDAC3与肝脏代谢基因的关联,从而减少了脂质的生物合成。高脂饮食喂养下Cry基因缺乏小鼠相与正常小鼠相比更快且更容易出现肥胖,并且其脂质代谢相关基因的表达上调。从上述的这些研究中不难发现,昼夜节律基因是肝脏脂质代谢的关键调节剂。因此机体一旦昼夜节律紊乱,必然导致肝脏脂质代谢失调,进而加速NAFLD的发生发展。
5.總结
睡眠及昼夜节律改变可干扰脂质代谢、影响胰岛素抵抗及肠道菌群微生态等环节,因此睡眠及昼夜节律紊乱在NAFLD的发生发展过程中扮演了重要的角色,但目前两者之间确切的分子机制并不明确,仍需要更进一步地探索。总之,深入探究睡眠及昼夜节律将为临床充分认识、诊断和治疗NAFLD等代谢性疾病提供新的治疗手段及思路。
参考文献:
[1]Estes Chris,Razavi Homie,Loomba Rohit et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease.[J] .Hepatology, 2018, 67: 123-133.
[2]Li Jie,Zou Biyao,Yeo Yee Hui et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis.[J] .Lancet Gastroenterol Hepatol, 2019, 4: 389-398.
[3]Shingina Alexandra,DeWitt Peter E,Dodge Jennifer L et al. Future Trends in Demand for Liver Transplant: Birth Cohort Effects Among Patients With NASH and HCC.[J] .Transplantation, 2019, 103: 140-148.
[4]Day CP,James OF. Steatohepatitis: a tale of two " hits"〔J〕? Gastro- enterology,1998; 114( 4) : 842-5.
[5]Tilg Herbert,Adolph Timon E,Moschen Alexander R,Multiple Parallel Hits Hypothesis in NAFLD - Revisited After a Decade.[J] .Hepatology, 2020, undefined: undefined.
[6]中国睡眠质量数据[J].中国科技信息,2020(24):6-9.
[7]Anothaisintawee Thunyarat,Reutrakul Sirimon,Van Cauter Eve et al. Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis.[J] .Sleep Med Rev, 2016, 30: 11-24.
[8]Shan Zhilei,Ma Hongfei,Xie Manling et al. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies.[J] .Diabetes Care, 2015, 38: 529-37.
[9]Kim Chan-Won,Chang Yoosoo,Kang Jeong-Gyu et al. Changes in sleep duration and subsequent risk of hypertension in healthy adults.[J] .Sleep, 2018, 41: undefined.
[10]Yazdanpanah Mohammad Hosein,Homayounfar Reza,Khademi Ali et al. Short sleep is associated with higher prevalence and increased predicted risk of cardiovascular diseases in an Iranian population: Fasa PERSIAN Cohort Study.[J] .Sci Rep, 2020, 10: 4608.
[11]Stone Chelsea R,Haig Tiffany R,Fiest Kirsten M et al. The association between sleep duration and cancer-specific mortality: a systematic review and meta-analysis.[J] .Cancer Causes Control, 2019, 30: 501-525.
[12]Orr William C,Fass Ronnie,Sundaram Shikha S et al. The effect of sleep on gastrointestinal functioning in common digestive diseases.[J] .Lancet Gastroenterol Hepatol, 2020, 5: 616-624.
[13]Kim Chan-Won,Yun Kyung Eun,Jung Hyun-Suk et al. Sleep duration and quality in relation to non-alcoholic fatty liver disease in middle-aged workers and their spouses.[J] .J Hepatol, 2013, 59: 351-7.
[14]Wang Honglei,Gu Yeqing,Zheng Lixiao et al. Association between bedtime and the prevalence of newly diagnosed non-alcoholic fatty liver disease in adults.[J] .Liver Int, 2018, 38: 2277-2286.
[15]Peng Kui,Lin Lin,Wang Zhengyi et al. Short sleep duration and longer daytime napping are associated with non-alcoholic fatty liver disease in Chinese adults.[J] .J Diabetes, 2017, 9: 827-836.
[16]Okamura Takuro,Hashimoto Yoshitaka,Hamaguchi Masahide et al. Short sleep duration is a risk of incident nonalcoholic fatty liver disease: a population-based longitudinal study.[J] .J Gastrointestin Liver Dis, 2019, 28: 73-81.
[17]吳楚添,张晨星,肖琳,汤绍辉.睡眠时长和睡眠质量与非酒精性脂肪性肝病发病风险关系的Meta分析[J].中国全科医学,2020,23(36):4619-4625.
[18]Chou Yu-Tsung,Cheng Hsiang-Ju,Wu Jin-Shang et al. The association of sleep duration and sleep quality with non-alcoholic fatty liver disease in a Taiwanese population.[J] .Obes Res Clin Pract, 2018, 12: 500-505.
[19]Miyake Teruki,Kumagi Teru,Furukawa Shinya et al. Short sleep duration reduces the risk of nonalcoholic fatty liver disease onset in men: a community-based longitudinal cohort study.[J] .J Gastroenterol, 2015, 50: 583-9.
[20]Takahashi Atsushi,Anzai Yukio,Kuroda Masahito et al. Effects of sleep quality on non-alcoholic fatty liver disease: a cross-sectional survey.[J] .BMJ Open, 2020, 10: e039947.
[21]Gehrke Nadine,Schattenberg Jörn M,Metabolic Inflammation-A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease?[J] .Gastroenterology, 2020, 158: 1929-1947.e6.
[22]Irwin Michael R,Olmstead Richard,Carroll Judith E,Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation.[J] .Biol Psychiatry, 2016, 80: 40-52.
[23]Lin Jianfei,Jiang Yanrui,Wang Guanghai et al. Associations of short sleep duration with appetite-regulating hormones and adipokines: A systematic review and meta-analysis.[J] .Obes Rev, 2020, 21: e13051.
[24]Rao Madhu N,Neylan Thomas C,Grunfeld Carl et al. Subchronic sleep restriction causes tissue-specific insulin resistance.[J] .J Clin Endocrinol Metab, 2015, 100: 1664-71.
[25]Peckett Ashley J,Wright David C,Riddell Michael C,The effects of glucocorticoids on adipose tissue lipid metabolism.[J] .Metabolism, 2011, 60: 1500-10.
[26]Kim Ji-Hye,Jung Dong-Hyuk,Kwon Yu-Jin et al. The impact of the sleep duration on NAFLD score in Korean middle-aged adults: a community-based cohort study.[J] .Sleep Med, 2019, 57: 144-150.
[27]Liu Cheng,Zhong Rong,Lou Jiao et al. Nighttime sleep duration and risk of nonalcoholic fatty liver disease: the Dongfeng-Tongji prospective study.[J] .Ann Med, 2016, 48: 468-476.
[28]Ekmekcioglu C,Touitou Y,Chronobiological aspects of food intake and metabolism and their relevance on energy balance and weight regulation.[J] .Obes Rev, 2011, 12: 14-25.
[29]Ghazizadeh Hamideh,Mobarra Naser,Esmaily Habibollah et al. The association between daily naps and metabolic syndrome: Evidence from a population-based study in the Middle-East.[J] .Sleep Health, 2020, 6: 684-689.
[30]Peng Kui,Lin Lin,Wang Zhengyi et al. Short sleep duration and longer daytime napping are associated with non-alcoholic fatty liver disease in Chinese adults.[J] .J Diabetes, 2017, 9: 827-836.
[31]Son Soo Min,Park Eun-Ju,Cho Young Hye et al. Association Between Weekend Catch-Up Sleep and Metabolic Syndrome with Sleep Restriction in Korean Adults: A Cross-Sectional Study Using KNHANES.[J] .Diabetes Metab Syndr Obes, 2020, 13: 1465-1471.
[32]Knaus Christoph, Diagnosis and Treatment of Obstructive Sleep Apnea Syndrome.[J] .Ther Umsch, 2016, 73: 209-12.
[33]Mesarwi Omar A,Loomba Rohit,Malhotra Atul,Obstructive Sleep Apnea, Hypoxia, and Nonalcoholic Fatty Liver Disease.[J] .Am J Respir Crit Care Med, 2019, 199: 830-841.
[34]Umbro Ilaria,Fabiani Valerio,Fabiani Mario et al. Association between non-alcoholic fatty liver disease and obstructive sleep apnea.[J] .World J Gastroenterol, 2020, 26: 2669-2681.
[35]Badran Mohammad,Ayas Najib,Laher Ismail,Insights into obstructive sleep apnea research.[J] .Sleep Med, 2014, 15: 485-95.
[36]Brunner Katherine T,Henneberg Cameron J,Wilechansky Robert M et al. Nonalcoholic Fatty Liver Disease and Obesity Treatment.[J] .Curr Obes Rep, 2019, 8: 220-228.
[37]Ding Haibo,Huang Jie-Feng,Xie Han-Sheng et al. The association between glycometabolism and nonalcoholic fatty liver disease in patients with obstructive sleep apnea.[J] .Sleep Breath, 2019, 23: 373-378.
[38]Evans Jennifer A,Collective timekeeping among cells of the master circadian clock.[J] .J Endocrinol, 2016, 230: R27-49.
[39]Wang Yan,He Yuqing,Su Chen et al. Nuclear Localized O-Fucosyltransferase SPY Facilitates PRR5 Proteolysis to Fine-Tune the Pace of Arabidopsis Circadian Clock.[J] .Mol Plant, 2020, 13: 446-458.
[40]Mukherji Atish,Dachraoui Mayssa,Baumert Thomas F,Perturbation of the circadian clock and pathogenesis of NAFLD.[J] .Metabolism, 2020, null: 154337.
[41]Schibler Ueli,Oxidation of CLOCK boosts circadian rhythms.[J] .Nat Cell Biol, 2019, 21: 1464-1465.
[42]Sato Trey K,Panda Satchidananda,Miraglia Loren J et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock.[J] .Neuron, 2004, 43: 527-37.
[43]Sato Fuyuki,Kohsaka Akira,Bhawal Ujjal K et al. Potential Roles of Dec and Bmal1 Genes in Interconnecting Circadian Clock and Energy Metabolism.[J] .Int J Mol Sci, 2018, 19: undefined.
[44]Turek Fred W,Joshu Corinne,Kohsaka Akira et al. Obesity and metabolic syndrome in circadian Clock mutant mice.[J] .Science, 2005, 308: 1043-5.
[45]Pan Xiaoyue,Zhang Yuxia,Wang Li et al. Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP.[J] .Cell Metab, 2010, 12: 174-86. [58]
[46]Kumar Jha Pawan,Challet Etienne,Kalsbeek Andries,Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals.[J] .Mol Cell Endocrinol, 2015, null: 74-88.
[47] Feng Dan,Liu Tao,Sun Zheng et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism.[J] .Science, 2011, 331: 1315-9.
[48]Barclay Johanna L,Shostak Anton,Leliavski Alexei et al. High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice.[J] .Am J Physiol Endocrinol Metab, 2013, 304: E1053-63.