彭 博,邵 阳,罗 敏,徐殿斗,马玲玲,刘志明
(1.北京化工大学化学工程学院,北京 100029;2.中国科学院高能物理研究所北京市射线成像技术与装备工程技术研究中心,北京 100049)
彩绘类文物通常是指通过黏合剂将颜料绘制在地仗、陶器、纸张等载体上的珍贵文化遗产,包括陶俑、壁画等等,是古代先人遗留下来的宝贵财富,具有高度的美学性、文学性以及重要的研究价值[1-4]。然而上千年的时代变迁,加上环境因素和微生物对其的侵蚀作用,彩绘类文物表面和内部结构遭到严重破坏,酥碱、起甲、脱落、褪色、霉变等病害频发。光线照射,尤其是紫外光的作用下,彩绘类文物还会产生黏合剂损失、裂纹以及颜料色变等损伤,极度影响其观感以及艺术价值[5]。因此,作为承载着优秀人文历史和文化底蕴的彩绘类文物,其保护和修复工作很有意义。
灭菌工作作为彩绘类文物修复中的重要一环,从古代的樟脑防虫到近代化学熏蒸剂、防霉剂的使用,再到现代辐照、天然生物提取物、等离子体等新技术的开发与应用,经历了漫长的研究与发展。现有技术的问题主要有:灭菌后毒害物质的残留、灭菌过程对操作人员健康带来的隐患以及灭菌设备运行技术要求过高等。随着灭菌技术的不断更迭换代,旧的问题被解决,新的问题也在逐步出现,有待进一步研究解决。
彩绘类文物保存的主要影响因素如表1所示,其中,材料的自然老化、温度、湿度以及大气污染物既能通过退化作用直接影响彩绘类文物的储存,还可以通过影响微生物的生长、繁殖,来间接加深对彩绘类文物的侵蚀与破坏。
表1 彩绘类文物储存的主要影响因素Table 1 Main factors influencing the storage of polychrome cultural heritages
材料除直接影响外,还有间接影响。壁画上原有的黏合剂以及壁画揭取、后期修复时使用的桃胶等有机胶[10-11]均可被微生物作为碳源、氮源分解吸收,可能导致黏性下降,甚至颜料层脱落[6]。环境中的高盐特性也可能对空间内原有的生态平衡造成破坏,同时有利于嗜盐微生物的生长繁殖。葛琴雅等[12]利用分子生物学技术,对中国北方5世纪的两座壁画墓内壁画表面白斑进行了基因测序鉴定工作,确定了主要致病菌为嗜盐的假诺卡氏菌。该课题组在随后的研究中又指出:假诺卡氏菌的优势菌地位一定程度上受墓室内的高盐特性所影响,在高盐条件下,菌类间的竞争作用向假诺卡氏菌一方倾斜,与之竞争的其他微生物的生长繁殖受到抑制[13]。
温度和湿度是彩绘类文物发生化学、生物腐蚀的主要影响因素。季节、人流量的不同,会带来不同的温度、湿度变化。湿度的增加会引起彩绘类文物表面颜料发生化学性质变化,例如:石青容易在有水的情况下氧化为更为稳定的孔雀石。湿度和温度的变化还影响着文物的光氧化速率以及化学反应进程[14]。此外,温度、湿度还是微生物生长所需因素之一,古墓等密闭空间内细菌、真菌浓度也和温度、湿度高低呈正相关,进一步影响着彩绘类文物的储存和保护工作[15]。
对于一些直接暴露在空气中的彩绘文物,在大气污染物的直接作用下,很容易发生色变、黏合剂氧化以及表面材料化学性质的转变,极度影响此类文物的储存和保护。
Abotleb等[16]研究了工业城市大气污染物对油画的影响,将油画样品暴露在埃及工业中心阿斯旺的空气下,研究表明:样品所接触空气中,总悬浮颗粒物(TSP)含量严重超标,接触前后,样品颜色、强度及表面机械性能均显著改变,且出现了颗粒流失、裂纹等损坏,其中受影响最大的颜色为红、黄、蓝三种。Macholdt等[17]对德国某哥特式教堂外墙上富含Mn的黑色区域进行了溯源研究,在排除了Mn元素由砂岩内浸出导致富集的可能后,认为城市机动车行驶过程中的刹车行为排出的汽车尾气是大气颗粒物中Mn元素的来源。此外,大气污染物也影响着彩绘文物表面微生物的代谢活动,进一步加速了其对文物的破坏作用[18]。
墓室壁画作为最常见的彩绘类文物之一,由于墓室内的温度、湿度适宜微生物生长,生物退化现象频发。微生物除了会通过生物矿化作用使方解石、二氧化硅等物质沉积在彩绘类文物表面,还可产生黑色素或类胡萝卜素等生物色素,改变彩绘类文物表面的颜色[19,21]。李强等[13]认为:在壁画表面分离鉴定的真菌微生物中,以青霉属、曲霉属最为常见;细菌微生物中,以变形菌门和放线菌门最为常见。马文霞等[22]对敦煌汉墓、晋墓和嘉峪关五号墓内砖壁画上的主要真菌进行了研究,分离鉴定结果显示:青霉属、曲霉属和枝孢属为优势菌。张慧等[23]研究了河南打虎亭汉墓内的主要微生物,通过梯度稀释和点植培养,共分离出8个属的霉菌,其中种类最多的是青霉属。汪娟丽等[24]对南唐二陵内壁画上滋生的霉菌进行了分析鉴定工作,结果表明:引起墓室霉变的优势菌为根霉属、青霉属、曲霉属。Ma等[25]对中国两座地下古墓砖壁画上的真菌黑斑进行分离鉴别后也指出:青霉属和曲霉属占所分离的22株菌株的大多数。Abdel-Haliem等[20]对古埃及古墓壁画上细菌的破坏作用进行了研究,指出链霉菌通过产生各种代谢物、色素等物质对壁画颜色进行破坏。Rizzo等[26]在彩画灭菌处理前,微生物侵害鉴别中也指出了青霉属和曲霉属在真菌菌落中的存在。
由于微生物的生物退化作用,颜料、黏合剂等彩绘文物材料均遭受了不同程度的破坏,文物的艺术价值与后续保存工作的难度均受到了极大影响,因此彩绘类文物的灭菌防护至关重要。
我国在战国时期,民间就有利用太阳光的高温和紫外线对书籍进行杀虫灭菌的应用[27]。新中国成立后,对彩绘类文物的保护工作逐渐提上日程,20世纪50年代我国曾邀捷克专家来莫高窟进行壁画修复工作,但修复效果并不理想。虽然在后来经自行摸索,也探寻到了适合的黏合剂配比与注入方式来修复起甲壁画,但并没有从微生物角度出发,对壁画进行灭菌保护[28]。以下按照化学法、物理法、复合法的顺序梳理彩绘类文物的灭菌应用,并在表2中简单总结了各类方法及其优缺点。
表2 彩绘类文物主要灭菌方法及其优缺点Table 2 Merits and demerits of main sterilization methods for polychrome cultural heritages
2.1.1化学试剂清洗法 作为最基础的除霉方法,化学试剂清洗法一般用以彩绘表面微生物的初期清除工作。如针对元代靳德茂墓出土的彩绘陶俑,刘鑫等[29]先用竹签刀将其上霉菌慢慢剥离,而后用95%的酒精试剂对颜料层表面进行反复轻擦。对西安曲江翠竹园壁画表面的霉斑,曹铭婧[30]用棉签蘸取木瓜蛋白酶的酒精溶液,缓慢擦拭后去除。过氧化氢和酒精的等量混合溶液也曾用以清洗青州香山汉墓出土的彩绘陶马表面霉斑[31]。此外,严淑梅等[11]研究了五种化学试剂对唐代壁画表面霉斑的清洗效果,其中氨水/酒精试剂和70%的酒精试剂对老化霉斑清洗效果最好,但是经这两种试剂处理后的矿物颜料尤其是石青、石绿的颜色有较明显变化。
化学试剂清洗法操作方便,且操作过程中无污染,但此类方法操作效率低下,且只能针对表面微生物进行去除,无法做到预防污染,操作不当还有可能对彩绘二次损伤。一般使用棉签蘸取的方法轻擦霉斑,为了降低彩绘表面损伤,也可以先用毛笔蘸取清洗,然后利用纸巾的虹吸原理吸附表面污物[11]。
2.1.2熏蒸法 熏蒸法自20世纪80年代起开始应用于文物保护,曾建议使用的、对文物损害最小的熏蒸剂有环氧乙烷、溴甲烷和硫酰氟三种[32]。已有研究指出,环氧乙烷、溴甲烷和硫酰氟作为熏蒸剂,在灭菌的同时,对三青、三绿、赭石、朱砂等中国古代传统颜料无显著性色差影响[32-34]。但是由于对人体造成的潜在性影响,环氧乙烷已经被多个国家禁止使用[35]。此外,由于对臭氧层的破坏作用,在1997年签署的《蒙特利尔修正案》中,各国也规定了淘汰溴甲烷的时间进程[36-37]。
熏蒸法灭菌具有效果好、操作简单、经济性等优点,但是熏蒸剂作为有毒有害气体,不仅对人体造成损伤,还有可能对预保护对象(文物)造成潜在性影响[33,38]。此外,熏蒸法在对壁画进行灭菌处理一段时间后,部分菌种可能对其产生抗性,例如:高松冢古坟内的放线菌,经福尔马林熏蒸处理后的第6年就表现出了对福尔马林的耐药性[39]。
2.1.3合成类防霉剂 在彩绘文物灭菌领域,最常使用的合成类防霉剂为异噻唑啉酮衍生物类防霉剂。“甲基异噻唑啉酮”曾对位于克罗地亚圣母玛利亚教堂内的圣母玛利亚彩绘雕像进行灭菌,异噻唑啉酮类混合防霉剂Kathon CG也成功解决了日本基托拉古墓内壁画底层石膏出现的微生物侵蚀成孔问题[40-41]。此外,0.02%~0.035%的“霉敌”(1,2—苯并异噻唑啉酮)水溶液不仅成功用以壁画墓室、古建筑壁画以及城墙墙体的灭菌处理工作,在西安理工大学西汉墓以及西安曲江翠竹园西汉壁画墓的壁画保护工作中,“霉敌”水溶液还和黏合剂相互混合用以颜料层和地仗层的回贴[30,42-45]。而在西安理工大学西汉墓防霉研究中,“霉敌”处理后的7个月内,黑色、蓝色等四种颜色出现了较大的色差变化,虽然作者将此归因于人为因素及仪器误差,但仍需后续研究验证“霉敌”对彩绘类文物表面颜料的无损性[45]。此外纳米银也成功应用以彩绘文物的灭菌工作,其对18、19世纪的纸质地图[35]以及地震中受损的埃及壁画[46]均表现出了很好的灭菌效果,但是纳米银无法做到广谱灭菌,仅对曲霉属和青霉属灭菌效果良好,对枯草芽孢杆菌的作用效果并不明显。
合成类防霉剂灭菌操作简单、低浓度下效果出色、混合使用效率更高,是目前最成熟的灭菌手段,在壁画、彩绘雕像、纸质地图方面都有所应用。但是其灭菌后的残留问题以及对操作人员和周围环境造成的后续潜在影响仍有待解决。此外纳米银虽然提供了低挥发、高稳定以及持久性等优点,但其在哺乳动物器官内的积累问题仍未解决,也无法做到广谱灭菌[35]。
2.1.4天然生物提取物 利用天然生物对书画等纸质材料进行保护在我国已有悠久的历史,20世纪80年代普遍使用樟脑防虫,但樟脑挥发后的气体物质会对人体造成损伤,现代科技已经可以将天然生物内的有效成分提取,用以纸张、书画类的文物保护[47-48]。其中,从哈茨木霉中提取出的抗生素6-戊基-α-吡喃酮酚,成功用以控制古埃及壁画表面的黑曲霉、黄曲霉[49];樟脑、丁香精油对模拟油画样品上黑曲霉、链格孢菌也表现出了很好的灭菌效果[50];牛至精油不论在接触或非接触状态,对帆布油画表面微生物均有很好的抑制活性[51]。
天然生物提取物具有绿色、安全、经济等优点,同防霉剂与熏蒸剂相比更符合当前趋势下的绿色生态理念,可能作为前两者的替代品出现在未来文物灭菌市场。但某些天然生物提取物如植物精油,直接接触彩绘文物时可能对其表面造成不可预测性的损伤,目前相关研究仍不充足,建议使用非接触式的手段对彩绘文物进行灭菌防护[51]。此外天然提取物无法做到选择性灭菌,市场产品也不充足,仍需相关研究证明其持久性与无损性[38,50]。
2.2.1微波法 利用微波法对彩绘类文物灭菌处理的相关研究较少。Bracci等[52]曾利用微波法对伊特鲁里亚地下遗迹内壁画上出现的生物斑点进行处理,通过微波处理前后荧光盒试剂的对比证明了微波法的有效性,且微波照射后的墙壁以及油漆区域2 h后温度就会恢复至初始状态,进一步说明了微波法灭菌的可行性。李彗星等[53]对某博物馆内空调系统中的空气处理机组和部分展示柜内的真菌含量进行检测后,建议在控制湿度的同时安装微波灭菌装置,降低真菌含量。
微波法灭菌解决了化学法中的毒害问题,但仍存在设备限制,无法大规模运行,还具有价钱高、专业性强、操作难度大等弊端;此外,由于微波法本身特性,灭菌效果同被处理对象的含水量相关,含水量更高的文物更适合用微波法灭菌[48]。微波法还可能引发局部过热对灭菌对象造成永久性损伤,因此保持各个灭菌区域温度的平衡也是微波灭菌今后研究的难点与方向[35,38]。
2.2.2辐照法 国内外辐照法在文物保护方面的应用相差较大,在法国,辐照法应用于文物保护已有50多年的历史,而在国内尚处于起步阶段[54]。以往研究中,彩绘文物的辐照灭菌多用γ射线进行。其在各类彩绘如:漆涂木板、油画、壁画、蛋彩画以及“Dancheong”(韩国传统彩绘)的灭菌工作中均有所应用[26,55-57]。但在过往研究中,彩绘颜料辐照后的可能变化仍未达成一致。同为伽马射线,Manea等[56]用33 kGy辐照后的帆布油画以及Yoon等[57]用20 kGy辐照后的韩国传统彩绘“Dancheong”表面均未显现出显著性色差变化,而在Negut等[58]研究中,漆涂木板上的群青、赭石、生赭、铬黄四种颜色在辐照下却产生了显著的颜色改变。
除γ射线外,紫外辐照也被用以微生物灭菌,其对日本基托拉古墓内的葡糖酸醋杆菌[59]以及法国La Glacière冰川洞穴内的生物膜[60]的灭菌效果均表现良好,且整个过程对古欧冰川洞穴内壁画常用颜料MnO2也没有显著影响,不过需要提及的是:紫外辐照的应用区域不应包含紫外敏感区。
辐照灭菌优势在于操作仅需在室温下完成,且无需其他附加物[61],10 kGy的剂量即可杀灭大部分有害菌。辐照灭菌还具有高效、无残留、对技术人员无损伤等优点,但灭菌过程可能对被辐照对象产生一些潜在变化,如纯纤维纸在伽马射线辐照下纸张聚合度出现的显著下降[62];伽马射线与质子束照射下的浅色碳酸盐类颜料(如铅白、大理石粉)表面出现的由顺磁缺陷引发的黑斑[63-64];X射线辐照下石青内发生的脱水、脱碳酸盐以及Cu2+的还原[65];紫外辐照下朱砂发生的黑化[66]等。辐照法对技术人员也有了更专业性的要求,此外昂贵的价格以及难以运输的屏蔽设备也为辐照法的推广使用带来了阻力[38,49]。
2.2.3等离子体法 作为自然界的第四种形态,等离子体内含有大量自由基等活性物质,用等离子体对彩绘文物灭菌从原理上讲是可行的。在过往研究中,等离子体也被成功用以清除壁画上的真菌孢子[67],教堂图标上分离而得的链霉菌[68]以及模拟上色木板表面的真菌菌丝[21],其中壁画表面真菌孢子灭活率达到了94%,模拟上色木板表面的真菌灭活五天后也没有发现新的菌丝体生长。此外,Ioanid等[69]也研究了等离子体对木制蛋彩画(宗教图标)可能造成的潜在影响,结果表明:镉黄、赭石、铬绿这三种主要出现在蛋彩画中的天然颜料以及蛋黄黏合剂在等离子体作用下均无显著变化。
作为非侵入性的灭菌方法,等离子体同酒精相比对彩绘颜料图层的破坏作用是更小的,对部分颜料颜色以及化学性质也没有显著影响,蛋黄黏合剂出现的轻微结构变化也控制在合理范围之内。低温等离子体灭菌仅需40 ℃,且具有高效、环保、无有害物质残留等优点,但是也存在设备投资和维护价格高、专业性强等问题,同时需要注意的是,等离子体灭菌效果受暴露时间以及微生物类型影响,灭菌前的调研工作需充分准备[48,67]。
2.2.4低氧法 低氧法在彩绘文物保护领域常用以杀虫,很少专门用以灭菌保护。2020年,Boniek[70]等利用低氧法对巴西的一幅纺织绘画进行了丝状真菌的杀灭处理,38 d后,只有黑曲霉一种真菌被检测出,研究证实了低氧法杀灭真菌及其孢子的有效性,同时处理过后的棉纤维也完整无损。此外,Koestler等[71]研究了氩气保存缺氧条件下普鲁士蓝颜料颜色可能的变化。结果表明:黑暗条件下,四个星期的缺氧处理不会引起普鲁士蓝颜料颜色变化,但其在光照条件下会发生显著性色变。因此,低氧法处理含普鲁士蓝的彩绘文物时,不宜在阳光下进行。
低氧法作为一种非破坏性灭菌方法,具有生物友好的特性,经低氧法处理后的彩绘文物可以保持其完整性,处理过程中修复者的身体健康也不会受到任何影响;但在缺点方面,除去冗长的处理时间、较低的处理效率外,低氧法灭菌只对好氧微生物以及害虫起作用,因此在利用低氧法灭菌前,微生物的鉴定工作一定要完成[48,70]。
2.2.5激光清洗法 激光清洗技术在文物保护领域的应用,主要是对石质、青铜器类文物的清洗保护,在壁画[10,72]、彩绘陶俑[73]以及书画类文物[74]表面霉斑清洗方面也有所应用。如:王佳等[10]以Nd:YAG(钇铝石榴石晶体)固体激光器为激光源对馆藏壁画表面的泥渍、有机胶、纱布和微生物进行了激光清洗,其中白色、红色壁画样品清洗效果较好,但对于黑色壁画样品,由于黑色对激光表现出的强吸收性,受激光照射的影响较为剧烈,基底损坏较为严重。
激光清洗法在合适的工艺参数优化下,可以做到无接触灭菌,且具有高效、安全、无残留等优点。但在以往的清洗实例中激光清洗对不同清洗区域清洗效果并不相同。除上段所述外,在张力程等[73]的研究中,激光清洗只对白色颜料上的黑斑表现出了一定的清洗效果,对红色颜料上的黑斑清洗效果并不理想。此外由激光照射后的材料表面温度也会升高。赵莹[74]对书画类文物进行激光清洗时,红外激光器在能量低时无法起到灭菌的效果,在高能量下又会引发宣纸的燃烧。由此Pereira-pardo等[75]认为激光清洗需同蒸馏水、酒精等湿润剂共同配合使用。
传统彩绘类文物的灭菌方法大体分以上两种,近年来,通过方法间的互补,许多复合法灭菌的新思路被不断提出与验证。
Sakr等[76]在利用γ射线对埃及古墓内的蛋彩画进行灭菌时发现:由于抗辐照能力更强,链霉菌在其亚致死剂量的辐照下会产生黑色素来吸收电磁能量抵御辐照。为解决黑色素对壁画的二次破坏问题,将三环唑和γ射线配合用以灭菌工作,研究表明:20~25 kGy的辐照剂量配合以10 μg/mL的三环唑可有效杀灭链霉菌,同时还能消除黑色素的潜在影响,灭菌过程对文物材料也无损害。
防霉剂法灭菌中应用的防霉剂(例如上文中提到的“异噻唑啉酮”)并非专门为文物类灭菌所生产,更多是应用于工业领域。Romero-Noguera等[77]提出了研究含防霉剂的清漆,使彩绘文物免受微生物侵扰,由此制成了桑达拉克清漆以及马尼拉树脂清漆,并验证了其对枯叶格孢腔菌等菌种的抑制作用,但其持久性和有效性等仍有待研究。
为解决防霉剂应用后的物质残留,Wörle等[78]利用超临界CO2,对博物馆内的上漆软木抽屉进行了灭菌后处理。试验结果表明:处理后的样品残余氯含量下降了27%,残余防霉剂浓度下降了94%,但处理后的样品出现了颜色变化。虽然研究证实了超临界CO2清除表面残余防霉剂的有效性,但此类方法应用于彩绘文物时能否达到无损仍有待研究。
有些灭菌方法比如低温法,无法杀灭霉菌等微生物,只能对其起到抑制作用,且不适用于含黏合剂的文物保护,因此未在彩绘类文物灭菌领域有所应用[48]。还有一些可能适用以彩绘类文物灭菌,但尚未应用的方法:比如秦俑彩绘保护技术研究课题组曾用电子束辐照法聚合陶俑加固材料,并探寻了电子束辐照对彩绘颜料的影响。结果表明:50~90 kGy的辐照下,常见彩绘类颜料如朱砂、石青、石绿、丹铅、赭石的颜色均无显著影响,只有铅白出现了轻微的淡粉色变化,但不影响视觉效果[79]。2020年,Carpio[80]对绵纸、麻纸、影印纸以及新闻报纸4种纸张类型在电子束辐照后可能发生的不同性质变化进行了研究,结果表明:辐照剂量同抗拉强度以及不同纸张之间没有相关性,纸张辐照后的颜色也无显著改变。同伽马射线相比,电子束法灭菌不需要提供辐照源,电源切断后辐射即刻消失,有更高的安全性与更好的可控性,具有很好的发展前景[81]。
脉冲磁场杀菌作为新兴的低温杀菌技术,具有绿色、高效、穿透性强、同灭菌对象间无直接接触等优点,在水处理和食品工业领域有所应用。但是脉冲磁场对微生物的作用机理目前尚未完全清楚,针对彩绘类文物也缺乏相关研究[48,82-83]。
现阶段的熏蒸剂与合成类防霉剂对人体健康和环境均存在副作用,是不符合绿色发展趋势的;辐照法、微波法和等离子体法虽然解决了这方面的缺陷,但是其在专业性和经济性方面要求仍然较高,相关研究也不完善;天然生物材料和低氧法灭菌虽然成本相较前者更低,但又分别受困于不成熟的市场以及特殊的处理对象,无法大规模应用。
最初,彩绘类文物灭菌研究的方向主要集中在灭菌效率的提升上,以熏蒸剂和防霉剂所代表的化学法作为研究重点,通过不同杀菌剂之间相互混合等方式,微生物致死率得以提高,与此同时,熏蒸剂、防霉剂市场得已成熟。近年来,由于微波、辐照等方法具有无损、环保等优势,物理法灭菌的研究逐渐增多,针对化学法的研究也慢慢转向更加绿色、安全的生物提取物。总体方向逐渐转变为:在保证文物本身不能有损害的前提下,通过控制灭菌参数,在最小的剂量或浓度的条件下达成灭菌目的。这也预示着绿色、无损灭菌将成为未来彩绘文物发展的首要前提,不论新方法的发掘还是旧方法的拓宽都要首先保证其无损和环保的特点。此外,近三年的研究中复合法越来越多,尤其超临界流体的应用,预示着彩绘文物未来发展可能聚焦于不同方法间的相互配合,通过取长补短来消除某一种方法对彩绘文物灭菌后的损伤或残留,以达到无损灭菌的目的。