张翼鹏,段焰青,张晓燕,殷春雁,宁国宝,雷声,李灿鹏,刘自单*,吴子健*
(1.云南中烟工业有限责任公司技术中心,云南 昆明 650231;2.天津商业大学生物技术与食品科学院,天津 300143;3.红河卫生职业学院,云南 红河 661199;4.云南大学化学科学与工程学院,云南 昆明 650091)
1912年,法国化学家L.C.Maillard首先报道了葡萄糖和甘氨酸可在加热条件下反应生成褐色物质,其主要成分是棕色的类黑素。1953年,Hodge等[1]把这个反应正式命名为美拉德反应(Maillard reaction)。美拉德反应本质上是指还原糖、醛、酮等的羰基与蛋白质、氨基酸、肽等含氮物的游离氨基之间发生的一系列脱水缩合反应[2-3]。食品加工中,美拉德反应及其产物不仅能够改善食品的功能特性,如食品风味、溶解性、热稳定性、黏度、乳化性、起泡性、凝胶性等,还能影响食品的抗氧化活性、抗菌活性、抗褐变活性、降血压、消化性、生物学活性。本文主要阐述了美拉德反应产物(Maillard reaction products,MRPs)的制备方法及其在食品改性中的应用,特别是对食品蛋白的功能特性改善的影响,并对今后的美拉德反应的研发作了展望。
MRPs的制备流程包括样品制备、MRPs的提取、分离、浓缩富集、反应产物的鉴定等[4-5]。制备样品必须对样品原料性质和特点进行了解,选择具有典型和代表性的部位,采用适当的方法。MRPs的分离分析手段包括液/液萃取、液/固萃取、固相萃取、超亚临界流体萃取、微波、超声波辅助萃取、蒸馏提取法、动态顶空提取、溶剂辅助蒸发提取等。MRPs的浓缩富集技术主要有蒸发浓缩和吸附浓缩,常用仪器有K-D浓缩器和旋转蒸发仪。
MRPs性质和结构的分析鉴定技术包括红外光谱、荧光光谱、液相-串联质谱、气相色谱-质谱联用和核磁共振等。目前气相色谱-嗅闻-质谱联用既可以鉴定化合物,还能鉴定风味物质的特点[6-7]。另外,同位素示踪法也是MRPs分析手段中有效的常用辅助分析技术,有助于探索产物的形成途径和形成机理[8-10],为MRPs的精准合成(定向合成)提供了较好的表征手段。
美拉德反应在食品的颜色、香气、口味等风味特征的形成过程中起到重要作用[11]。通过控制原料、温度等反应参数,能够得到一系列不同风味的物质[12],例如,核糖可与半胍氨酸及谷氨酸分别反应,产生猪肉烧烤味和牛肉烧烤味[13];在100℃~150℃和180℃,葡萄糖和缬氨酸反应产生烧烤味和巧克力味[14];木糖和酵母水解蛋白在90℃和169℃温度下反应,分别产生饼干味和酱油味[15]。同种食品不同的加工方法产生的香气也不同,例如,煮熟的马铃薯产生125种香气,而烤熟的马铃薯能产生250种香气[16]。美拉德反应还能用于咸味物质等一些调味料的生产[17],目前,一些咸味物质已经广泛应用于冰冻食物、罐头、方便面、香肠和咸味零食等食品加工中[18]。这些研究说明美拉德反应是改善食品风味较为有效的方法。但是,部分美拉德反应形成的烷基嘧啶和吡咯等化合物也会产生一些令人不悦的味道[19],因此如何控制好食品加工中美拉德反应的条件进而产生人们期望获得的风味物质是今后研究热点之一。此外,随着人们生活水平的提高,对食品风味也提出了更高的要求,这也促使食品化学工作者研发更多、更新的食品风味物质来满足不同的消费人群。
蛋白质的溶解度会直接影响食品的黏度、凝胶性、起泡性、乳化性等功能特性,而美拉德反应可通过提高食品蛋白的溶解性,进而改善其功能特性。美拉德反应改善蛋白溶解性的原因在于引入糖的亲水基团(主要是羟基基团)有利于提高蛋白溶解性,同时降低糖基化蛋白质的等电点。Jiménez-Castaño等[20]研究表明,pH 5.0时,α-乳白蛋白(α-la)、β-乳球蛋白(βlg)以及牛血清蛋白(bovine serum albumin,BSA)受葡聚糖的糖基化修饰,其溶解度提高。Martinez-Alvarenga等[21]研究也表明,乳清分离蛋白(whey protein isolate,WPI)经麦芽糊精糖基化修饰,溶解度增强,可能是由于糖基化作用在蛋白质表面引入了羟基基团,致使蛋白质的等电点由5降低至4~4.5,乳清分离蛋白(WPI)和乳清水解蛋白(hydrolysed whey protein isolate,HWPI)经乳糖和果糖的糖基化作用,其溶解度均得到提高[22]。然而,也有报道表明,美拉德反应后的糖基化蛋白的溶解性降低。蛋清蛋白与果胶[23]、猪肉蛋白与葡聚糖[24]结合后,溶解度降低,其原因在于相对于天然蛋白,经糖基化作用的蛋白质之间会产生交联,从而产生更多沉淀;而且美拉德反应的糖大部分为结构复杂的多糖,也可能是导致蛋白溶解性降低的另一个原因。因此,可利用调控糖基化发生的程度来控制多糖-蛋白质美拉德反应产物的溶解性[24]。另外一方面,在美拉德反应之后,蛋白质溶解性降低的原因可能是加热时间过长,蛋白质内部的疏水基团外露,导致表面疏水性增加从而使蛋白质发生聚集。在有些反应中,也可能是美拉德反应高级阶段的MRPs(如3-脱氧葡糖酮醛、乙二醛和甲基乙二醛等)与氨基酸残基(如赖氨酸)相互作用,形成分子内或分子间的交联[25],从而形成蛋白的大分子聚合物。Wang等[26]利用木糖或果糖对大豆分离蛋白进行糖基化修饰,在80℃湿热条件下反应6 h后蛋白质的溶解度显著增强,反应时间至10 h后其溶解度呈下降趋势,其原因可能是美拉德反应进行到最终阶段产生了一些难溶的疏水化合物。Cheng等[27]也观察到类似的现象。
高温通常使蛋白质结构发生改变,产生沉淀从而会影响其功能特性[28]。美拉德反应已成功用于改善溶菌酶、乳清蛋白、猪肉分离蛋白、油菜籽分离蛋白、乳清分离蛋白等食品蛋白的热稳定性[20,24,29-32]。 这些食源性蛋白经美拉德反应后,使蛋白质分子中引入空间位阻和静电排斥力,从而阻碍尚未折叠的蛋白质分子发生聚集[33]。美拉德反应中,蛋白质-多糖复合物能增强其乳化液的稳定性,因此可作为高效、稳定的乳化剂应用于冰冻食品中[34]。另外,糖基化修饰的乳清蛋白热稳定的提高与糖基化的程度、碳水化合物的碳链长度以及蛋白质的结合位点密切相关。多糖较单糖具有更强的空间位阻,多糖分子量越大越容易稳定蛋白质[35]。美拉德反应中,蛋白质热稳定的提高还有助于糖基化修饰,使蛋白质分子亲水作用增强,使美拉德反应产物的保水能力增强[26]。在大豆分离蛋白与葡萄糖[36-37]、花生分离蛋白与葡甘聚糖[38]以及花生分离蛋白与葡聚糖/阿拉伯胶[39]之间发生的美拉德反应过程中,均检测到蛋白质表面亲水性增强。蛋白质疏水基团之间的过强的疏水作用力易使蛋白质发生聚集,从而降低其热稳定性。因此,在美拉德反应中,通过调控反应条件,能获得高稳定性的蛋白质-多糖复合物,使其作为热处理食品的功能性成分应用于食品工业中。
食品蛋白的黏度也是其重要的功能特性之一。糖基化修饰作用对蛋白质溶液的黏度影响显著。Oliver等[40]的研究结果表明,酪蛋白与核糖、果糖、葡萄糖、乳糖之间的美拉德反应中,酪蛋白的黏度均有不同程度增加,美拉德反应蛋白产物的黏度从大到小依次为:核糖>葡萄糖>果糖>乳糖。另外,该作者分别利用果糖和果糖-菊粉混合物分别对酪蛋白进行磷酸化修饰,酪蛋白的黏度同样得到提高[41]。Hiller等[42]研究表明,牛奶蛋白经葡萄糖、乳糖、右旋糖酐和果胶糖基化修饰,蛋白质溶液的黏度分别提高了164%、1 066%、915%和3 462%,这主要是因为蛋白质经糖基化修饰后,分子量、空间位阻和保水性均得到增强。但是,美拉德反应的高级阶段也会产生难溶性化合物导致蛋白质黏度下降[23]。美拉德反应产生的蛋白质-碳水化合物能够增加体系的黏度,防止乳化类产品中乳化剂和泡沫塌陷,应用于食品工业中,能够确保食品在加工、运输、储存阶段保持流变特性。美拉德反应会影响食品蛋白的黏度,但是不同种类的食品蛋白在经过美拉德反应之后,其黏度的变化也会有较大差异,实际加工过程中要根据实际需求来确定美拉德反应条件。
蛋白质的糖基化是提高蛋白质乳化特性的重要手段,糖基化不仅可增强蛋白质在水相中的溶解性,而且通过改变蛋白质空间构象,进而增强其柔性提高糖基化蛋白的流动性,使得糖基化蛋白能更快迁移至油/水界面[35],并且接枝在蛋白质上的多糖又能在油滴之间产生一定的空间排斥,促进蛋白质附着于油滴表面[43-44]。例如:酪蛋白酸盐-麦芽糊精复合物具有一定的热稳定性和冻融稳定性,使水包油型乳化液更加稳定,正是由于麦芽糊精糖基部分突出并进入水相,提高了空间稳定性,防止液滴的聚合,形成强有力的生物聚合膜界面[45]。在冰冻食品中,稳定的蛋白质-多糖乳化液是由于糖基化过程中,在油滴之间引入很强的空间排斥力,形成致密的多分子层结构。然而,加热时间过长会导致太多的疏水基团暴露,蛋白质分子间相互作用增强,最终形成聚集或沉淀;另外,美拉德反应产物的降解也能导致蛋白质乳化性能降低[34]。
乳清分离蛋白和乳清水解蛋白经乳糖和果糖的糖基化修饰,其乳化性增强,是因为糖基化作用形成了可调控的亲水-疏水动态平衡[22]。最近,Wang等[26]报道与鸭蛋清蛋白-柑橘果胶复合物相比,鸭蛋清蛋白-麦芽糊精复合物有更稳定的乳化性能,能够耐受离子强度和酸性环境。另外,大豆分离蛋白与葡萄糖经过干燥加热条件下的美拉德反应,蛋白的乳化能力增强[46],然而,大豆分离蛋白和木糖或果糖在湿热条件下进行美拉德反应,蛋白质的乳化活性降低[26],这暗示出不同的加热模式,不同的还原糖和反应条件导致某种蛋白质的功能特性不同。也有报道显示,蛋白质的疏水作用及柔性是决定其功能特性(如乳化性、起泡性)的重要因素[47-50]。例如,美拉德反应降低了大豆分离蛋白的刚性,增强其柔性,使其快速扩散并吸附到油/水界面。因此,疏水性和柔性可能是蛋白质表面功能特性的静态和动态因素[36-37]。与未糖基化的蛋白比较,在酸性、高离子强度和高温等条件下,蛋白质-多糖复合物乳化液有更高的稳定性。因此,糖基化蛋白质可以用作一种优良的乳化剂。
糖基化修饰可以提高蛋白的起泡性和起泡稳定性。蛋白质-多糖复合物的多糖部分具有很好的亲水性和界面黏弹度,增强了复合物的保水性,从而提高了泡沫稳定性[42]。并且,糖基化作用能通过调节蛋白质的亲脂-亲水之间的动态平衡,增强蛋白质-多糖复合物捕获气泡的能力,延长气泡稳定的时间。糖基化通过增强蛋白质的黏弹度,形成加厚致密层,从而包裹在被捕获的气泡周围,防止气泡破裂[22]。干热条件下,β-乳球蛋白经葡萄糖和乳糖糖基化修饰后,其泡沫稳定性增强[51]。同样,乳清分离蛋白经麦芽糊精糖基化修饰后,其起泡能力和泡沫稳定性均增强[21]。另外,乳清分离蛋白和乳清水解蛋白经乳糖和乳果糖糖基化修饰,其起泡性和泡沫稳定性也得到提高[22]。据报道,牛血清蛋白经葡萄糖和甘露糖的糖基化修饰,其亲水性增强[52]。酪蛋白经葡萄糖胺糖基化修饰,其亲水性也增强[53],亲水性的增强均使其复合物的泡沫稳定增强。总之,可以通过美拉德反应调整食品蛋白的表面亲水或疏水性来获得性能较好的起泡剂。
通过热诱导食品蛋白,引起变性和聚集,从而形成凝胶。凝胶形成与蛋白质浓度、温度、pH值、离子强度和加热时间等因素相关。蛋白质在未折叠状态下,凝胶形成受多糖共价修饰的影响[54]。Cabodevila等[55]将大豆分离蛋白和木糖或葡萄糖酸-δ-内酯溶液高压灭菌制得热诱导凝胶,美拉德反应形成更多的共价交联,从而提高了胶体的保水性,并增强其凝胶断裂力和弹性。Armstrong等[56]也有相似报道。以上研究表明蛋白质经多糖糖基化修饰之后,其凝胶稳定性显著增强,这为创制生物活性物质运载凝胶奠定了良好的基础。具体美拉德反应对食品功能特性的改善见表1。
表1 美拉德反应对食品功能特性的改善Table 1 Effects of Maillard reaction on the improvement of functional properties of foods
MRPs(如还原酮、类黑素等)具备抗氧化作用,且抗氧化能力受到诸如反应物浓度、加热方式、初始pH值、温度、反应时间等因素的影响[57]。通过金属螯合能力,活性氧消除能力,过氧化氢清除能力等测定,MRPs显示了良好的抗氧化活性[58]。MRPs的生物学活性归因于羟基和吡咯基团的电子转移能力及还原酮的递氢作用,以此来终止自由基链式反应[59]。研究表明溶菌酶-瓜尔胶复合物的还原性增强取决于复合物自身的电子转移能力,且热诱导导致蛋白质变性,暴露出更多的氨基酸残基,从而能够给出更多的电子[60]。海藻酸钠是从褐藻类的海带或马尾藻中提取碘和甘露醇之后的副产物,是一种天然多糖,可以和食品蛋白发生糖基化反应,从而增加抗氧化性。已经证明类黑素具有阴离子性质,能够通过氮原子来螯合金属离子[61],类黑素中的吡咯酮和吡喃酮可能提供羟基和酮体等螯合供体[62]。目前,MRPs也作为一种潜在的抗氧化剂,用于抑制果汁[63]、肉类[64]、意大利面[65]、面包[66]、马铃薯[67]和奶产品[68]等食品中的氧化反应。美拉德反应对这些产品的风味、颜色和氧化稳定性起到重要作用。
美拉德反应中的蛋白质-糖复合物,由于具备较高的热稳定性,在高温条件下不易发生降解而丧失生物活性,因而可以用作热加工产品中的抗氧化剂和乳化剂。
水溶性氨基酸/糖体系或者甜卤水、啤酒、咖啡等的美拉德反应产生的类黑素具有抗菌活性。和革兰氏阴性菌(如大肠杆菌)相比,类黑素对革兰氏阳性菌(如金黄色葡萄球菌)具有更强的抑制效果[69-70]。样品经较强的热处理(如焙烤),能产生更强的抗菌效果[71]。另外,美拉德反应的副产物的抗菌效果也得到了证明,它能与细菌的细胞壁、蛋白质、脂质、核酸等发生反应,从而干扰细菌繁殖[72-73]。将蛋白质-糖复合物添加到食品中,能够增强食品的微生物安全性,延长保质期。例如,糖基化的壳聚糖,作为一种潜在的抗菌化合物,已成功用于肉类[74-75]、鲜虾[76]和面条[65]等食品中。由于抗生素的广泛使用,加上微生物对抗生素的耐药性,使其抗菌活性下降,MRPs对细菌性病原体有较好的抑制作用,可作为抗生素潜在替代物应用于医药行业。
水果和蔬菜中的多酚氧化酶(polyphenol oxidase,PPO)会使醌氧化为深色颜料,影响产品的营养、功能和感官特性。亚硫酸盐广泛用作PPO的抑制剂,但其对咽喉有较大的刺激作用,特别是对哮喘病有不利影响,因此研究人员试图寻找新的PPO抑制剂[77]。研究表明MRPs能够显著降低或抑制食品中酪氨酸酶、过氧化物酶和PPO的活性。例如,半胱氨酸-木糖、半胱氨酸-葡萄糖美拉德反应生成的MRPs能够最大限度抑制PPO的活性,已广泛用于抑制苹果泥、切片蘑菇、苹果和茄子中的PPO活性[78]。在葡萄糖-精氨酸/组氨酸生成的MRPs存在时,苹果泥和土豆块中的酶促褐变反应受到明显抑制[77]。同样,在香蒲中添加壳聚糖-麦芽糖美拉德反应产生的MRPs,显著抑制了PPO活性,香蒲的颜色保持不变。
基于以上研究,MRPs可作为潜在的防褐变剂,在新鲜蔬菜和水果中用于防止酶促褐变反应。MRPs的防褐变作用可能是由于这些化合物之间易形成金属键,从而螯合氧化还原酶(如多酚氧化酶、酪氨酸酶和过氧化物酶)中的金属离子,使这些酶的活性位点失活从而达到抑制酶促褐变的目的。
研究显示,MRPs中的类黑素能够有效抑制血管紧张素-I转移酶(angiotensin I-converting enzyme,ACE)活性,从而降低血压[79]。一项体外研究表明,从咖啡中提纯的类黑素,随着加热时间延长,对ACE的抑制作用显著增强,效果与降血压肽类似,表明健康与类黑素紧密相关[80];在另一项体外研究中,葡萄糖-氨基酸溶液(pH值为中性)在100℃下加热24 h后,提纯类黑素部分,试验表明类黑素具有结构依赖的ACE抑制活性。这些发现暗示类黑素可能用作一种潜在的抗氧化和降血压成分,用于创制新型功能食品。虽然类似的研究还不多,但将是今后研究的热点之一。
美拉德反应产物容易被机体消化和利用。研究表明,乳清水解蛋白-乳果糖复合物在模拟的胃部环境中能被完全降解[22]。一般情况下,糖基化修饰不会使蛋白质的二级结构发生太大变化,但往往改变蛋白的三级结构,使蛋白形成“熔融”的部分变性结构,这样也有利于蛋白酶对蛋白质的消化作用[22]。另外,肠道菌群试验表明,结肠微生物能够消耗美拉德产物中的复合物作为自身的碳源和氮源,例如酪蛋白肽-乳果糖/低聚半乳糖[81],酪蛋白酸盐/β-乳球蛋白[82],酪蛋白酸盐/β-乳球蛋白-半乳糖/乳糖[83],乳铁蛋白水解物/低聚半乳糖[84]的发酵物。
美拉德反应产物的生物学活性在食品中的应用如表2所示。
表2 美拉德反应产物的生物学活性在食品中的应用Table 2 Application of biological function of MRPs in foods
美拉德反应及其产物能够有效改善食品的功能特性并使其发挥各种重要的生物学功能,但是对美拉德反应各个阶段的反应机理研究还不够透彻,尤其是高级阶段产生的各类未知结构的化合物,而具备某些风味的美拉德反应产物的定向制备(精准合成)是今后研究的方向之一。研究显示,美拉德反应中可能形成一些有害物物质[85],如羟甲基赖氨酸可能导致糖尿病和心血管疾病,丙烯酰胺是标准的致癌物质[86],美拉德反应的高级阶段可能导致糖尿病和老年痴呆等疾病[28]。因此,利用美拉德反应复合物作为食品添加剂时,应有效控制反应进程,避免有害物质的生成。另外,随着人们健康意识的提高,开发出既有独特风味、又有营养保健功能的产品是消费者的追求。因此,美拉德反应的消化性、毒性,以及抗氧化、抗菌、降血压、抗肿瘤等生物活性研究成为下一步研究的热点。