刘世梁,孙永秀,赵海迪,刘轶轩,李明琦
北京师范大学环境学院水环境模拟国家重点实验室, 北京 100875
三江源地区作为青藏高原的腹地和主体,是长江、黄河和澜沧江三大河流的源头,具有重要的水资源保护和调节作用,分别提供了三条河流总水量的25%、49%和15%,年平均径流量总量约为400亿m3[1]。由于特殊的地理位置、丰富的自然资源以及重要的生态功能,三江源成为中国及东南亚国家生态环境安全和区域可持续发展的重要生态屏障,也是中国生态系统最敏感和最脆弱的地区之一[2-3]。草地是三江源地区陆地生态系统的主要组成部分,占土地总面积的70%以上,主要包括高寒草原和高寒草甸等草地类型[4]。近年来,由于生态系统本身的脆弱性,并伴随着气候变暖和人类不合理地开发利用活动的加剧,使得三江源区的草地生态系统持续退化,严重影响了该区域的生态环境和草地畜牧业的可持续发展,已引起许多学者的关注[5- 7]。因此,为防止草地的进一步退化,国务院于2005年规划投资75亿元启动了三江源自然保护区生态环境保护与建设工程,其中实施退牧还草、黑土滩治理等22个生态建设项目来治理和恢复草地生态系统[1, 8-9]。随着草地生态工程的实施,草地退化趋势得到有效遏制,草地生态环境质量逐渐好转[3, 10]。
近些年来,随着对地观测系统技术的不断成熟以及空间探测技术的不断发展进步,遥感技术被广泛应用到生态学的各个领域,由于植被的覆盖面积大、监测时序长而使得遥感技术被广泛应用于植被动态的监测中[11-12]。同时遥感技术及地理信息系统的综合应用也使得大面积、大区域植被指数提取及长期监测成为可能[13- 15],一直受到科学界的极大关注[16-17]。归一化植被指数(NDVI)不仅能反映吸收的光合有效辐射、叶绿素密度和叶面积等植被参数,还能消除大部分与太阳角、云阴影和大气条件有关辐照度的变化,增强了对植被的响应能力,是植被生长状态以及植被空间分布密度的最佳指示因子,是监测地面植被变化的一个重要指标[18- 20]。净初级生产力(NPP),指植物群落在单位时间内通过光合作用积累的有机物质总量,从而反映出植被生长和生态系统健康状况[21]。总初级生产力(GPP)指植物群落在单位时间和单位面积上通过光合作用所固定的有机碳总量,可反映植被的固碳能力和生长状态[22]。通过对多源数据对比分析,可深入探究三江源草地的生长状况和动态变化。
近年来,国内大部分学者已对三江源生态建设工程实施后植被动态变化特征开展大量研究,研究重点多侧重于气候变化对植被生长的影响[10, 14],很少对草地变化和人类活动的影响进行评估。草地生态工程的实施主要是针对人类活动所导致的草地退化所开展的,因此基于人类活动的强弱来评测生态工程建设的成效具有重要的意义。本研究基于NDVI、NPP和GPP等多源数据分别选取了2005年生态工程实施前的5年即2000—2004年、生态工程实施后的10年即2006—2010年和2011—2015年,运用线性回归分析法对比分析了生态工程实施的前5年和后10年草地的动态变化差异。并结合人类干扰强度的分布分析了生态工程建设前后不同人类干扰下草地动态变化的差异。最后,引入地理加权回归模型(Geographical Weighted Regression, GWR),筛选影响三江源草地动态变化的主要驱动因素。通过本研究可有效的掌握三江源区生态工程建设的效果,为根据人类活动的强度合理的制定相应的草地恢复政策提供科学依据,同时为未来三江源生态保护提供参考。
三江源地区位于青海省的南部,是长江、黄河、澜沧江三大河流的发源地,素有“中华水塔”之称,是青藏高原的腹地[7, 23]。研究区内行政区域包括玉树、果洛、海南、黄南4个藏族自治州的16个县和格尔木市的唐古拉乡[8]。区域内气候属于典型的高原大陆性气候,无四季之分,只有冷暖季之别,冷暖两季交替、干湿两季分明[2, 24]。三江源区域的草地主要包括高寒草甸、高寒草原以及面积较小的温性草原和高寒荒漠等草地类型[4]。依据国家自然科学基金委员会“中国西部环境与生态科学数据中心”(http://westdc.westgis.ac.cn)所提供的《1∶100万青藏高原植被图》,归纳提取了三江源区的草地类型图如图1所示。
图1 研究区位置及草地类型分布
1.2.1NDVI、NPP和GPP数据
草地动态监测所用的NDVI数据为研究区2000年1月—2015年12月的时间分辨率为10天、空间分辨率为1 km的SPOT-NDVI数据。SPOT数据由国家科技基础设施SPOT- 4和SPOT- 5卫星的植被仪获得(http://westdc.west-gis.ac.cn/)。年平均NDVI值采用国际通用的最大化合成法(Maximum Value Composite Syntheses,MVC)对每个像元进行合成,最后得到能够代表该年度植被生长状况的生长季最大NDVI值,该方法进一步消除了云、大气、太阳高度角等的干扰[25]。
NPP 数据来源于在全球变化科学研究数据出版系统上发表的北纬18°以北中国陆地生态系统逐月净初级生产力1 km栅格数据集(http://www.geodoi.ac.cn)[26]。时间尺度为2000—2015年,空间分辨率为1 km。GPP数据来源于基于遥感NIRv的全球生态系统总初级生产力(GPP)长时间序列数据,本数据集基于长达40年左右的遥感AVHRR数据和全球数百个通量站点观测。时间尺度为2000—2015年,空间分辨率为5 km,在本文中为保持数据分辨率的一致性,重采样至1 km。
1.2.2人类干扰定量化数据
人类对草地生态系统的干扰主要包括过度放牧、道路建设、农业生产、生态工程建设及旅游业等[27- 29]。因此,本文选择了放牧强度、距离居民点的距离、距离道路的距离、人口密度、国内生产总值(Gross Domestic Product,GDP)、夜间灯光指数、耕地比例和NDVI变化率8个主要的因素作为衡量三江源地区人类对草地的干扰。其中道路线矢量数据及居名点的点矢量数据均从中国1:25万的地形数据库中提取;放牧强度数据从栅格化放牧数据中提取;人口密度、GDP密度和土地利用数据从中国科学院资源与环境数据云平台(http://www.resdc.cn/)获得,其中耕地比例根据土地利用数据提取得到;夜间灯光指数数据由美国国家海洋和大气管理局(NOAA)的国家环境信息中心(https://ngdc.noaa.gov/eog/download.html)提供,因2015年数据无法获得,故用2013年的数据替代。
由于各影响要素具有不同的量纲,本研究首先采用标准化公式对每个因素进行标准化处理,然后通过熵权法确定各因子权重,最后在GIS里通过空间叠加法将各影响因子图层相加作为各栅格内人类干扰的影响程度。人类干扰等级划分采用地理信息系统中的分级方法自然断点法聚类分析分为4级,分别为轻度干扰、中度干扰、重度干扰和极度干扰。
运用NDVI数据评估植被动态变化最广泛应用的方法是采用普通最小二乘法(Ordinary Least Squares,OLS)进行线性回归分析[30-31],该方法可以模拟每个栅格的变化趋势。对于NDVI时间序列,每个栅格对应有若干年的时间序列数值,对这些时间序列数值进行逐栅格单元的线性拟合,所得直线的斜率可揭示在该时间序列中某一栅格所代表的植被指数的变化趋势[32-33]。Stow等用该方法成功地模拟了某时间段内植被的变化趋势[34],其计算公式为:
(1)
式中,n表示时间序列的长度,在本研究中n=5或16;i为1—5或1—16的年份序号,NDVIi表示第i年最大合成的NDVI值。Slope>0说明NDVI在5年或16年间的变化趋势是增加的,反之则是减少的。
为进一步分析草地变化趋势的意义,引入F检验。如果F>F0.05(1,n-2),变化在95%的置信水平下是显著的,本研究中,F0.05(1, 14)=4.60,F0.05(1, 3)=10.128。根据这一规则,计算每个像素的F检验。通过将斜率变化和F检验数据集叠加,得出草地的变化情况,变化率主要分为四类:明显增加(slope>0,F>4.60或F>10.128),增加(slope>0,F<4.60或F<10.128),减少(slope<0和F<4.60 或F<10.128),显著减少(slope<0,F>4.60或F>10.128)。F检验的计算公式为:
(2)
(3)
地理加权回归(GWR)通过构建局部回归模型,能够探测到由于地理位置变化引起的变量间关系或结构变化,即空间非平稳性。相对一般线性回归模型,有效提高了模型的拟合优度,在空间回归中得到了越来越广泛的应用。本文初步选取11个影响草地动态变化的因子作为解释变量,其中人类活动因子包括GDP、距离道路距离、距离居民点距离、人口密度、放牧强度和夜间灯光指数;气候因子包括降水、气温和干旱;地形因子包括海拔和坡度,同时选取2000—2015的草地变化率作为因变量。然后,将三江源草地区域划分为13900个5 km×5 km的栅格,提取得到每个栅格因变量与解释变量的值,进行GWR回归分析。
数据的前期处理与计算均在ArcGIS 10.5中执行;地理加权回归模型在GWR4中完成。
三江源草地区域各人类干扰等级的分布情况如图2所示,人类干扰整体上呈现出由西北向东南加重的趋势,草地区域平均处于重度人类干扰强度下。轻度人类干扰的草地区域占总草地区域的11.53%,集中分布于三江源的西北部。中度干扰、重度干扰及极度干扰区域分别占草地区域的12.94%、75.22%和0.30%。对比草地类型分布(图1)与人类干扰等级分布(图2)可以发现,高寒草原集中分布于轻度和中度人类干扰区的西北部,而人类干扰的重度区域集中在高寒草甸区,东北部温性草原区域的人类干扰极为严重。
图2 三江源草地区域人类干扰等级分布
图3显示2005年生态工程建设前的2000—2004年及建设后的2006—2010年、2011—2015年以及2000—2015年间NDVI、NPP和GPP年最大平均值的空间分布情况。由图3可以看出NDVI、NPP和GPP的空间分布与人类干扰等级分布的模式相类似,NDVI、NPP和GPP在不同时间阶段均由研究区的西北向东南方向呈现逐渐增大的趋势。轻度人类干扰的西北部区域草地的NDVI、NPP和GPP值均较小,而人类干扰强度大的东南部区域NDVI、NPP和GPP值均较大。同时,分别计算各干扰等级内NDVI、NPP和GPP的平均值,如表1所示,轻度人类干扰草地区域的NDVI平均值小于0.2;NPP值小于5.0;GPP值大于1300,而极度人类干扰草地区域的NDVI值达到0.6;NPP值达到20;GPP值降至600。NDVI和NPP值均随着人类干扰强度的增大呈增加的趋势,而GPP值随着人类干扰强度的增大呈减少趋势。
图3 2000—2004年、2006—2010年、2010—2015年及2000—2015年NDVI、NPP和GPP平均值的空间分布
表1 各人类干扰等级内NDVI、NPP和GPP的平均值
3.3.1草地NDVI、NPP和GPP的年际变化对比分析
图4 2000—2015年草地的年均NDVI、NPP和GPP值 /(NPP 10-2 g C/m2; GPP 10-4 g C/m2)
由图3可以看出2006—2010年和2011—2015年草地的NDVI、NPP和GPP较2000—2004年有所提高,NDVI、NPP和GPP值高的区域增大。为对比2005年生态工程建设前后草地的变化情况,分别统计了各年草地的年均NDVI、NPP和GPP值(图4)。总的来看,草地NDVI、NPP和GPP均呈现整体上升的趋势,生态工程建设后的10年草地的盖度与生长状况要高于建设前的5年。与NDVI相比,NPP和GPP年际变化趋势相对一致。2000—2004年间NDVI和NPP整体呈现增加的趋势,GPP在2001年达到最大值535.921后呈现减少的趋势。在2006—2010年间NDVI在2009年增加到0.482后急剧降低;NPP和GPP整体呈现先减少后增加的趋势。在2011—2015年间NDVI在2013年达到最低值0.504,之后呈现增加趋势;NPP和GPP呈现先增加后减少的趋势。
3.3.2草地NDVI、NPP和GPP的空间变化特征对比分析
采用线性回归分析方法分别计算生态工程建设前的2000—2004年及建设后的2006—2010年和2011—2015年间草地NDVI、NPP和GPP的变化趋势,并将草地变化趋势分为显著减少、减少、增加和显著增加4级别(图5)。空间分布上,2000—2015年NDVI、NPP和GPP分别82.63%、78.58%和62.25%的草地处于改善状态,退化的草地分别占17.25%、21.27%和37.91%,三者草地退化趋势呈现显著的空间分布差异,其中草地NDVI退化区域主要分布在三江源中东部地区,草地NPP退化区域集中分布北部和西部和部分区域,而草地GPP退化区域零散分布在三江源大部分区域。2000—2004年NDVI、NPP和GPP草地退化分别占52.05%、25.39%、50.80%,草地退化区域均主要分布在中东部地区,而在2006—2010年三江源区的大部分草地处于改善状态,草地退化面积分别降至14.92%、18.98%和37.72%。2011—2015年退化草地又分别增加到58.48%、44.36%和53.06%,NDVI、NPP和GPP退化草地区域类似,分布在研究区的大部分地区,尤其是中西部地区。对比人类干扰等级分布图与草地变化趋势分布图可以看出,生态工程建设前的5年内退化的草地大多分布于存在人类干扰的区域内,而在生态工程建设后的5年内该区域内的草地均出现不同程度的改善,改善的草地面积比例由生态工程建设前的47.96%、74.43%和49.36%增加至建设之后的85.08%、80.85%和62.44%。在2011—2015年,草地改善区域面积减少至41.55%、55.41%和47.10%。上述表明,草地在2000—2015年间整体处于改善状态,其中生态工程建设前5年草地处于退化状态,而生态工程建设后的5年内草地得到改善,再之后5年草地又处于退化趋势。
图5 草地NDVI、NPP和GPP变化趋势的空间分布
进一步,通过空间相关性公式,分别计算了2000—2015年3个不同时间段和整体草地NDVI变化趋势与NPP、GPP变化趋势的空间相关性,如图6所示。研究发现,NDVI变化趋势与NPP、GPP变化趋势在三江源草地大部分区域都处于高度空间相关,相关系数均大于0.5。
图6 草地NDVI与NPP和GPP变化趋势的空间相关性
3.3.3不同人类干扰下草地的动态变化对比
草地生态工程的建设主要是针对人类活动对草地造成的破坏所采取的措施,因此分析了在不同的人类干扰环境下2000—2015年草地整体变化,草地在生态工程建设前5年和后10年变化情况(图7)。如图7所示,在轻度干扰和中度干扰等级下,2000—2015年草地增加的区域所占面积比例最大,分别为46.11%和43.75%;在重度和极度干扰等级下,草地显著增加的区域所占面积比例最大,分别为48.58%和70.60%。与2000—2004年相比,在各干扰等级下草地NDVI在2006—2010年均出现退化面积比例显著减少,改善面积比例显著增加的趋势。在各干扰等级下,退化面积的比例在生态工程建设的后5年由之前的24.60%、40.63%、52.71%和19.34%分别降至10.62%、7.25%、15.05%和6.73%。各干扰等级内改善的草地面积比例均达到70%以上。随后,与2006—2010年相比,在2011—2015年期间各干扰等级的草地NDVI均又出现退化面积比例增加,改善面积比例显著减少的趋势。
图7 不同人类干扰水平内各草地变化趋势类型的比例
影响植被变化的因素主要包括气候因子和人为因子[35- 37],本研究首先通过OLS进行解释变量筛选,结果表明:影响草地动态变化的人为因素、气候因素和地形因素的11个解释变量均通过OLS检验。OLS回归模型的结果如表2所示,在不同时间段影响草地变化的主要因素分别为距离道路的距离、距离居民点的距离、人口密度、干旱、温度、坡度。同时,对比GWR与OLS模型的调整R2可以看出,4组GWR模型的拟合优度全部高于对应的OLS模型,表明GWR模型的回归效果优于OLS回归(表2)。
表2 OLS and GWR 模型检验参数和结果/(10-4)
GWR模型的显著特征是可以显示各解释变量相应的空间回归系数(图8)。根据OLS和GWR的回归结果,以2000—2015年为例,本研究选择了6个影响三江源草地动态变化的主要因素,包括距离道路的距离,距离居民点的距离,人口密度,干旱,温度,坡度。根据图8 中GWR系数的空间分布图,我们发现人类活动、气候和地形因素对草地动态变化的影响在三江源呈现显著的空间变化特征。在人类活动影响下,三江源的中部地区对距离道路的距离具有显著的积极响应,而对距离居民点的距离的积极响应集中分布于三江源的东部地区,且对人口密度响应的高敏感地区分布在三江源西部地区。在气候因素影响下,干旱对草地动态变化的影响最显著的区域分布在三江源中东部地区,而温度对草地动态变化的影响大致从西部向东部增加。在地形因素影响下,坡度对草地动态变化的影响呈从东部向西部增加的趋势,这表明海拔较低且坡度小的区域将有助于草地的生长。
图8 基于GWR模型的影响因素相应系数的空间分布
三江源生态工程实施的过程中,不断开展三江源地区生态系统的动态监测,评估工程的成效并及时调整工程规划具有重要的意义[38]。由于草地生态工程的开展包括退牧还草、黑土滩治理等都是围绕人类活动对草地生态系统的破坏所展开的,因此基于人类活动的强度来评测工程实施的效果能够为合理的调节人类活动提供理论基础。然而,由于人类活动的不确定性,对于人类活动的定量化存在很多困难[39]。本文基于GIS,识别出影响草地的最主要的8个主要因素来定量化人类干扰强度,并通过熵权法确定各因素的权重。同时选取NDVI、NPP和GPP作为反映植被生长的重要指标,通过对比NDVI、NPP和GPP值和变化趋势的空间分布,发现三者具有高度的一致性和空间相关性,验证了数据源的可靠性。另外研究结果中草地NDVI、NPP和GPP的分布(图3)及变化趋势的空间分布(图5)与人类干扰等级分布(图2)的相似性表明了该方法的可行性。研究还发现,随着人类干扰强度的增大,NDVI和NPP值均呈增加的趋势而GPP呈减少趋势。出现该现象的原因主要是由于作为以依附于草地的畜牧业为主要经济来源的三江源区,草地是人们选择居住地及活动区域的主导因素,人们会选择草地生长茂盛的区域居住,于是形成人类干扰强度大的区域NDVI和NPP值大而GPP值小的分布模式;另一个原因是三江源东南区域是高寒草甸,是生态工程重点实施的区域,人类干扰强度大,植被覆盖度高,验证了东南地区生态恢复工程的实施带来的积极影响。同时,未来研究中还需要进一步的调查居民点的规模、道路车流量、人口结构等,并结合专家评分法和层次分析法等赋予各因子不同的权重来进一步的完善人类定量化方法。该研究中由草地NDVI、NPP和GPP及人类干扰强度分布模式的对比可以发现,人类活动主要集中于草地盖度高的区域,因此对于草地的修复工程需集中在人类活动较多的区域。
基于NDVI、NPP和GPP对比生态工程建设前后的草地变化情况,研究结果显示草地NDVI、NPP和GPP的年均值在2006—2010年和2011—2015年明显的高于2000—2004年,同时对草地NDVI变化趋势的分析表明生态工程实施后的5年内70%以上的三江源草地处于改善状态,并且在各人类干扰等级下,2006—2010年相比于2000—2004年均出现退化面积比例显著减少,改善面积比例显著增加的趋势。上述表明草地生态恢复工程的建设有效促进了退化草地的恢复,改善了草地生态系统,与前人的研究结果一致[10, 12, 14]。刘宪锋等[12]研究发现,2000—2011年在气候和生态工程建设双重影响下,三江源区植被覆盖呈现增加趋势,生态环境将进一步恢复。张颖等[40]研究也发现,2001年三江源保护区成立后至2012年,三江源草地覆盖度整体呈上升趋势,增长速度和增长面积都有所提升,气候变化是影响草地生长的决定性因素,但短期的生态工程建设等人类活动同样会加快草地的变化。然而在2011—2015年下一个后5年草地改善区域又出现下降,同时在各人类干扰等级下,2011—2015年草地呈现退化面积增加和改善面积比例显著减少的趋势,表明草地仍然存在退化的趋势,这与徐嘉昕等的研究结果一致[10, 41]。Shen等[2]研究得出三江源区植被总体得到恢复,但对比2005—2015年保护区内外植被变化,项目对植被恢复的积极影响不显著,仍然有进一步退化的风险,特别是在东中、安塞、白扎、通天河、年保玉则等自然保护区退化严重。这可能的原因是,三江源生态保护工程虽然实施的总面积是152000 km2,但能影响植被覆盖度的面积仅为514.0 km2km2,仅占整个保护区的0.34%[14]。因此,尽管生态保护工程的实施区域植被明显改善,但对三江源整体植被的好转的影响甚微。另一个原因可能生态建设工程实施空间不均衡,具有短期规划特征[8, 42]。Shao等[1]研究发现,在“项目”实施的第一阶段,生态系统退化最初虽得到了遏制和部分改善,但仍远未达到预期理想效果状态。因此,三江源生态保护与恢复任务具有长期性且面临巨大挑战,在未来研究中应继续开展长期的植被和生态系统保护工作,特别是在草地退化研究的地区,以促进生态系统的根本恢复。
影响草地变化的因素主要有气候因子、人为因子和地形因子。本研究通过地理加权回归分析开展草地变化的驱动因子研究,与传统回归分析相比,GWR构建的局部回归方程符合地理学第一定律,且具有更好的拟合优度。此外,与全局回归相比,GWR方法可以得到像元尺度上不同影响因子对草地变化的影响程度,通过筛选主导影响因子,可以为草地生态系统管控提供更细致有效的科学指导。研究发现,距离道路的距离和距离居民点的距离等人为因子、干旱和温度等气候因子以及坡度等地形因子均对草地的动态变化产生重要影响。在生态工程实施等正向人类干扰的影响下,三江源草地退化现象也得到进一步缓解,草地生态系统得到改善。另外,在全球气候变化的背景下,三江源地区近年来气温升高,降水量增加,有效地促进草地植被的生长。孙庆龄等[14]研究发现,三江源生态工程的实施虽然促进了植被恢复,但对区域植被整体变化的影响有限,气候因素是2000—2013年区域植被整体改善的主要决定性因素。因此,气候被认为是三江源地区影响草地变化的主要控制因子。同时,本研究还发现三江源地区草地变化与降水因子的关联性不明显,而对温度和干旱因子的响应更为敏感,与先前的研究结果一致[41],说明温度是影响三江源地区草地变化的关键气候因子。最后,地形尤其坡度也是影响三江源草地变化的重要因素,尤其是三江源东南部地区海拔低、坡度缓有利于草地的生长,草地覆盖度高。
本研究基于2000—2015 年NDVI、NPP和GPP数据,分析了三江源区生态工程实施前5年和后10年草地NDVI的时空动态变化特征,然后通过构建人类干扰强度,探讨了在不同人类干扰强度下生态工程建设前后草地动态变化对比分析,最后通过地理加权回归分析探究了三江源草地动态变化的主要驱动因素及其空间分布。研究结果表明:
(1)三江源区人类干扰强度和NDVI、NPP和GPP具有显著的空间分布差异。人类干扰整体上从西北向东南增加,重度和极度干扰主要分布在三江源中东部地区,集中分布有高寒草甸和温性草原草地类型; 在生态工程建设的不同阶段,与人类干扰分布相类似,三江源区NDVI、NPP和GPP均由西北向东南方向呈现逐渐增加的趋势,同时NDVI和NPP值随着人类干扰强度的增大呈增加的趋势,而GPP呈现减少的趋势,且2006—2010年和2011—2015年草地NDVI、NPP和GPP均高于2000—2004年。
(2)2000—2015年,三江源区70%以上的草地退化均整体处于改善状态。相比2000—2004年生态工程建设前5年,2006—2010年生态工程建设后5年内草地得到有效改善,极度退化的草地仅占总面积的1%以下,而2011—2015年之后5年草地又处于退化趋势。
(3)2000—2015年,在各人类干扰等级下,三江源大部分草地处于中度改善状态。相比2000—2004年,2006—2010年在各干扰等级下草地NDVI在均出现退化面积比例显著减少,改善面积比例显著增加的趋势,但2011—2015年,各干扰等级的草地NDVI又均出现退化面积比例增加和改善面积比例减少,草地存在退化趋势。
(4)2000—2015年,距离道路的距离、距离居民点的距离、人口密度、干旱、温度和坡度等因素是影响三江源草地动态变化的主要驱动因素,同时各影响因素对草地变化的响应具有显著的空间差异性。