吴玉 陈正乐 陈柏林 王永 孙岳 孟令通 何江涛 王斌
1. 核工业北京地质研究院地质矿产研究所,北京 100029 2. 中国地质科学院地质力学研究所,北京 100081 3. 东华理工大学,南昌 330013 4. 中国科学院地质与地球物理研究所,北京 100029 5. 中国地质调查局天津地质调查中心,天津 300170
造山带经历了从大陆裂谷、大洋扩张到洋壳俯冲、消减,再到洋盆闭合、碰撞/增生造山以及造山后伸展、垮塌等一系列复杂的演化过程(Thomas, 1983; 张国伟等, 2001; Zheng, 2012; Songetal., 2014)。其中,岩浆活动贯穿于造山带形成和演化的始终,完整记录了造山带不同演化阶段深部物质与能量相互交换、构造体制转变等各个方面的关键信息(Brown, 1994; Rudnick and Gao, 2003; 吴福元等, 2007; Willbold and Stracke, 2010; 王涛等, 2017)。因此,造山带内不同时代和类型的花岗岩体成为探究造山带形成与演化过程及其深部壳幔相互作用的重要窗口。
北阿尔金作为青藏高原北缘一条重要的早古生代缝合带,自20世纪90年代就受到广泛关注。近二十多年来,区内红柳沟-拉配泉蛇绿岩带和HP/LT变质岩为北阿尔金早古生代构造演化提供了丰富信息(车自成等, 1995; Sobel and Arnaud, 1999; 刘良等, 1998, 1999; 吴峻等, 2001, 2002; Zhangetal., 2005; 张建新等, 2007; 杨经绥等, 2002, 2008; 孟繁聪等, 2010a; 盖永升等, 2015),证实北阿尔金在早古生代塔里木地块和原特提斯构造体系对接过程中经历了古洋盆闭合、洋陆格局转换以及增生造山等构造演化历史。与此同时,大量的岩石学、地球化学和年代学研究工作表明,该区广泛发育有与增生造山过程息息相关的岩浆活动和花岗岩体。目前,这些岩体可厘定为碰撞前、同碰撞和碰撞后等不同的构造-岩浆活动阶段(Gehrelsetal., 1999, 2003; Cowgilletal., 2003; 吴才来等, 2007; Wuetal., 2009; 韩凤彬等, 2016)。前人还根据不同花岗岩体的Sr/Y比值与成岩年龄,认为同碰撞挤压造山阶段向后碰撞伸展垮塌阶段的转换时期为440~420Ma(孟令通等, 2016),最近,红柳沟地区高Mg和低Mg两类埃达克质花岗岩的发现进一步约束同碰撞向后碰撞阶段转换时限为425~422Ma(Yuetal., 2018)。但是对于北阿尔金古洋盆最终闭合及其洋陆转换时限仍存在不同的认识。吴才来等(2007)通过巴什考供盆地北缘S型花岗岩成岩年龄为443~434Ma,认为它们的形成与增生造山过程中地壳加厚有关;郝杰等(2006)根据红柳沟-拉配泉俯冲-增生杂岩基质内绢云母石英片岩的绢云母Ar-Ar年龄为455±2Ma,认为北阿尔金古洋盆闭合和增生造山发生在中奥陶世末期;郑坤等(2018)对野马泉二长花岗岩进行研究后,也基本赞同北阿尔金在450~453Ma已处于同碰撞-碰撞后构造环境。然而,来自红柳沟-拉配泉蛇绿混杂岩中枕状玄武岩和辉长岩的年代学数据表明北阿尔金在晚奥陶世仍存在有洋壳(修群业等, 2007; 杨子江等, 2012), 中-晚奥陶世放射虫硅质岩的发现也支持该时期古洋盆尚未闭合(杨子江等, 2011)。基于此,笔者及所在项目组深入北阿尔金山腹地,通过详细的野外地质调查,厘定出众多同碰撞花岗岩体。本文详细阐述了这些岩体的岩相学、岩石地球化学、年代学和Hf同位素组成特征,结合区域地质资料,进一步探讨了这些岩体的成因类型、岩浆源区和动力学背景,以期对深入了解和探究北阿尔金早古生代增生造山过程有所裨益。
图1 研究区地质简图(a)阿尔金山及邻区数字高程模型(DEM)图(据吴磊等, 2012);(b)北阿尔金及邻区区域地质简图(据陈宣华等, 2003);(c)喀腊大湾似斑状花岗岩地质简图;(d)卓尔布拉克花岗岩地质简图;(e)沟口泉似斑状二长花岗岩地质简图;(f)木孜萨依白云母花岗岩地质简图.Ⅰ-阿尔金左旋走滑断裂带;Ⅱ-红柳沟-拉配泉褶皱构造带;Ⅲ-索尔库里-且末隆起带Fig.1 Simplified geological maps of the study area(a) Digital Elevation Model (DEM) map of the Altyn Tagh and adjacent areas (modified after Wu et al., 2012); (b) regional geology simplified map of the North Altun and adjacent areas (b, modified after Chen et al.,2003); geological sketch maps of the Kaladawan porphyritc granite (c), Zhuoerbulake granodiorite (d), Goukouquan porphyritc monzogranite (e) and Muzisayi muscovite granite (f). Ⅰ-Altyn sinistral strike-slip fault zone; Ⅱ-Hongliugou-Laipeiquan fold structure zone; Ⅲ-Suoerkuli-Qiemo uplift zone
展布在青藏高原北缘的阿尔金山被认为是由原特提斯洋俯冲-碰撞/增生造山作用所形成的复合型造山带(张建新等, 2015)。该造山带主要由E-W向的红柳沟-拉配泉褶皱构造带、NE-SW向的索尔库里-且末隆起带以及NEE-SWW向的阿尔金巨型左旋走滑断裂带三个次级构造单元组成(Yinetal., 2002, 陈正乐等, 2002, 2006)(图1a)。其中,E-W向的红柳沟-拉配泉褶皱构造构成了地理意义上的北阿尔金地区,该区以阿尔金北缘脆-韧性剪切带和南缘韧性剪切带为界,进一步划分出阿北地块、红柳沟-拉配泉俯冲-增生杂岩带和米兰-金雁山地块(图1b)。阿北地块主要出露一套古元古代-新太古代TTG片麻岩和变质表壳岩系,普遍经历了2.8~2.6Ga、2.45~2.35Ga和2.0~1.8Ga等多期的构造热事情(Gehrelsetal., 2003; Luetal., 2008; Longetal., 2014; 王斌等, 2017; 朱文斌等, 2018)和1.95~1.85Ga高角闪岩相-麻粒岩相变质-深熔作用(张建新等, 2011; Zhangetal., 2013; 辛后田等, 2013);米兰-金雁山地块则由中元古界角闪岩相变质杂岩和中-新元古界浅变质陆缘碎屑岩、碳酸盐岩及少量火山岩构成(新疆维吾尔自治区地质矿产局, 1993; 于海峰等, 2002; Gehrelsetal., 2003; 张建新等, 2011),其上又叠加有新元古代-早古生代的侵入岩体(郝杰等, 2006; Wangetal., 2013; Yuetal., 2013)。
红柳沟-拉配泉俯冲-增生杂岩带为北阿尔金重要组成部分,主要由加里东期的蛇绿岩、增生楔/增生杂岩、洋岛玄武岩、高压/低温变质岩以及岛弧岩浆等多种地质体组成,由于受早古生代强烈的俯冲-增生造山作用,这些地质体多呈构造岩片相互拼贴、叠置,并形成大量褶皱-冲断构造和脆-韧性剪切带(吴玉等, 2019)。前人对该套蛇绿岩进行了详细研究,显示其主要由枕状玄武岩、席状岩墙、硅质岩、基性-超基性岩、辉长辉绿岩以及呈脉状或透镜状斜长花岗岩等组成,枕状玄武岩Sm-Nd等时线年龄和锆石U-Pb年龄限定为524~448Ma之间(刘良等, 1999; 修群业等, 2007),辉长岩锆石U-Pb年龄为521~449Ma(杨经绥等, 2008; 张志诚等, 2009; 杨子江等, 2012),斜长花岗岩锆石U-Pb年龄集中在518~512Ma(高晓峰等, 2012a; 盖永升等, 2015)。高压/低温变质岩呈构造岩块出露在贝克滩至恰什坎萨依沟一带,主要由榴辉岩、蓝片岩、含硬绿泥石、石榴子石多硅白云母泥质片岩、石英片岩和钙质片岩等组成,其中,榴辉岩和蓝片岩呈透镜状分布在泥质片岩中,榴辉岩和蓝片岩Ar-Ar年代学测定获得513~497Ma的变质年龄(Zhangetal., 2005; 张建新等, 2007)。在红柳沟-拉配泉俯冲-增生杂岩带内发育有大量的中-酸性侵入岩体,岩石类型主要以闪长岩、花岗闪长岩、石英闪长岩、钾长花岗岩、二长花岗岩等岩性为主,以往研究表明这些岩体与洋壳俯冲消减、增生造山等地质事件密切相关(Gehrelsetal., 2003; 韩凤彬等, 2012; 吴才来等, 2005, 2007)。
本文所采集的花岗岩体分别为红柳沟-拉配泉俯冲-增生杂岩带北侧的喀腊大湾似斑状花岗岩(经纬度为39°09′07.17″N、91°40′45.94″E)、沟口泉似斑状二长花岗岩(经纬度为39°08′02.60″N、90°52′10.06″E)以及南侧的卓尔布拉克花岗岩(经纬度为39°03′39.82″N、91°05′34.96″E)和木孜萨伊白云母花岗岩(经纬度为39°00′07.18″N、90°07′30.19″E)(图1b)。
喀腊大湾似斑状花岗岩侵位于红柳沟-拉配泉俯冲-增生杂岩带内的变形玄武安山岩内,岩体出露面积较小,呈近东-西向的长椭圆状展布(图1c)。野外可见似斑状花岗岩呈灰白色-浅肉红色,具有中粗粒似斑状结构,块状构造(图2a)。斑晶主要为肉红色钾长石,呈自形-半自形板柱状,可见卡氏双晶,粒径在8~40mm不等,约占总体积10%;基质成分主要由钾长石(~30%)、斜长石(30%~35%)、石英(25%~30%)及少量黑云母(5%~10%)等矿物组成;副矿物为锆石、榍石和磷灰石等。钾长石呈他形粒状均匀分布于岩石中,粒径约为3~4mm,表面具有不同程度泥化、粘土化;斜长石呈半自形-自形板柱状,粒径约为4~5mm,发育显著的聚片双晶并具有不同程度的泥化;石英呈他形粒状充填于长石的间隙,粒径大小为2~3mm;黑云母呈片状零散分布在岩石中,片状直径约为1~2mm,局部发生弱的绿泥石化(图2b, c)。
沟口泉似斑状二长花岗岩位于冰沟岩体北侧,由于第四系沉积物覆盖严重,该岩体仅零星出露较小的面积,野外地质调查表明其附近零散分布有红柳沟-拉配泉俯冲-增生杂岩带的基性-超基性岩(图1e)。野外新鲜的似斑状花岗岩呈灰白色-浅肉红色,似斑状结构,块状构造(图2d)。斑晶主要由自形-半自形板柱状的肉红色钾长石组成,粒径为5~25mm不等,约占总体积的6%~8%;基质矿物主要为钾长石(~30%)、斜长石(~30%)、石英(20%~25%)、黑云母(~10%)和少量角闪石(<5%)等;发育有锆石、榍石和磷灰石等副矿物。镜下钾长石呈半自形-他形板状、粒状,粒径为2~3mm,局部表面发生一定程度的泥化;斜长石呈半自形-自形板柱状,粒径大小约为2~4mm,发育聚片双晶,部分具有显著的环带结构;石英呈他形粒状镶嵌于长石之间,粒径为1~2mm;黑云母呈半自形片状零散分布,片状直径约为0.5~1mm(图2e, f)。
卓尔布拉克花岗岩出露于卓尔布拉克沟西沟口,大地构造位置为红柳沟-拉配泉俯冲-增生杂岩与阿中地块衔接部位,岩体侵位于中元古界塔昔达坂群内强烈糜棱岩化的浅变质岩中,岩体南部与片麻状花岗岩相接触,北部被第四系沉积物覆盖,出露岩体面积约12km2(图1d)。新鲜的花岗岩呈灰白色,中-细粒花岗结构,块状构造(图2g)。岩石主要由斜长石(35%~40%)、钾长石(20%~25%)、石英(~30%)、黑云母(~10%)和角闪石(~3%)等矿物组成;其次含有少量绿帘石;副矿物为锆石、磷灰石和榍石等。斜长石呈自形-半自形板柱状,粒径约为0.5~3mm,可见聚片双晶发育;石英呈他形粒状集合体充填于长石间隙,并发育有波状消光和细粒化,部分黑云母发生显著的绿泥石化(图2h, i)。
木孜萨伊白云母花岗岩位于巴什考供盆地西缘,野外可见岩体直接侵位于阿中地块中元古界塔昔达坂群浅变质岩内,其东侧被第四系沉积物覆盖,导致岩体出露面积较小,约为4km2(图1f)。野外新鲜的白云母花岗岩呈灰白色,中-细粒花岗结构,块状构造(图2j)。岩石主要组成矿物有斜长石(35%~40%)、石英(~35%)、钾长石(~15%)和白云母(10%~15%);副矿物为锆石、磷灰石和磁铁矿等。斜长石呈自形-半自形板柱状,粒径约为0.5~2mm,可见有聚片双晶发育;石英呈他形-半自形粒状充填于长石间隙中,颗粒边界发育有少量的细粒化和内部呈现出明显的波状消光;钾长石为微斜长石,呈他形-半自形板柱状,粒径在0.3~1mm之间;白云母呈自形-半自形鳞片状,粒径约为0.4~2.5mm,个别白云母发生明显的膝折构造(图2k, l)。
图2 北阿尔金花岗岩类野外露头照片及显微镜下照片(a-c)喀腊大湾似斑状花岗岩;(d-f)沟口泉似斑状二长花岗岩;(g-i)卓尔布拉克花岗岩;(j-l)木孜萨依白云母花岗岩.Kfs-钾长石;Pl-斜长石;Qz-石英;Bt-黑云母;Chl-绿泥石;Amp-角闪石;Ep-绿帘石;Mus-白云母Fig.2 Field photographs and photomicrographs of the granitoids in the North Altun(a-c) Kaladawan porphyritc granite; (d-f) Goukouquan porphyritc monzogranite; (g-i) Zhuoerbulake granodiorite; (j-l) Muzisayi muscovite granite. Kfs-K-feldspar; Pl-plagioclase; Qz-quartz; Bt-biotite; Chl-chlorite; Amp-amphibole; Ep-epidote; Mus-muscovite
本文共选取了13件新鲜的岩石样品进行全岩主量和微量元素分析,测试分析在中国地质科学院国家地质实验测试中心(NRCGA)完成。主量元素采用X-荧光光谱法(X-ray fluorescence),测试仪器为3080E型X-荧光光谱仪,执行GB/T14506.28—1993标准,分析精度优于5%;微量及稀土元素采用等离子质谱法(ICP-MS)测得,执行标准为T0223-200。其中,微量元素含量大于10×10-6的元素分析误差优于5%,小于10×10-6的元素测试精度优于10%。
图3 北阿尔金花岗岩类锆石阴极发光图像白色实线圈和虚线圈分别代表U-Pb年龄和Hf同位素测点位置Fig.3 Cathodoluminescence (CL) images of zircon grains from the granitoids in the North AltunWhite solid circle and broken circle indicate the locations of U-Pb dating and Hf analyses, respectively
样品破碎和锆石挑选均由廊坊地质勘探技术服务有限公司完成。其中,喀腊大湾似斑状花岗岩、沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩锆石制靶、阴极发光(CL)照相和U-Pb年龄测定在中国地质科学院北京离子探针中心完成。在制靶过程中,挑选出无裂隙、包体少、晶形较好的锆石颗粒,并将其与标准锆石TEM(417Ma)一起在玻璃板上用环氧树脂固定,经抛光后进行透射光、反射光和阴极发光扫描电镜照相。SHRIMP锆石U-Pb测年在北京离子探针中心远程实验室SHRIMP-Ⅱ型离子探针仪器内测定,详细的实验流程和实验原理参考Williams (1998)和宋彪等(2002)。为确保仪器的稳定性和离子计数的精确性,每测试3粒锆石,进行一次标样监控。木孜萨伊白云母花岗岩锆石U-Pb年龄测定在吉林大学东北亚矿产资源评价自然资源部重点实验室完成,测试仪器采用Agilent 7900型电感耦合等离子质谱仪(ICP-MS)和COMPExPro型ArF准分子激光器联机,激光剥蚀束斑直径为32μm,使用国际标准锆石91500为外标进行同位素比值校正,29Si为内标测定微量元素含量,采用ICPMSdataCal软件对样品同位素比值数据进行处理(Liuetal., 2010),普通Pb采用Andersen (2002)方法进行校正。锆石谐和年龄和加权平均年龄图采用ISOPLOT程序绘制(Ludwig, 2003)。
锆石原位微区Hf同位素分析在中国地质科学院国家地质实验测试中心(NRCGA)完成,所用仪器为Neptune多接收质谱仪(Thermo Finnigan)和ASI(Applied Spectra Inc.)J-100飞秒激光剥蚀系统联机,实验采用的剥蚀频率为8Hz,剥蚀坑尺寸为20μm×40μm,能量密度为16J/cm2,剥蚀时间为31s。测定时使用国际标准锆石GJ-1和Plesovice作为参考物质,测试过程中锆石GJ-1和Plesovice的176Hf/177Hf测试加权平均值分别为0.282007±0.000007(2σ)和0.282476±0.000004(2σ)。初始176Hf/177Hf、εHf(t)值和地幔模式年龄计算方法见文献(Schereretal., 2001; Griffinetal., 2000, 2002)。
喀腊大湾似斑状花岗岩、沟口泉似斑状二长花岗岩、卓尔布拉克花岗岩和木孜萨伊白云母花岗岩被测锆石的阴极发光(CL)图像和测定点位(实线圈)见图3,所有样品的SHRIMP和LA-ICP-MS锆石U-Pb测年同位素分析数据列于表1和表2。
表1 北阿尔金花岗岩类SHRIMP锆石U-Pb年龄数据
喀腊大湾似斑状花岗岩(AT16-01)的锆石呈透明-半透明的无色或淡黄色,以自形的短柱状为主,少量呈浑圆状或近似圆状,粒径大小多在100~250μm,长宽比为1:1~2:1,阴极发光图像显示锆石颗粒具有明显的岩浆韵律环带(图3),其Th/U比值介于0.17~0.65之间,为典型的岩浆成因锆石(Rubatto, 2002)。13个测试点中,5、9、11和12测点的锆石206Pb/238U年龄分别为499.1Ma、1205.5Ma、473.4Ma和491.6Ma, 与围岩中元古代地层和寒武纪弧岩浆岩的时代一致,表明它们可能为继承性锆石或捕虏锆石,不参与成岩年龄计算。其余9颗锆石的206Pb/238U年龄为418.3~444.7Ma,变化范围较小。在谐和图曲线图上,所有测点均位于206Pb/238U与207Pb/238U谐和线上或附近(图4a),协和性较好,获得206Pb/238U加权平均年龄为432.4±4.9Ma(MSDW=1.9),该年龄代表了喀腊大湾似斑状花岗岩的成岩年龄。
图4 北阿尔金花岗岩类锆石U-Pb年龄谐和图Fig.4 U-Pb concordia diagrams of zircons from the granitoids in the North Altun
沟口泉似斑状二长花岗岩(AT16-02)的锆石呈透明-半透明的无色或淡黄色,晶形较好,主要以自形的长柱状为主,粒径大小主要介于150~350μm之间,长宽比为1.3:1~3.5:1,阴极发光图像显示锆石颗粒具有较为明显的岩浆韵律环带(图3),17个测点的Th/U比值为0.41~1.06,平均为0.64,显示为典型的岩浆锆石特征(Rubatto, 2002)。17个测试点中,9、11和13测点的锆石206Pb/238U年龄分别为362.4Ma、410.7Ma和413.5Ma,推测可能为后期构造-热事件等原因而发生了一定程度的Pb丢失,不参与成岩年龄计算。剩余14个测试点的206Pb/238U年龄为422.5~448.3Ma,变化范围较小,且所有测点均位于206Pb/238U与207Pb/238U谐和线上及其附近(图4b),协和性较好,14颗锆石获得的206Pb/238U加权平均年龄为432.8±4.1Ma(MSDW=1.60),该年龄代表了沟口泉似斑状二长花岗岩的成岩年龄。
卓尔布拉克花岗岩(AT16-03)的锆石呈无色透明-半透明的短柱状,晶形较好,粒径大小集中于100~200μm,长宽比为1:1~2.5:1,阴极发光图像显示锆石颗粒发育良好的岩浆韵律环带结构(图3),12个测试点的Th/U比值为0.37~0.71,平均为0.49,具有典型岩浆锆石的特征(Rubatto, 2002)。其中,2和8测点的锆石206Pb/238U年龄分别为406.3Ma和357Ma,推测可能为后期构造-热事件等原因而发生了一定程度的Pb丢失,因此不参与成岩年龄计算。剩余10颗锆石的206Pb/238U年龄为426.7~440.9Ma,变化范围较小,所有测点均位于206Pb/238U与207Pb/238U谐和线上或附近(图4c),协和性较好,获得206Pb/238U加权平均年龄为439.6±3.5Ma(MSDW=0.95),该年龄代表了卓尔布拉克花岗岩的成岩年龄。
木孜萨伊白云母花岗岩(AT16-04)的锆石晶形较好,呈无色透明-半透明的柱状,少数呈浑圆状或近似圆状,粒径大小为50~280μm,长宽比介于1:1~2.3:1之间,阴极发光图像可见锆石颗粒发育良好的岩浆韵律环带结构(图3)。22个测点的Th/U比值为0.08~0.73,平均为0.43,具有典型岩浆锆石的特征(Rubatto, 2002)。其中,7测点的锆石U-Pb年龄谐和度较低,14测点的锆石206Pb/238U年龄为494.9Ma,与早期俯冲构造环境下的弧岩浆岩形成时代一致,说明其可能是岩浆运移过程中捕获的锆石,这2个测点不参与成岩年龄计算,其余20个测试点的206Pb/238U年龄为429.8~448.5Ma,变化范围较小,且所有测点均位于206Pb/238U 与207Pb/238U谐和线上及其附近(图4d),20颗锆石的206Pb/238U加权平均年龄为437.3±2.4Ma(MSDW=1.6),该年龄代表了木孜萨伊白云母花岗岩的成岩年龄。
4.2.1 主量元素
4个花岗岩体的主量元素分析结果及特征值列于表3,从中可以看出喀腊大湾似斑状花岗岩SiO2含量为70.98%~73.01%,Al2O3含量为14.58%~15.15%,MgO含量为0.57%~0.67%,Mg#值(Mg#=100×Mg2+/(Mg2++Fe2+))为38.68~39.71,K2O含量为3.24%~3.60%,Na2O含量为3.72%~4.30%,K2O/Na2O比值为0.75~0.88;沟口泉似斑状二长花岗岩SiO2含量为67.06%~67.88%,Al2O3含量为15.40%~15.56%,MgO含量为1.37%~1.77%,Mg#值为46.51~49.37,K2O含量为2.89%~3.34%,Na2O含量为4.01%~4.16%,K2O/Na2O比值为0.72~0.80;卓尔布拉克花岗岩SiO2含量为69.15%~75.42%,Al2O3含量为10.95%~14.38%,MgO含量为1.43%~1.68%,Mg#值为51.58~55.80,K2O含量为2.06%~2.89%,Na2O含量为2.63%~3.99%,K2O/Na2O比值为0.52~1.09;木孜萨伊白云母花岗岩SiO2含量为72.23%~74.14%,Al2O3含量为14.39%~14.87%,MgO含量为0.18%~0.29%,Mg#值为17.99~22.39,K2O含量为3.29%~3.88%,Na2O含量为3.4%~4.11%,K2O/Na2O比值为0.80~1.14。在SiO2-(Na2O+K2O)图解中(图5a),所有样品均落入花岗岩和花岗岩闪长岩的范畴,显示为亚碱性系列;4个花岗岩体的全碱 (Na2O+K2O)含量为5.51%~7.87%,里特曼指数(σ)介于0.94~2.28之间,显示为钙性-钙碱性系列;在SiO2-K2O图解中(图5b),仅卓尔布拉克花岗闪长岩落在钙碱性系列区域,其余所有样品均落入高钾钙碱性系列区域;4个花岗岩体的铝饱和指数(A/CNK)为0.96~1.31,在A/CNK-A/NK图解中(图5c),除木孜萨伊白云母花岗岩落入过铝质区域外,其余3个花岗岩体均落在准铝质-弱过铝质区域。
图5 北阿尔金花岗岩类TAS图解(a, 据Middlemost, 1994)、SiO2-K2O图解(b, 据Peccerillo and Taylor, 1976)和A/CNK-A/NK图解(c, 据Maniar and Piccodi, 1989)Fig.5 TAS diagram (a, after Middlemost, 1994), SiO2 vs. K2O diagram (b, after Peccerillo and Taylor, 1976) and A/CNK vs. A/NK diagram (c, after Maniar and Piccodi, 1989) for the granitoids in the North Altun
图6 北阿尔金花岗岩类球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b) (标准化值据Sun and McDonough, 1989)Fig.6 Chondrite-normalized rare earth element patterns (a) and primitive mantle-normalized trace element spidergrams (b) for the granitoids in the North Altun (normalization values after Sun and McDonough, 1989)
4.2.2 稀土和微量元素
4个花岗岩体的微量及稀土元素分析结果也列于表3。
表3 北阿尔金花岗岩类地球化学测试结果(主量元素:wt%;微量及稀土元素:×10-6)
续表3
喀腊大湾似斑状花岗岩稀土元素总量(∑REE)介于94.50×10-6~104.5×10-6之间,平均为100.5×10-6,LREE含量为88.32×10-6~98.40×10-6,HREE含量为5.69×10-6~6.18×10-6,LREE/HREE比值为14.29~17.02,平均为15.82,(La/Yb)N为20.36~23.79,反映较强的轻重稀土分馏,在球粒陨石标准化稀土元素配分曲线图解上,表现出轻稀土相对富集、重稀土相对亏损的右倾模式(图6a)。(La/Sm)N和(Gd/Yb)N分别为5.18~6.27和1.79~2.02,表明轻稀土内部分馏明显,而重稀土内部分馏不明显。δEu介于0.81~0.91之间,平均为0.85,具有弱的负Eu异常,表明岩浆结晶过程中斜长石基本没有发生结晶分离作用。在原始地幔微量元素标准化蛛网图上,喀腊大湾似斑状花岗岩富集Rb、Ba、K和Sr等大离子亲石元素和La、Ce等轻稀土元素,相对亏损Nb、Ta、P和Ti等高场强元素(图6b)。
沟口泉似斑状二长花岗岩稀土元素总量(∑REE)在104.8×10-6~157.9×10-6之间,平均为128.2×10-6,LREE含量为96.58×10-6~144.5×10-6,HREE含量为8.18×10-6~13.42×10-6,LREE/HREE比值为8.76~11.81,平均为10.45,(La/Yb)N为8.60~14.89,轻重稀土分馏明显,在球粒陨石标准化稀土元素配分曲线图解上,也表现出明显的右倾特征(图6a)。(La/Sm)N和(Gd/Yb)N分别为3.67~5.13和1.46~1.97,显示轻稀土内部分馏明显,重稀土内部分馏不明显。δEu介于0.68~0.97之间,平均为0.81,具有弱的负Eu异常,说明斜长石没有发生显著的结晶分离作用。在原始地幔微量元素标准化蛛网图上,沟口泉似斑状二长花岗岩富集Rb、Th、K、Zr、Hf和LREE等元素,相对亏损Ba、Nb、Sr、P、Ti和HREE等元素(图6b)。
卓尔布拉克花岗岩稀土元素总量(∑REE)为104.7×10-6~238.1×10-6,平均为178.9×10-6,LREE含量为92.62×10-6~230.0×10-6,HREE含量为7.16×10-6~12.06×10-6,LREE/HREE比值为7.68~28.45,平均为20.75,(La/Yb)N为9.60~42.71,轻重稀土强烈分馏,在球粒陨石标准化稀土元素配分曲线图解上,呈明显的右倾趋势(图6a)。(La/Sm)N和(Gd/Yb)N分别为3.32~8.11和1.93~3.06,表明轻稀土内部分馏相比重稀土显著。δEu介于0.52~0.65之间,平均为0.56,显示中等负Eu异常,暗示源区可能有斜长石的残留或岩浆结果过程中经历了斜长石的结晶分异作用。在原始地幔微量元素标准化蛛网图上,卓尔布拉克花岗岩富集Rb、Th、K、Zr、Hf和LREE等元素,明显亏损Ba、Nb、Sr、P、Ti和HREE等元素(图6b)。
木孜萨伊白云母花岗岩稀土元素总量(∑REE)处于76.95×10-6~97.67×10-6之间,平均为85.37×10-6,LREE含量为68.32×10-6~84.68×10-6,HREE含量为8.19×10-6~12.99×10-6,LREE/HREE比值为6.52~8.95,平均为7.79,(La/Yb)N为6.69~9.57,指示轻重稀土中度分馏,在球粒陨石标准化稀土元素配分曲线图解上呈现出低缓的右倾特征(图6a)。δEu介于0.58~0.66之间,平均为0.63,显示中等负Eu异常,推测源区可能有斜长石的残留或岩浆结果过程中经历了斜长石的结晶分异作用。在原始地幔微量元素标准化蛛网图上,木孜萨伊白云母花岗岩富集Rb、Th、K和LREE等元素,明显亏损Ba、Nb、Sr、Ti等元素(图6b),尤其是Ba、Sr明显低于其它3个岩体,显示为典型低Ba-Sr花岗岩,而低Ba-Sr花岗岩被认为是壳源物质低程度部分熔融的产物(Harris and Inger, 1992)。其中,Sr、Ti亏损可能与成岩过程中斜长石和钛铁矿的分离结晶作用有关,也可能是由于部分熔融过程中源区残留了斜长石和钛铁矿引起的(Green and Pearson, 1987; Barthetal., 2000)。
本文对4个花岗岩体已测U-Pb年龄的锆石进行了原位Hf同位素分析(表4),从中可以看出被测锆石的176Lu/177Hf比值均小于0.002,表明锆石形成后放射性成因Hf积累十分有限,因而所测的176Hf/177Hf比值能较好地反映锆石结晶时岩浆体系的Hf同位素组成特征(吴福元等, 2007)。喀腊大湾似斑状花岗岩176Hf/177Hf比值在0.282513~0.282684之间,对应的εHf(t)为+0.18~+5.88,二阶段模式年龄(tDM2)为1046~1409Ma;沟口泉似斑状二长花岗岩176Hf/177Hf比值在0.282646~0.282723之间,对应的εHf(t)为+4.72~+7.55,二阶段模式年龄(tDM2)为939~1120Ma;卓尔布拉克花岗岩176Hf/177Hf比值在0.282686~0.282791之间,对应的εHf(t)为+6.33~+9.96,二阶段模式年龄(tDM2)为790~1022Ma;木孜萨伊白云母花岗岩176Hf/177Hf比值在0.282324~0.282640之间,对应的εHf(t)为-6.47~+4.52,二阶段模式年龄(tDM2)为1136~1833Ma(图7a, b)。
图7 北阿尔金花岗岩类锆石εHf(t)值频率分布直方图(a)和εHf(t)-锆石U-Pb年龄相关图解(b)Fig.7 Histogram of εHf(t) (a) and εHf(t) vs. U-Pb age diagram for zircon (b) of the granitoids in the North Altun
花岗岩成因类型目前最为常用的分类方案是I型、S型、A型和M型四种基本类型。其中,M型花岗岩较为少见,且具有极低的K2O和Rb含量,几乎不含钾长石(Coleman and Peterman, 1975; Amrietal., 1996),研究区4个花岗岩体均具有较高的K2O(2.06%~3.88%)和Rb(61.40×10-6~296.0×10-6),显微镜下可见有大量钾长石发育,与M型花岗岩特征明显不符。另外,地球化学分析表明,4个花岗岩体的10000×Ga/Al=1.88~2.43和Zr+Nb+Ce+Y=112.0×10-6~288.0×10-6,均低于A型花岗岩的下限值(10000×Ga/Al=2.6, Zr+Nb+Ce+Y=350.0×10-6, Whalenetal.,1987);同时,它们较低的FeOT/MgO比值(0.79~4.56)也与A型花岗岩显著富铁的特征(FeOT/MgO=13.4, Whalenetal., 1987)相不符,再加上矿物中没有出现标志性的碱性暗色矿物,可排除A型花岗岩的可能性。主量元素分析表明,沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩均具有相对高的钠含量(Na2O分别为4.01%~4.06%和2.63%~3.99%)和准铝质-弱过铝质(A/CNK分别为0.97~1.00和0.96~1.02)的特征,在SiO2-P2O5图解和Rb-Th图解中(图8a, b),2个岩体均表现出I型花岗岩的演化趋势(Wolf and London, 1994; Chappell, 1999),结合显微镜下观察到有标志性矿物角闪石的存在,说明沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩应属于I型花岗岩。然而,喀腊大湾似斑状花岗岩虽也表现出较高的钠含量(Na2O=3.72%~4.30%)和准铝质(A/CNK=1.03~1.04)的地球化学特征,但P2O5随着SiO2增加而逐渐增加的特征与S型花岗岩的演化趋势相一致(图8a),在Rb-Th图解也反映出S型花岗岩的亲缘性(图8b),由此推测喀腊大湾似斑状花岗岩可能为I-S过渡型花岗岩。对于木孜萨依白云母花岗岩,所有样品铝饱和特征值(A/CNK=1.25~1.31)明显大于1.1,且在CIPW标准矿物中明显出现刚玉组分(3.31%~4.03%),反映出过铝质S型花岗岩的特征,在SiO2-P2O5和Rb-Th两个判别图解也表现出S型花岗岩的演化趋势(图8a, b),所以木孜萨依白云母花岗岩应属于过铝质S型花岗岩。
续表4
图8 北阿尔金花岗岩岩类I型和S型花岗岩判别图解(a) SiO2-P2O5图解(据Chappell and White, 1992);(b) Th-Rb图解(据Chappell, 1999)Fig.8 I- and S-type granite discrimination diagrams for identifying granitoids from the North Altun(a) SiO2 vs. P2O5 diagram (after Chappell and White, 1992); (b) Th vs. Rb diagram (after Chappell, 1999)
图9 北阿尔金花岗岩类岩石成因判别图解(a) Nb/Y-Th/Y图解(据 et al., 2007);(b) C/MF-A/MF图解(据Gerdes et al., 2000);(c) Rb/Sr-Rb/Ba图解(据Sylvester, 1998);(d) (Yb)N-(La/Yb)N图解(据Defant and Drummond, 1990)Fig.9 Petrogenetic discrimination diagrams of the granitoids in the North Altun(a) Nb/Y vs. Th/Y diagram (after et al., 2007); (b) C/MF vs. A/MF diagram (after Gerdes et al., 2000); (c) Rb/Sr vs. Rb/Ba diagram (after Sylveste, 1998); (d) (Yb)N vs. (La/Yb)N diagram (after Defant and Drummond, 1990)
在球粒陨石稀土元素配分模式和原始地幔微量元素蛛网图中(图6a, b),4个花岗岩类均显示出富集Rb、Th、K等大离子亲石元素和LREE,亏损Ba、Nb、Sr、Ti等高场强元素和HREE的特征,并与大陆地壳(BCC)的微量元素蛛网图与球粒陨石稀土元素配分模式十分相似。通过微量元素比值可知,4个花岗岩体的Nb/U比值分别为7.26~10.00、4.72~5.37、3.70~5.29和7.77~10.51,Rb/Sr比值分别为0.32~0.37、0.44~0.51、0.22~0.45和2.11~4.09,Nb/Ta比值分别为12.88~13.87、9.33~12.02、7.40~8.01和5.90~6.56,这些值明显不同于地幔平均值(Nb/U=47±10、Rb/Sr=0.034、Nb/Ta=17.5±2),而与地壳平均值(Nb/U=10、Rb/Sr=0.35、Nb/Ta=11~12)相接近(Taylor and Mclennan, 1985; Hofmann, 1988; Green, 1995)。在Nb/Y-Th/Y图解中(图9a),木孜萨依白云母花岗岩集中落在上地壳附近,暗示其源岩来自于上地壳物质的部分熔融,其余3个花岗岩体落在Th/Nb=1和Th/Nb=10趋势线之间,接近中下地壳的平均组分。
前已述及,木孜萨依白云母花岗岩和喀腊大湾似斑状花岗岩均具有沉积岩熔融形成S型花岗岩特征。根据脱水熔融实验表明,S型花岗岩的CaO/Na2O<0.3表明其源岩来自富粘土而贫斜长石的变泥质岩部分熔融,而CaO/Na2O>0.3则源岩为贫粘土而富斜长石的变杂砂岩部分熔融(Sylvester, 1998)。木孜萨依白云母花岗岩CaO/Na2O比值为0.15~0.25,均小于0.3,显示其为富粘土贫斜长石的变泥质岩部分熔融的产物;喀腊大湾似斑状花岗岩CaO/Na2O比值介于0.43~0.65之间,普遍大于0.3,指示其源岩可能与贫粘土而富斜长石的变杂砂岩有关。在A/MF-C/MF和Rb/Ba-Rb/Sr图解也显示出木孜萨依白云母花岗岩落到变泥质岩部分熔融区域和富粘土源区,而喀腊大湾似斑状花岗岩则全部落在变杂砂岩部分熔融区和贫粘土源区的硬砂岩附近(图9b, c)。但是,喀腊大湾似斑状花岗岩Zr/Hf比值为37.30~38.99,平均为38.42,明显高于地壳岩石Zr/Hf值(33),而接近于幔源岩石Zr/Hf比值(36.3, Green, 1995);锆石Lu-Hf同位素结果显示喀腊大湾似斑状花岗岩εHf(t)值为+0.18~+5.88,二阶段模式年龄(tDM2)为1046~1409Ma,表明岩浆源区有新生地壳物质的加入;同样,木孜萨依白云母花岗岩虽表现出壳源物质低程度部分熔融的低Ba-Sr花岗岩特征,但εHf(t)值介于-6.47~+4.52之间,且主要集中在-3.39~-1.56,二阶段模式年龄(tDM2)为1136~1833Ma,也反映出岩浆源区并非都来自于古老地壳物质的低程度部分熔融,还应有少量新生地壳物质的参与。
与此同时,沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩在A/MF-C/MF图解中均落在了基性岩部分熔融区域(图9b),暗示它们的岩浆源区可能与玄武质岩浆部分熔融有关。实验岩石学研究表明玄武质地壳熔融所产生的岩浆熔体无论熔融程度如何,形成的岩石均具有较低的Mg#值(<40),但是当有地幔物质参与成岩时,其Mg#值可以大于40(Rapp and Watson. 1995)。沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩的Mg#值分别为46.51~49.37和51.58~55.80,均大于40,说明岩浆形成过程中有幔源物质的加入。这一特征也反映在锆石Hf同位素组成上,即沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩εHf(t)值分别为+4.72~+7.55和+6.33~+9.96,在t-εHf(t)图解(图7b)中,所有数据全部落在亏损地幔演化线和球粒陨石演化线之间。目前,对于幔源物质参与花岗岩成岩过程的方式有初生地壳物质的重熔(Pitcheretal., 1985; Jahnetal., 2000; Zhengetal., 2007)和幔源岩浆直接注入地壳并诱发其部分熔融(Belousovaetal., 2006; Kempetal., 2007; Yangetal., 2007)两种不同的解释,就沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩而言,它们的Hf同位素组成相对均一且变化范围较小,与幔源岩浆直接注入混合后所具有的Hf同位素组成变化范围较大、εHf(t)值散布于正值与负值之间的特征明显不同(邱检生等, 2008),而与初生地壳物质重熔并与上覆地壳物质混合所具有的εHf(t)值均为正值、Hf同位素组成变化较小的特征更为相似;另外,地幔熔融通常形成基性岩浆,即使经过高度分异作用,也主要以中性岩浆成分为主,很少形成酸性岩浆,即使形成也常伴随有同时期的基性岩浆岩(Sissonetal., 2005),沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩均具有较高的SiO2含量(分别为67.06%~67.88%和69.15%~75.42%),且它们周围尚未发现同时代的基性岩浆活动,基本可排除幔源物质直接加入的可能性。结合2个岩体均具有较老的二阶段模式年龄(tDM2分别为939~1120Ma和790~1022Ma),认为2个花岗岩体的岩浆源区可能起源于新生地壳物质的部分熔融,但不排除可能有少量古老基底地壳物质的混入。
目前,对于汇聚板块边缘的新生地壳物质来源普遍认为是洋壳板片在俯冲消减过程中诱发地幔楔发生部分熔融,并由玄武质岩浆底侵到大陆地壳底部的新生下地壳(张宏飞等, 2007; Yuetal., 2015);近年来,也有学者提出其新生地壳物质也可能来自于残余洋壳的部分熔融(Niuetal., 2007, 2013),但这需要寄主岩体中存在有同时代的基性岩浆包体,其Sr-Nd-Hf同位素特征也要求与寄主岩体相似,而本文报道的花岗岩体野外未见有基性岩浆包体的发育。此外,由俯冲残余洋壳形成的熔体大多具有埃达克质的特征,即高的Sr含量(>400×10-6)和Sr/Y比值,与本文花岗岩体所具有的低Sr(72.30×10-6~369.0×10-6)和Sr/Y比值(3.73~42.08)明显不符,因此,上述花岗岩体中新生地壳物质更可能来源于加厚的新生下地壳。另外,实验岩石学研究表明,石榴子石强烈富集HREE,而角闪石相对富集MREE(Green, 1994),并且重稀土元素中Yb和Lu在石榴子石中的分配系数最大,而Dy和Ho在角闪石中的分配系数最大(Sisson, 1994)。因此,当石榴子石为源区主要残留相时,部分熔融产生的熔体具有“右倾”的HREE配分模式和Y/Yb>10、(Ho/Yb)N>1.2;而当角闪石为源区主要残留相时,部分熔融产生的熔体则具有较为平坦的HREE配分模式,并且Y/Yb≈10,(Ho/Yb)N≈1。本文报道的沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩HREE基本无分馏或轻微分馏,显示出较平坦的HREE配分模式(图6a),两个岩体的Y/Yb比值分别为8.30~11.76和7.99~11.96,平均为9.53和9.69,(Ho/Yb)N值分别为0.92~1.03和0.85~1.35,平均为0.97和1.02,在(Yb)N-(La/Yb)N图解(图9d)中,所有样品均落在10%的石榴石角闪岩部分熔融曲线上,这些特征表明两个花岗岩体的岩浆源区残留相以角闪石为主,基本不含或含很少量的石榴子石,由此推测沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩可能为新生下地壳角闪岩相镁铁质岩石部分熔融形成的。
北阿尔金在早古生代经历了洋壳俯冲、增生造山以及造山后的伸展垮塌等一系列复杂的地质演化历程,在不同的演化阶段均伴随有强烈的岩浆活动和花岗岩体形成。通过以往高精度SHRIMP、LA-ICP-MS和TIMS锆石U-Pb年代学和地球化学总结,前人将这些岩浆活动和花岗岩体大致划分为三期:第一期为具有典型弧岩浆岩地球化学特征的花岗岩类组合,岩体侵位时代主要集中在514.3±5.6Ma~443±5Ma(Gehrelsetal., 1999, 2003; Cowgilletal., 2003; 陈宣华等, 2003; 戚学祥等, 2005a; 郝杰等, 2006; 康磊等, 2011; 韩凤彬等, 2012; 张占武等, 2012; 吴玉等, 2016, 2017; Mengetal., 2017),指示中寒武世-晚奥陶世北阿尔金具有大规模的洋壳俯冲消减作用;第二期为与碰撞造山和地壳加厚有关的花岗岩体,成岩年龄主要集中在446±5.2Ma~427.3±5.7Ma(Jolivetetal., 1999; 吴才来等, 2005, 2007; Wuetal., 2009; 孟令通等, 2016, Yuetal., 2018),反映晚奥陶世-中志留世北阿尔金处于同碰撞构造环境;第三期主要为与后碰撞作用相关的侵入岩体,形成时代介于419.9±7.9Ma~404.7±9.8Ma之间(Gehrelsetal., 2003; 戚学祥等, 2005b; 杨子江等, 2012; 韩凤彬等, 2012),代表了北阿尔金在晚志留世-早泥盆世已进入造山后的伸展垮塌阶段。本次对北阿尔金四处不同的花岗岩体进行了详细的SHRIMP和LA-ICP-MS锆石U-Pb定年,获得喀腊大湾似斑状花岗岩SHRIMP锆石U-Pb年龄为432.4±4.9Ma,沟口泉似斑状二长花岗岩SHRIMP锆石U-Pb年龄为432.8±4.1Ma,卓尔布拉克花岗岩SHRIMP锆石U-Pb年龄为439.6±3.5Ma,木孜萨依白云母花岗岩LA-ICP-MS锆石U-Pb年龄为437.3±2.4Ma,这些年代学数据与北阿尔金第二期同碰撞构造环境下的花岗岩体成岩时代相一致。
在微量元素特征方面,4个花岗岩体均具有较低的Y、Nb和Yb含量,明显与板内花岗岩和洋脊花岗岩相区别,而与火山弧花岗岩和同碰撞花岗岩相类似。在Ta-Yb构造判别图解中,4个花岗岩体样品主体落在了同碰撞花岗岩(Syn-COLG)区域附近,显示出同碰撞花岗岩的亲缘性(图10a),进一步利用R1-R2 (图10b)和Rb/10-Hf-Ta×3构造判别图解(图10c),所有样品也基本上均落在同碰撞花岗岩和碰撞大地构造背景上的花岗岩区范畴内。另外,Sr-Yb判别图解被认为可以有效的识别造山前、造山和造山后花岗岩类(张旗等, 2008),在该图解中,4个花岗岩类全部落在Ⅱ区域,对应于地壳加厚的造山阶段(图10d)。综合北阿尔金区域构造演化和年代学资料,并结合上述构造环境判别图解分析,认为这4个花岗岩体应形成于造山过程中的同碰撞构造环境。
图10 北阿尔金花岗岩类构造环境判别图解(a) Yb-Ta图解(据Pearce et al., 1984);(b) R1-R2图解(据Batchelor and Bowden, 1985);(c) Rb/10-Ta×3-Hf图解(据Harris, 1986);(d) Yb-Sr图解(据张旗等, 2008).Syn-COLG-同碰撞花岗岩;WPG-板内花岗岩;VAG-火山弧花岗岩;ORG-洋脊花岗岩;Ⅰ-高Sr低Yb型;Ⅱ-低Sr低Yb型;Ⅲ-高Sr高Yb型;Ⅳ-低Sr高Yb型;Ⅴ-非常低Sr高Yb型Fig.10 Tectonic discrimination diagrams of the granitoids in the North Altun(a) Yb vs. Ta diagram (after Pearce et al., 1984); (b) R1 vs. R2 diagram (after Batchelor and Bowden, 1985); (c) Rb/10-Ta×3-Hf diagram (after Harris, 1986); (d) Yb vs. Sr diagram (after Zhang et al., 2008). Syn-COLG-syn-collisional granitoids; WPG-within plate granitoids; VAG-volcanic arc granitoids; ORG-ocean ridge granitoids; Ⅰ-high Sr low Yb type; Ⅱ-low Sr low Yb type; Ⅲ-high Sr high Yb type; Ⅳ-low Sr high Yb type; Ⅴ-very low Sr high Yb type
增生造山作用发生于板块汇聚过程中的俯冲带之上,在俯冲消减过程中将不同类型和大小的地体、微陆块、岛弧及增生楔等物质汇聚拼贴在一起,形成一个规模较大的造山带(Schulmann and Paterson, 2011)。目前,关于北阿尔金早古生代增生造山过程已取得了一系列重要成果,现有研究认为,北阿尔金洋的打开和扩张应发生在早寒武世之前(赵恒乐等, 2011; 刘函等, 2012),至中寒武世,北阿尔金洋开始发生俯冲消减,并出现与俯冲作用有关的弧岩浆活动和变质作用(Gehrelsetal., 1999, 2003; 张建新等, 2007; 高晓峰等, 2012b; 陈柏林等, 2016; 吴玉等, 2016; Mengetal., 2017),其中,区内最大的阔什布拉克岩体(443±5Ma)被认为是板块俯冲作用的晚期产物(陈宣华等, 2003),这表明北阿尔金洋的俯冲消减一直持续到晚奥陶世末期。另一方面,北阿尔金冰沟地区蛇绿混杂岩内辉长岩SHRIMP锆石U-Pb年龄为449.5±10.9Ma(杨子江等, 2012),恰什坎萨依南沟口出露的枕状玄武岩单颗粒TIMS锆石U-Pb年龄为448.6±3.3Ma(修群业等, 2007),喀腊大湾北段发现的枕状玄武岩SHRIMP锆石U-Pb年龄为446±3Ma(未发表数据)以及前人在红柳沟-拉配泉蛇绿岩内的硅质岩中鉴定出大量中-晚奥陶世放射虫和海绵骨针化石(杨子江等, 2011),这些化石年龄和年代学数据均支持晚奥陶世末期北阿尔金洋尚未完全闭合。此次,本文对北阿尔金4个花岗岩体进行了高精度SHRIMP和LA-ICP-MS锆石U-Pb年代学研究,获得成岩年龄主要集中在432.4~439.6Ma,均晚于上述弧岩浆岩和蛇绿岩的形成时代,构造环境判别显示这4个花岗岩体均形成于同碰撞构造环境之下,标志着北阿尔金洋在早志留世已基本闭合。前人在巴什考供盆地南北两侧也发现了与地壳加厚熔融有关的同时代的S型花岗岩(吴才来, 2005, 2007),最近在红柳沟地区也报道了445~439Ma与加厚下地壳部分熔融有关的低Mg埃达克岩出露(Yuetal., 2015)。结合本文及前人识别出的这些同碰撞花岗岩体呈面状分布于整个北阿尔金地区(图1b),表明北阿尔金洋最终关闭以及洋陆转换的时间节点应为445~440Ma。
一直以来,北阿尔金被认为是北祁连的西延部分,其主要依据是:(1)北阿尔金和北祁连造山带内均发育有古生代MORB型和OIB型蛇绿岩,其中北阿尔金红柳沟MORB型蛇绿岩形成年龄为524.4±44Ma(刘良等, 1999),与北祁连目前发现最老的玉石沟蛇绿岩形成时代529~550Ma(史仁灯等, 2004; Songetal., 2013)相近,代表两个古洋盆开启时间至少在早寒武世之前。此外,北阿尔金还发育大量与弧后盆地或岛弧环境有关的蛇绿岩,年龄为448~480Ma左右(修群业等, 2007; 杨经绥等, 2008),与北祁连具有SSZ性质的蛇绿岩形成时代448~490Ma(夏小洪和宋述光, 2010; 孟繁聪等, 2010b; Songetal., 2013)相一致;(2)北阿尔金与北祁连两个古洋盆具有相似的初始裂解时间,即北阿尔金红柳沟北和恰什坎萨依地区发现形成于裂谷环境的双峰式火山岩时代为749.8~775Ma(赵恒乐等, 2011; 刘函等, 2012),与北祁连洋开始裂解时的岩浆活动时间757~776Ma(曾建元等, 2006; 陆松年等, 2009)相同;(3)两个造山带均出露有早古生代高压/低温变质带,北阿尔金高压/低温变质岩峰期变质条件为T=430~540℃、P=2.0~2.3GPa(Zhangetal., 2005),北祁连高压/低温变质岩峰期变质条件也为T=460~550℃、P=2.2~2.6GPa(Songetal., 2007; Zhangetal., 2007)。虽然北阿尔金榴辉岩和蓝片岩的白云母Ar-Ar年龄(491~520Ma, 张建新等, 2007)明显大于北祁连高压低温变质岩中锆石U-Pb年龄(463~489Ma, Songetal., 2004; Zhangetal., 2007),但2个高压/低温变质带内均产出有早古生代含硬柱石的榴辉岩和相似的峰期变质T-P条件,说明二者均经历了冷洋壳俯冲(张建新和孟繁聪, 2006);(4)北阿尔金和北祁连都产出有早古生代弧岩浆岩,这些岩浆岩不论在岩石组成还是Hf同位素特征都表现出良好的可比性(秦海鹏, 2012; Chenetal., 2014; 吴玉等, 2017);(5)北阿尔金东段和北祁连西段有相同的铁铜铅锌等矿产资源,这些矿床在成矿时代和成因类型方面均具有非常好的相似性(陈柏林等, 2009, 2010)。但这一认识尚未有同碰撞阶段的证据支持,近年来,北祁连陆续报道了早古生代同碰撞构造背景下的侵入岩体,如北祁连白银市东部的神木头岩体年龄为429.6±6.1Ma(Tsengetal., 2009);冷龙岭地区的毛藏寺岩体成岩时代为423.5±4.0Ma(熊子良等, 2012);黑石山地区的白马洼岩体和郝泉沟岩体形成年龄为440.2±2.4Ma和431.8±2.4Ma(赵国斌等, 2013);北祁连西段祁青乡附近的熬油沟岩体时代为438±3Ma,其岩体的87Sr/86Sr初始比值和εNd(t)值分别为0.7044~0.7047和+3.0~+4.1(陈育晓等, 2012);东段宝积乡附近的宝积山岩体年龄为433.7±3.4Ma、全岩εHf(t)值为+5.8~+6.4(Chenetal., 2015),曲目山岩体成岩年龄为431.5±2.6Ma、全岩εHf(t)值为+6.1~+7.9(Chenetal., 2016),老虎山岩体和马常山岩体年龄为433.0±3.1Ma和431.4±2.4Ma、其全岩εHf(t)值分别为+3.1~+5.1和+3.4~+5.5(Chenetal., 2018)。这些岩体的侵位时代和同位素组成特征均与本文报道北阿尔金同碰撞花岗岩体相似。另外,依据前人在北祁连获得最年轻的与俯冲消减作用有关的弧火山岩年龄为446±3Ma(Wangetal., 2005),代表碰撞开始的蓝片岩相变质岩Ar-Ar年龄为442.1~453.9Ma(Liouetal., 1989; Liuetal., 2006)以及下志留统复理石沉积地层不整合覆盖于早期岩系之上(宋述光, 1997)等地质事实,揭示北祁连洋的闭合及增生造山作用的起始时间也为445~440Ma(吴才来等, 2010; Songetal., 2013),而这一时间与本文北阿尔金洋最终关闭以及洋陆转换的时间节点完全一致,从同碰撞阶段洋盆闭合的角度证实北阿尔金和北祁连在早古生代为同一个带,二者曾作为统一的整体经历了初始裂解-扩张-俯冲-闭合造山等构造演化过程。
(1)地球化学特征显示喀腊大湾似斑状花岗岩具有高硅和钠、低铁、镁和钙的特征,铝饱和指数(A/CNK)为1.03~1.04,属弱过铝质I-S过渡型花岗岩;沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩具有相对高的钠含量和准铝质-弱过铝质特征,表现为I型花岗岩;木孜萨依白云母花岗岩具有高硅、富碱、富集Rb、Th和LREE,亏损Ba、Sr、Ti和Eu特征,铝饱和指数均大于1.1,属过铝质S型花岗岩。
(2)利用SHRIMP和LA-ICP-MS锆石U-Pb定年方法获得喀腊大湾似斑状花岗岩成岩年龄为432.4±4.9Ma,沟口泉似斑状二长花岗岩成岩年龄为432.8±4.1Ma,卓尔布拉克花岗岩成岩年龄为439.6±3.5Ma,木孜萨依白云母花岗岩成岩年龄为437.3±2.4Ma。综合区域地质资料及其构造判别图解,揭示这4个岩体均形成于同碰撞构造背景下,表明北阿尔金洋最终关闭以及洋陆转换的时间节点应为445~440Ma。
(3)锆石Hf同位素分析结果显示沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩εHf(t)值分别为+4.72~+7.55和+6.33~+9.96,二阶段Hf同位素模式年龄(tDM2)分别为939~1120Ma和790~1022Ma,反映岩浆起源于新生地壳物质的部分熔融,其稀土元素特征以及岩石成因判别图解暗示它们可能为原岩在角闪岩相条件下部分熔融的产物;喀腊大湾似斑状二长花岗岩起源于变杂砂岩部分熔融,木孜萨依白云母花岗岩起源于变泥质岩石的低程度部分熔融,但Hf同位素显示εHf(t)值分别为+0.18~+5.88和-6.47~+4.52,反映二者的岩浆源区也均有新生地壳物质的加入。
(4)上述这些特征与北祁连造山带早古生代同碰撞花岗岩体具有良好的可对比性,进一步从同碰撞阶段洋盆闭合的角度证实北阿尔金和北祁连在早古生代为同一个带,二者曾作为统一的整体经历了初始裂解-俯冲-闭合-增生造山等构造演化过程。
致谢锆石LA-ICP-MS U-Pb定年得到了吉林大学东北亚矿产资源评价自然资源部重点实验室郑培玺老师的帮助;Hf同位素分析测试得到国家地质实验测试中心李超副研究员的帮助;中国地质科学院地质研究所吴才来研究员、张建新研究员和西北大学张成立教授认真审阅了本文,并给予了非常宝贵的修改意见;在此一并表示衷心感谢!