李宏伟 赵正 陈振宇 郭娜欣 甘加伟 李小伟 尹政
1. 中国地质大学(北京)地球科学与资源学院,北京 100083 2. 自然资源部成矿作用与资源评价重点实验室,中国地质科学院矿产资源研究所,北京 100037
华南地区是世界上最主要的钨矿资源基地(Maoetal., 2010;赵正等, 2017; 毛景文等, 2020),近年来,赣北地区大湖塘和朱溪两个百万吨级超大型钨矿床的发现,更是重塑了华南地区钨资源的格局,使我国钨资源储量保持世界领先地位。赣北地区大湖塘、阳储岭、朱溪钨矿与皖南、浙西北地区钨矿共同形成了一条与长江中下游铜矿带相平行的江南古陆钨矿带(Maoetal., 2017;苏慧敏和蒋少涌, 2017)。迄今为止,江南钨矿带探明钨资源量超600万吨,其中仅大湖塘地区的钨资源量就高达107万吨(Maoetal., 2015; 项新葵等, 2017; Zhaoetal., 2018a),如此巨量的钨多金属在扬子板块东缘与华夏板块的过渡拼接部位富集,已成为国际矿产地质学界关注的焦点(Maoetal., 2013a; Su and jiang, 2017; Songetal., 2018a)。
以往研究认为,华南地区主要大型钨矿床成矿作用均与中生代花岗质岩浆作用有关,而成钨的花岗岩一般以壳源为主(华仁民等, 2005; 吴福元等, 2007; Chenetal., 2019),也有学者研究认为A型花岗岩(张旗等, 2006, 2012; 贾小辉等, 2009)或高分异的I型花岗岩(Harrisetal., 1997; Zhaoetal., 2008; 邱检生等, 2008; Zhangetal., 2020)也可以形成钨矿。大湖塘超大型钨矿田的特殊之处在于该区钨矿体主要赋存于晋宁期花岗岩类之中,而燕山期花岗岩主体隐伏于深部。以往对大湖塘钨矿的研究认为,燕山期花岗岩在时间上与钨成矿时间接近,有着最紧密的成因关系(项新葵等, 2013; Fanetal., 2019; Caoetal., 2020),而Zhangetal.(2018)认为发生在新元古代花岗闪长岩中的热液交代作用对钨成矿贡献巨大,Songetal.(2018b)认为大湖塘白钨矿的析出与pH值的增加有关,在成矿过程中围岩贡献着大量的Ca2+和部分W元素。由此,该区晋宁期和燕山期花岗岩类的成因对比研究及其钨成矿作用关系研究,对该钨矿田的成矿物质来源,甚至整个成矿带的钨巨量富集机制均具有至关重要的意义。
锆石被认为是花岗岩中示踪其寄主岩石源区属性、探讨岩浆形成与演化和壳幔相互作用的重要矿物(吴元保和郑永飞, 2004; 李长民, 2009; Nedosekovaetal., 2015)。本次工作在矿床地质和岩石学研究基础之上,报道了该区两期花岗岩类的成岩时代和钨的成矿时代,重点对燕山期和晋宁期两期岩浆岩中锆石的矿物学、U-Pb年代学、Hf同位素、微量元素地球化学进行对比研究,讨论了大湖塘燕山期和晋宁期两个构造旋回岩浆岩的源区特征、岩浆演化和成因联系,并进一步探讨了两期花岗岩对钨成矿作用的贡献。
江南造山带位于欧亚陆块东南缘和太平洋西缘大陆内侧,横跨浙江、安徽、江西、湖南等地,在构造上属扬子、华夏两古块体碰撞形成的板块束缚带(舒良树, 2012; 王孝磊等,2017;Jiaetal., 2018),其西北与扬子地块相邻,以景德镇湘潭-萍乡深断裂带为界,东南与华夏地块相邻,以绍兴-平乡-北海深断裂带为界。该区经历了四堡、晋宁、加里东、海西-印支和燕山-喜马拉雅5个构造演化阶段。中元古代以来,各时代的地层均有发育,元古代和早古生代地层以活动沉积岩为主,泥盆系及之后的地层以浅海或陆相稳定地层为主(高林志等,2015),并大面积分布新元古代花岗岩,其中以晋宁期九岭岩体为代表。区域断裂构造以北东向、北北东向和东西向为主(Zhaoetal., 2018a; 常印佛等, 2019),褶皱构造可分为基底褶皱(四堡、晋宁、加里东)和盖层褶皱(海西-印支、燕山)。江南造山带内早期岩浆岩主要形成于950~880Ma,且多分布在双溪坞弧地体内,紧随其后产生的岩浆活动大约始于860Ma(Lietal., 2008; 姜杨等, 2014),并在约820Ma形成一个非常明显的峰值,以沿江南造山带分布的花岗岩及伴生的少量基性岩为主(Lietal., 2003)。印支期和燕山期是本区成矿的高峰期,主要集中在180~100Ma,属中侏罗世-早白垩世(Maoetal., 2017; Zhaoetal., 2018b)。该区典型的大型矿床有斑岩型铜矿(富家坞等)、岩浆热液型钨矿(大湖塘、朱溪)、金矿(德兴金山)、铅锌矿(桃林)、铁矿(新余)和矽卡岩型铜矿(天排山)、钨矿(香炉山)等(Zhaoetal., 2018c; Sunetal., 2019)。九岭岩体位于江南造山带中段、赣江断裂以西,空间上呈北东东向展布,与区域构造线方向一致,出露面积约3680km2, 为多次岩浆上侵的复式岩体(薛怀民等, 2010; 段政等, 2019)。九岭岩体中的花岗岩侵入双桥山群地层中,双桥山群上覆新元古界的砾岩和砂岩,标志着新元古界造山运动的高潮(Sunetal., 2017; Wang and Wang, 2021)。九岭地区发育有大湖塘钨多金属矿和东溪铌钽矿等关键金属矿床。
江南造山带呈弧形横跨桂北、黔东、湘西、湘北、赣北、皖南以及浙北等区域。桂北发育有越城岭-苗儿山钨锡钼多金属成矿区(李晓峰等, 2012),成矿作用与越城岭岩体、苗儿山岩体多期次岩浆侵入有关。黔东铅锌矿区发育有志留纪到泥盆纪形成的热液交代-充填型铅锌矿床,泥盆世裂谷作用形成的准同生沉积型铅锌矿(陈国勇等, 2005)。湖南的“金腰带”发育有造山型(沃溪、万古)、岩浆热液型(廖家坪)、微细脉浸染型(高家坳)和沉积型(泊罗)金矿。皖南地区宁国竹溪岭钨钼银多金属矿是近年来新发现的大型矽卡岩型钨钼银多金属矿床,成矿时期为燕山期。
大湖塘矿田是江南造山带中东段最重要的钨多金属成矿区,矿田内产出有石门寺、大雾塘、狮尾洞、昆山、靖安等大中型钨多金属矿床(图1),矿种以钨、钼为主,共(伴)生铜、钼、锡、银等。区内矿床多为复合类型,常见的组合有:细脉浸染型+石英大脉型(狮尾洞式);细脉浸染型+石英大脉型+隐爆角砾岩型(石门寺式);细脉浸染型(大雾塘式);昆山钨矿主要为石英脉带型。石门寺、狮尾洞、靖安的矿区典型矿石特征可见图2a-h。本文对矿田内主要矿床地质特征进行了总结对比(表1),各类钨多金属矿床成矿时代以燕山期为主。
图1 大湖塘矿田地质简图(据左全狮等, 2014)1-新元古界双桥山群浅变质岩;2-晋宁期花岗岩类;3-燕山期第一阶段花岗岩;4-燕山期第二阶段花岗岩;5-燕山期第三阶段花岗岩;6-正断层;7-逆断层;8-性质不明断层;9-韧性剪切带;10-钨矿床(点);11-钼矿床(点)Fig.1 Geological map of the Dahutang ore-field (modified after Zuo et al., 2014)1-Neoproterozoic Shuangqiaoshan Group epimetamorphic rocks; 2-Jinning Period granitiods; 3-Yanshanian granite of the first stage; 4-Yanshanian granite of the second stage; 5-Yanshanian granite of the third stage; 6-normal fault; 7-overthrust fault; 8-unknown fault; 9-ductile shear zone; 10-W deposit (point); 11-Mo deposit (point)
燕山期花岗岩在大湖塘矿田呈岩株和岩瘤状零星出露(图1),侵入于晋宁期花岗岩和双桥山组地层。燕山期岩浆活动可分三阶段:第一阶段主要为似斑状黑云母花岗岩和中粒花岗岩,岩体多呈岩株(瘤)、岩枝状产出。似斑状黑云母花岗岩为似斑状结构,块状构造,镜下斑晶总含量约45%,主要由石英(约25%)、钾长石(约10%)、斜长石(约5%)和黑云母(约5%)等组成(图3a, b)。中粒花岗岩为花岗结构,块状构造。主要造岩矿物为石英(约44%)、斜长石(约25%)、白云母(约15%)、钾长石(约4%)和黑云母(约2%)(图3c, d);第二阶段主要为黑云母花岗斑岩和二云母花岗岩,多呈岩墙(脉)状产出,局部地区还发育隐爆角砾岩,外接触带中产生白云母化、绢云母化、云英岩化,局部可见新元古代花岗闪长岩的捕虏体。在狮尾洞地区,不仅可见黑云母花岗斑岩侵入于新元古代双桥山群变质细砂岩之中,还见大量角岩化围岩捕掳体(黄兰椿和蒋少涌, 2012);第三阶段主要为花岗斑岩,多以岩脉产出。
表1 大湖塘矿田主要矿床特征
晋宁期花岗岩类(图1)在江南造山带中段呈岩基状出露,广布于整个大湖塘矿田地表,与双桥山组侵入接触。岩石类型主要包括黑云母花岗闪长岩、英云闪长岩、黑云母花岗岩。黑云母花岗岩为灰白色,具有粗粒花岗结构,矿物组成为斜长石(40%~60%)、石英(25%~30%)、黑云母(10%~15%)(图3e, f)。黑云母花岗岩中含较多的暗色包体,受燕山期岩浆活动的影响,矿区内黑云母花岗岩黑云母化、云英岩化现象十分普遍。黑云母化表现为粗粒板状黑云母被交代形成细小鳞片状黑云母集合体;云英岩化表现为黑云母花岗岩中的黑云母、斜长石被石英和白云母替代,斜长石发生强烈的绢云母化,蚀变强烈时形成云英岩。此外,与燕山期花岗岩接触带外侧的黑云母花岗岩中发育不同程度的绿泥石化及硅化。
本次对大湖塘矿田靖安钨矿床中赋矿晋宁期花岗岩样品(JA-3B),石门寺燕山期花岗岩样品(SMS-6、SMS-7)进行了LA-ICP-MS锆石U-Pb法同位素测年、全岩主微量、锆石Hf同位素以及锆石微量元素测定。晋宁期花岗岩样品采自靖安钨矿992中段,石门寺花岗岩样品采自钻孔ZK10404。石门寺似斑状黑云母花岗岩呈似斑状结构,斑晶主要为石英,基质为细粒的白云母、石英、斜长石、钾长石,粒径100μm左右,斜长石具有明显聚片双晶,钾长石为简单双晶(图2a, b)。靖安黑云母花岗岩呈灰白色,云英岩化明显,最大可见半径2cm白云母集合体,偶见辉钼矿集合体,白钨矿沿岩体裂隙生长,矿物蚀变强烈(图2e, f)。
图3 大湖塘矿田晋宁期和燕山期岩浆岩特征(a)燕山期似斑状黑云母花岗岩岩心(石门寺);(b)燕山期似斑状黑云母花岗岩镜下特征(+);(c)燕山期中粒花岗岩岩心(石门寺);(d)燕山期中粒花岗岩镜下特征(+);(e)晋宁期花岗岩手标本;(f)晋宁期花岗岩镜下特征(+). Pl-斜长石;Bt-黑云母;Ms-白云母;Qz-石英Fig.3 Characteristics of Jinning Period and Yanshanian magmatic rocks in Dahutang ore-field(a) porphyritic biotite granite core (Shimensi); (b) microphotograph of porphyritic biotite granite (+); (c) mdium grained granite core (Shimensi); (d) photomicrograph of mdium grained granite (+); (e) hand specimen of Jinning Period granite; (f) photomicrograph of Jinning Period granite (+). Pl-plagioclase; Bt-biotite; Ms-Muscovite; Qz-quartz
用于锆石挑选和测年的花岗岩(JA-3B、SMS-6、SMS-7)经过破碎、浮选和电磁选之后,进行淘洗、挑选出单颗粒锆石。将锆石颗粒用环氧树脂固定于样品靶上。样品靶表面经研磨抛光,直至磨至锆石晶体近中心截面。对靶上锆石进行镜下透射光、反射光照相后,再对锆石进行阴极发光(CL)分析,根据阴极发光照射结果选择典型的岩浆锆石进行锆石U-Pb测年分析。
LA-ICP-MS锆石U-Pb同位素定年及微量元素测试在南京聚谱实验室完成。采用Australian Scientific Instrμments的193nm ArF准分子激光剥蚀系统,型号:RESOlution LR,四极杆型电感耦合等离子体质谱仪(ICP-MS)采用安捷伦科技(Agilent Technologies)型号为Agilent 7700x。准分子激光发生器产生的深紫外光束经匀化光路聚焦于锆石表面,能量密度为3.5J/cm2,束斑直径为33μm,频率为6Hz,共剥蚀50秒,剥蚀气溶胶由氦气送入ICP-MS完成测试。
测试过程中以标准锆石91500为外标,校正仪器质量歧视与元素分馏,以标准锆石GJ-1为盲样,检验U-Pb定年数据质量;以NIST SRM 610为外标,以Si为内标标定锆石中的Pb元素含量,以Zr为内标标定锆石中其余微量元素含量(Liuetal., 2010)。原始的测试数据经过ICPMSDataCal软件离线处理完成(Liuetal., 2010)。
LA-MC-ICP-MS锆石Hf同位素测试(样品JA-3B、SMS-7)在南京聚谱实验室完成。193nmArF准分子激光剥蚀系统由Australian Scientific Instrμments制造,型号为RESOlution LR。多接收器型号电感耦合等离子体质谱仪(MC-ICP-MS)由英国Nu Instrμments公司制造,型号为Nu Plasma Ⅱ。准分子激光发生器产生的深紫外光束经匀化光路聚焦于锆石表面,能量密度为3.5J/cm2,束斑直径为50μm,频率为8Hz,共剥蚀40秒,剥蚀气溶胶由氦气送入MC-ICP-MS完成测试。测试过程中每隔5颗样品锆石,依次测试1颗标准锆石(包括GJ-1、91500、Plešovice、Mud Tank、Penglai),以检验锆石Hf同位素比值数据质量。
图4 大湖塘矿田晋宁期花岗岩(a)和燕山期黑云母花岗岩(b、c)中锆石CL图像图中年龄单位为MaFig.4 Zircon CL images from Jinning Period granite (a) and from Yanshanian biotite granite (b, c) in Dahutang ore-fieldAge unit is Ma in figure
全岩化学前处理和主微量元素测试工作(样品JA-3B、JA-5A、SMS-1, -2, -3, -6, -7)在南京聚谱实验室完成。Agilent 5110 ICP-OES测定除Si以外的主量元素,Agilent 7700x ICP-MS 测定微量元素。美国地质调查局USGS地球化学标准岩石粉末(玄武岩BIR-1、BHVO-2、BCR-2、安山岩AGV-2、流纹岩RGM-2、花岗闪长岩GSP-2)被当做质控盲样。这些地质标物的实测值与德国马普学会地质与环境标物数据库GeoReM(Jochμm and Nohl, 2008; http://georem.mpch-mainz.gwdg.de)进行了对比:固体浓度大于10×10-6的微量元素,偏离范围不超过±10%;固体浓度大于50×10-6的微量元素,偏离范围不超过±5%。
本次靖安辉钼矿Re-Os同位素测试的样品(JA-3A)采自靖安钨矿992中段。辉钼矿样品为铅灰色,呈鳞片或六方板状晶体,金属光泽,具油腻感,污手。辉钼矿产于石英脉与围岩的接触部位,常和黑钨矿共生。
将样品粉碎过筛,挑选无氧化、无污染的98%纯度以上的样品,在玛瑙体中充分研磨至200目。样品分析和测试工作在国家地质实验测试中心同位素实验室完成,仪器是采用美国TJA公司生产的TJAx-Series电感耦合等离子质谱仪进行Re-Os同位素年龄测定。辉钼矿Re-Os同位素的原理和详细分析方法见参考文献(杜安道等, 2001, 2007; 李晶等, 2010)。
表2 石门寺和靖安花岗岩LA-ICP-MS锆石U-Pb年龄测定结果
续表2
晋宁期花岗岩(JA-3B)锆石以长柱状为主,大部分具有典型的岩浆振荡环带,部分因颜色暗黑韵律环带不明显(图4),这与锆石中含有较高的U、Th有关(表2)。共测得23颗锆石,部分锆石年龄较老,可能为岩浆的继承或捕获锆石。有15个点锆石年龄高度谐和,15颗所测锆石颗粒Th/U比值都大于0.1,均具有岩浆锆石的特征(吴元保和郑永飞, 2004)。锆石206Pb/238U-207Pb/235U谐和年龄为816.3±5.6Ma,206Pb/238U加权平均年龄为815.8±7.2Ma(图5a),此年龄数据应代表了黑云母花岗岩的成岩年龄。
石门寺花岗岩(SMS-6、SMS-7)中锆石U-Pb同位素206Pb/238U-207Pb/235U谐和年龄为147.6±0.75Ma(表2),206Pb/238U加权平均年龄147.7±7.9Ma(图5b)。其中晋宁期的继承锆石206Pb/238U-207Pb/235U谐和年龄为819.4±8.5Ma,206Pb/238U加权平均年龄为816.8±6.5Ma(图5c)。石门寺锆石CL图像可以看出锆石颜色较深一些的年龄在150Ma左右,亮度较高的锆石年龄则在810Ma左右,说明U、Th含量较低的一组主要为新元古代的继承锆石(继承锆石核部与边部年龄相差大)。
图5 靖安花岗岩锆石(a)、石门寺燕山期花岗岩锆石(b)及继承锆石(c) U-Pb年龄谐和图Fig.5 U-Pb age concordia diagrams of zircon from Jing’an granite (a), of zircon (b) and of inherited zircon (c) in Yanshanian granite from Shimensi
6件辉钼矿样品的Re-Os同位素测试结果见表3。利用Isoplot软件绘制了辉钼矿Re-Os的等时线图和加权平均年龄图(图6),得到辉钼矿Re-Os等时线年龄为136.6±2.9Ma (MSWD=0.44);加权平均年龄为134.93±0.82Ma (MSWD=0.36),等时线年龄与模式年龄十分接近,表明测试结果可靠。此外,求得的普187Os的质量分数接近于0,说明辉钼矿几乎不存在普通的锇,187Os基本由187Re衰变形成,进一步说明所获得的模式年龄可以代表辉钼矿的结晶时间。
表3 靖安钨矿辉钼矿Re-Os同位素分析
对靖安2个样品和石门寺5个样品进行了主量元素和微量元素含量的测定,分析结果见表4。从表看出,发现两组岩浆岩在主量元素组成上具有富硅富碱的特征。石门寺5个样品SiO2含量为73.42%~77.42%,K2O+Na2O=7.09%~7.59%,A/CNK为1.44~1.71,表明岩体属于过铝质花岗岩。 靖安2个样品SiO2含量分别是51.84%、76.86%,A/CNK>1(图7a)。对7个样品的主量元素做了岩石类型判别,6个均落在了花岗岩区域,靖安有1个样品为辉长岩(图7b)。
表4 大湖塘地区岩浆岩主量(wt%)和稀土微量(×10-6)元素含量
图6 靖安钨矿辉钼矿Re-Os等时线年龄(a)和加权平均年龄(b)Fig.6 Re-Os isochron (a) and weighted average (b) ages of molybdenite from Jing’an W deposit
图7 大湖塘矿田岩浆岩A/CNK-A/NK图(a, 据Maniar and Piccoli, 1989)和TAS图解(b, 据Middlemost, 1994)DHT晋宁期花岗闪长岩数据引但小华等, 2019Fig.7 Plots of A/CNK vs. A/NK (a, after Maniar and Piccoli, 1989) and total alkalis vs. silica (b, after Middlemost, 1994) of rocks from Dahutang ore-fieldDHT data of Jinning granodiorite from Dan et al., 2019
石门寺花岗岩的稀土元素组成特征总体表现为稀土总量低,∑REE变化于40.6×10-6~92.1×10-6之间,这可能是在岩浆演化阶段的晚期REE随着F-REE、Cl-REE的络合物进入流体引起的(Tayloretal., 1981; Irberetal., 1999)。在球粒陨石标准化稀土元素配分模式图上(图8a),石门寺稀土元素表现出右倾斜的配分特征,富集轻稀土,(La/Yb)N值较高(20.2~26.9),属于轻稀土富集型。轻重稀土分馏强烈,分别引起MREE和HREE的降低,且具有较强的Eu负异常,靖安稀土元素表现出较弱的右倾斜的配分特征。在原始地幔标准化微量元素蛛网图中(图8b),石门寺和靖安花岗岩微量元素组成显示富集大离子亲石元素(LILF)Cs、Rb、Th、U、K、Pb,亏损高场强元素(HFSE)Nb、Sr、Ti。具典型的低Ba、Sr,高Rb花岗岩的特征,Rb/Sr比值在5.49~19.3之间。
图8 大湖塘矿田花岗岩球粒陨石标准化稀土元素配分图(a)及原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989)Fig.8 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements diagrams (b) of rocks from Dahutang ore-field (normalization values after Sun and McDonough, 1989)
图9 大湖塘矿田晋宁期花岗岩(a)和燕山期花岗岩(b)锆石球粒陨石标准化稀土元素配分图(标准化值据Sun and McDonough, 1989)Fig.9 Chondrite-normalized REE patterns of zircon from Jinning Period granite (a) and Yanshanian granite (b) of Dahutang ore-field (normalization values after Sun and McDonough, 1989)
锆石Lu-Hf同位素结果见表5,靖安晋宁期花岗岩样品(JA-3B)的13颗岩浆锆石εHf(t)为-12.7~0.9,主要集中在-1~1之间,tDM2模式年龄变化范围较大,介于1.6~2.48Ga之间;1颗锆石(811.7Ma)的εHf(t)为-12.7,tDM2模式年龄为2.48Ga。石门寺花岗岩样品(SMS-7)的7颗燕山期岩浆锆石的εHf(t)为-5.1~-8.4,tDM2模式年龄介于1.41~1.69Ga;4颗新元古代继承锆石的εHf(t)为0.2~10.9,tDM2模式年龄介于0.96~1.65Ga。总体而言,石门寺似斑状黑云母花岗岩εHf(t)小于0或在0附近。
表5 石门寺和靖安花岗岩LA-ICP-MS锆石Lu-Hf同位素分析结果
晋宁期和燕山期花岗中锆石微量元素分析结果如表6和表7,两者的稀土元素配分模式相似,具有Ce的正异常和Eu的负异常,轻稀土亏损、重稀土富集的特征,属于典型的岩浆锆石特征(图9)。燕山期∑REE在125.5×10-6~1891×10-6之间,晋宁期∑REE在696.7×10-6~2907×10-6之间,晋宁期花岗岩的稀土含量明显要高于燕山期花岗岩。锆石中的Ti含量可以用作为温度计来估算岩浆温度(Watson and Harrison, 2005; Watsonetal., 2006; Ferry and Watson, 2007),目前应用较广的是由Ferry and Watson (2007)提出的锆石Ti温度计:log(Ti-in-zircon)=(5.711±0.072)-(4800±86)/T(K)-logαSiO2+logαTiO2(1)等式左边为锆石中的Ti含量(×10-6),等式右边T是锆石结晶温度的绝对值,αSiO2和αTiO2分别代表了SiO2、TiO2的活度,本此研究中,由于有石英的存在,取αSiO2=1,硅酸盐熔体中按αTiO2=0.6进行计算。晋宁期花岗岩的Ti含量在3.23×10-6~32.90×10-6之间,锆石结晶的平均温度为708℃。燕山期花岗岩Ti含量在1.91×10-6~24.66×10-6,锆石结晶的平均温度为709℃。
表6 靖安花岗岩(样品JA-3B)锆石微量元素含量(×10-6)
表7 石门寺花岗岩(样品SMS-6)锆石微量元素含量(×10-6)
岩石主量元素地球化学特征显示,大湖塘矿田晋宁期花岗岩和燕山期黑云母花岗岩都属于过铝质S型花岗岩。微量元素中 K、Rb与Ca、Sr元素有相似的地球化学性质,随着壳幔分离和陆壳演化,Rb富集于成熟度高的地壳中,Sr富集于成熟度低、演化不充分的地壳中,Rb/Sr值能灵敏地记录源区物质的性质。当Rb/Sr>0.9时,样品为S型花岗岩;当Rb/Sr<0.9时,样品为I型花岗岩(王德滋等,1993)。大湖塘晋宁期花岗岩和燕山期黑云母花岗岩Rb/Sr比值均大于0.9,表现为S型花岗岩特征。锆石中微量元素Th和Pb也可以反应岩浆系列特征,在Th-Pb关系图中(图10)两类岩浆岩基本重合于S型花岗岩区域。从岩石微量元素构造判别图看出(图11),两期岩浆均产出于碰撞后活动陆缘的构造背景下。
图10 大湖塘矿田两期岩浆岩中锆石Th-Pb关系图(底图据Wang et al., 2012)Fig.10 Plot of zircon Th vs. Pb of two-period magmatic rocks from Dahutang ore-field (base map after Wang et al., 2012)
图11 大湖塘矿田晋宁期和燕山期(Y+Nb)-Rb和Y-Nb构造判别图(底图据Pearce et al., 1984)Fig.11 Y+Nb vs. Rb and Y vs. Nb tectonic discrimination diagrams of Jinning Period and Yanshanian in Dahutang ore-field (base map after Pearce et al., 1984)
锆石是花岗质岩浆体系中较早结晶的副矿物,矿物晶体能在较长的地质时间上保持稳定,因此可以认为锆石饱和温度近似代表花岗质岩石近液相线的温度,可以有效的估算岩浆结晶温度。晋宁期花岗岩结晶温度在650~753℃,平均为708℃,燕山期花岗岩(SMS-6)结晶温度在614~826℃,平均为709℃,指示两期花岗岩的锆石结晶温度相似。绝大部分在大于750℃条件下形成的岩浆岩锆石结晶温度均落在花岗岩湿固相线以上。低的锆石结晶温度(如680℃)表明岩浆经历了在水近饱和条件下发生的熔融过程(Harrisonetal., 2007),然而这两类温度都接近680℃,所以可能经历了水近饱和条件下的熔融。
锆石微量元素的变化能够反映岩浆分异过程以及副矿物的结晶顺序等信息(Bruandetal., 2014)。锆石的Ce异常和Eu异常的变化可以反映锆石结晶的物理化学条件(Pettkeetal., 2005; Barth and Wooden, 2010; Trailetal., 2011)。在岩浆锆石的球粒陨石标准化REE配分曲线上:Ce相比于La和Pr富集,指示氧化条件;Eu相比于Sm和Gd亏损,反映还原条件(Trailetal., 2012)。然而,两种异常,即氧化环境和还原环境在锆石中同时出现是相互对立的(ElBialy and Ali, 2013)。因此氧逸度可能不是控制Ce和Eu异常的唯一因素。Hoskin and Ireland (2000)认为,锆石结晶前和结晶过程中斜长石分离结晶可能是导致Eu负异常的另一个因素,本文中两期花岗岩均表现出强Eu负异常,弱Ce正异常,两个异常值的范围小,指示岩浆氧逸度弱,且变化范围小和源区具有斜长石分离结晶的特征。
S型花岗岩的源区一般被认为是变质沉积岩(Kalsbeeketal., 2001; Koesteretal., 2002),本次研究的两期花岗岩的A/CNK值大于1,表明为过铝质花岗岩,泥质岩生成的强过铝质花岗岩所含的CaO/Na2O比值一般小于0.3,而砂屑岩所生成的强过铝质花岗岩所含的CaO/Na2O比值一般大于0.3(Sylvester, 1998),而本文中数据大多数小于0.3,表明源区物质以泥质岩为主,含有少量砂屑岩。黄兰椿和蒋少涌(2012, 2013)根据大湖塘狮尾洞矿段燕山期白云母花岗岩和花岗斑岩的εNd(t)值,推测其源区可能为双桥山群的富泥质岩石重熔,褚平利等(2019)的研究也支持这一点。孙克克等(2017)研究大湖塘九岭花岗闪长岩的Nd同位素非常均一,在双桥山群的Nd同位素演化范围内,认为双桥山群可能是九岭花岗岩的主要岩浆物质来源。
在微量元素锆石Hf-TTi-in-zircon关系图(图12)中,燕山期花岗岩和晋宁期花岗岩均落在了未变质岩浆锆石区域,指示两者均为岩浆侵入结晶过程中生成的岩浆锆石,后期区域变质和热变质作用对其影响较小。锆石中的Th/U值常被用作判断其成因,岩浆锆石的Th/U值通常大于0.1,变质成因和热液锆石Th/U则小于0.1。本文两期样品锆石Th/U值基本大于或接近0.1,符合典型岩浆锆石成因特征。锆石的微量元素组成能够反映其母岩浆的起源、形成环境和成分演化(Hoskin and Ierland, 2000)。在锆石的微量元素及其比值的相关性图解中(图13),大湖塘晋宁期和燕山期花岗质岩浆均显示陆壳源区特征,指示其形成于地壳物质的部分熔融。锆石Hf同位素特征显示,大湖塘晋宁期花岗岩的锆石εHf(t)基本大于0,反映其母岩浆主要来自新生地壳物质,大湖塘石门寺燕山期似斑状黑云母花岗岩εHf(t)基本都小于0,反映其母岩浆应主要为陆壳物质经部分熔融作用产生(图14)。值得关注的是,燕山期似斑状黑云母花岗岩中的继承锆石Lu-Hf同位素组成与晋宁期花岗岩的Lu-Hf同位素组成较为接近,且时代基本一致,共同指示了中生代花岗岩母岩浆可能继承了一部分新元古代花岗岩的同位素信息。Clemens and Finger (2012)和褚平利等(2019)研究认为该区中生代的花岗岩可以由更古老的花岗质岩石经重熔作用形成,新形成的花岗质岩浆会保留部分源岩地球化学特征,这一点与本研究中岩石地球化学和继承锆石的地球化学研究相一致。
图12 大湖塘矿田锆石Hf-TTi-in-zircon关系图(据Watson et al., 2006)Fig.12 Plots of zircons Hf vs. TTi-in-zircon from Dahutang ore-field (after Watson et al., 2006)
图13 锆石U-Yb(a)、U/Yb-Y(b)和U/Yb-Hf(c)关系图(底图据Grimes et al., 2007)Fig.13 Plots of zircon U vs. Yb (a), U/Yb vs. Y (b) and U/Yb vs. Hf (c) (base map after Grimes et al., 2007)
本次工作获得了大湖塘石门寺似斑状黑云母花岗岩的成岩年龄为147.6Ma;Maoetal.(2015)和张明玉等(2016)报道了大湖塘矿田内侵入于晋宁期九岭花岗岩的黑云母花岗岩成岩年龄为153.0~146.8Ma;叶海敏等(2016)用独居石U-Pb方法测定了石门寺似斑状二云母花岗岩成岩年龄为150.0Ma;潘大鹏等(2017)获得了燕山期黑云母花岗岩的年龄为145.5Ma,似斑状黑云母花岗岩的形成年龄为148.3Ma,黑云母花岗斑岩的结晶年龄为147.7Ma;昆山和狮尾洞的花岗斑岩锆石U-Pb年龄显示为134.0Ma左右(林黎等, 2006; 黄兰椿和蒋少涌, 2013; 项新葵等, 2015)。由此,大湖塘燕山期花岗质岩浆侵位时间在153~134Ma(表8)。成矿时代方面,本次工作获得了大湖塘靖安钨矿成矿时代为134.8Ma;丰成友等(2012)同样应用辉钼矿Re-Os等时线法测得石门寺矿区的成矿时代为143.7±1.2Ma,狮尾洞矿区成矿时代为140.9Ma;项新葵等(2012)获得石门寺钨矿区成矿时代为149.6Ma;Maoetal.(2013b)获得石门寺矿区成矿时代为139.2Ma;叶海敏等(2016)获得昆山矿区成矿时代为150.0Ma。可见,大湖塘矿田的钨成矿作用发生在150~134Ma(表8),成矿时代与成岩时代在误差范围内一致,说明大湖塘矿田内多个中大型钨多金属矿床均为燕山早期的花岗质岩浆活动与成矿作用的产物。
表8 大湖塘矿田大型矿床成岩成矿年代表
大湖塘矿田主要矿化类型为细脉浸染型白钨矿、石英脉型黑钨矿和热液角砾型钨铜钼矿,晋宁期花岗岩类作为最有利的赋矿围岩(项新葵等, 2017; 但小华等, 2019; 褚平利等, 2019)。本文测定区内晋宁期花岗岩成岩时代为816.3Ma,与前人测得花岗闪长岩时代基本一致(孙克克等,2017)。
图14 大湖塘矿田花岗岩锆石Hf同位素演化图(底图据Griffin et al., 2002)Fig.14 Zircon εHf(t) values vs. age (Ma) diagram of the granites from Dahutang ore-field (base map after Griffin et al., 2002)
九岭地区晋宁期花岗闪长岩中的钨含量是地壳克拉克值的9.5倍,双桥山群中钨含量是地壳克拉克值的3.23倍(左全狮, 2006),燕山期岩浆岩在侵入上述地质体时,其岩浆期后热液与围岩发生交代,围岩可提供W、Sn、Fe、Ca等有利成分,有利于交代充填型钨多金属矿体的形成。燕山期花岗岩钙含量普遍较低,很难为该区超大型的白钨矿化提供足够的钙元素,而晋宁期花岗岩类由于体积巨大、钙含量高,可为区内大规模的白钨矿化贡献大量的钙元素。燕山期黑云母花岗岩侵入晋宁期花岗岩的同时,使碱性热液渗入围岩,导致晋宁期九岭黑云母花岗岩形成扩散型黑云母蚀变和千枚岩化/云英岩化蚀变(Zhangetal., 2018)。随后,酸性热液侵入围岩,形成了大规模云英岩化,围岩持续的云英化作用可使更多的Ca2+释放到热液流体中(Songetal., 2018b),流体pH值升高,白钨矿不断沉淀聚集形成细脉浸染型钨矿体。
结合前人研究认为九岭新元古代花岗岩形成于后碰撞挤压背景(Charvet, 2013; Wangetal., 2014),受到洋内弧和扬子板块的碰撞作用、同时代幔源岩浆底侵作用的共同影响,幔源岩浆底侵作用导致弧后盆地内的元古代地壳发生部分熔融,形成花岗质岩浆。中生代花岗岩则是Izanagi板块在约160Ma前向北西斜俯冲,沿扬子、华北克拉通及秦岭造山带的结合部位俯冲板片发生撕裂和重熔形成高钾钙碱性花岗岩类岩浆(毛志昊, 2016; Zhouetal., 2018),软流圈沿东西向板片撕裂带上涌,导致上地壳物质部分熔融,形成过铝质花岗岩浆及相关的江南古陆型钨矿带。
综上,本次工作认为可能来自古老地壳重熔成因的新元古代花岗岩类初始富集了钨、钙等成矿必须元素,在燕山期岩石圈强烈挤压后伸展的动力学背景下,元古代基底中的花岗质岩石和泥砂质岩石发生再次重熔,形成花岗质岩浆,钨等成矿元素进一步富集,经过充分的结晶分异,含矿热液又与晋宁期花岗岩类为主的富钨和钙的围岩交代,最终在构造有利部位形成大规模白钨矿矿体。
(1)大湖塘矿田晋宁期花岗岩成岩时代为815.8Ma,燕山期花岗岩(石门寺)成岩时代为147.7Ma,各类钨矿床成矿时代集中于150~134Ma(靖安钨矿为134.8Ma),大湖塘钨成矿作用紧随燕山期花岗质岩浆侵入而发生,晋宁期花岗岩类是本区白钨矿成矿的最有利围岩。
(2)大湖塘矿田燕山期黑云母花岗岩与晋宁期花岗岩均属于过铝质S型花岗岩,母岩浆经历了低氧逸度、水饱和条件下的熔融,在700℃左右结晶;锆石Hf同位素和微量元素指示,晋宁期花岗岩类主要来源于新生地壳重熔,燕山期黑云母花岗岩则主要源自中新元古代基底物质重熔。
(3)燕山期花岗岩中继承锆石的年代学、Hf同位素和微量元素特征显示,区域广泛发育的晋宁期九岭花岗岩类很可能参与了该区燕山期成钨花岗岩的源区重熔,两期重熔岩浆作用使得W等成矿元素递进式富集。在燕山期岩浆侵入后,晋宁期花岗岩类作为富W和Ca的围岩与含矿热液发生广泛交代作用,尤其促进了本区细脉浸染型白钨矿的大量富集沉淀成矿。
致谢本文野外工作得到了江西省自然资源厅、厦门钨业大湖塘矿山、欣荣矿业等单位的支持;实验工作得到了国家地质实验测试中心李超副研究员的细心指导;中国地质大学(北京)陈佳等参与了有益讨论;论文撰写过程得到了袁顺达教授和高剑峰研究员的指导;审稿人提出了宝贵的修改意见;在此一并感谢。