邵禹棋,王 瑞,陈哲峰,周 皓,刘 锋
南京医科大学第一附属医院骨科,江苏 南京 210029
全膝关节置换术(Total knee arthroplasty,TKA)中股骨假体旋转对线与术后膝关节功能密切相关,旋转角度异常可引起膝前痛、关节僵硬、髌骨轨迹不良、伸膝受限、步态异常以及聚乙烯衬垫异常磨损[1-4]。在TKA 中,股骨通髁轴(transepicondylar ax⁃is,TEA)被认为是确定股骨假体旋转最可靠的标志。但是在外科手术过程中很难辨认股骨通髁轴,因此股骨后髁线(posterior condylar line,PCL)通常作为术中容易识别的解剖标志来定位股骨假体的旋转对线,使股骨假体的旋转轴平行于TEA。既往研究表明,在膝关节外翻畸形时,股骨外侧后髁软骨的磨损使通过股骨后髁线确定股骨假体旋转很可能出现错误,传统的外旋3°截骨可能造成股骨假体的内旋放置。Griffin 等[5]发现在内翻性膝骨关节炎中,股骨后髁角(posterior condyle angle,PCA)平均为3.3°,而这一角度在外翻性膝骨关节炎中平均为5.4°,并认为股骨外侧后髁软骨的磨损是造成这一现象的原因之一。也有学者通过MRI 研究发现在外翻性膝骨关节炎中,股骨外侧后髁软骨的磨损会导致股骨远端外旋截骨角度增加[6]。临床上膝关节骨关节炎更多的畸形是内翻畸形,在实际的手术操作中,也发现内翻性膝骨关节炎常伴有股骨内侧后髁软骨磨损的情况发生。而内翻性膝关节骨关节炎股骨后髁的软骨磨损情况,以及这种磨损对通过股骨后髁线定位股骨假体的旋转产生何种影响仍然没有得到详细的阐述。
目前,关节外科医生经常使用PCL 和PCA 作为术中可识别的解剖参考点和术中股骨假体旋转角度的依据,为患者提供个体化的假体放置。然而,使用CT图像测量的PCA明显忽略了膝骨关节炎患者股骨后髁的残余软骨的影响。而MRI图像能够对残余软骨作出更好的评价,从而降低因软骨厚度不同而带来的测量角度的变化[7]。如果使用CT图像进行术前设计而忽略股骨后髁的残余软骨,股骨假体很可能会被过度地外旋放置,而得到不满意的临床结果。
本研究分别采用CT 及MRI 对内翻性膝骨关节炎患者的股骨远端PCA及软骨厚度进行测量分析,旨在明确股骨后髁软骨的磨损情况以及这种磨损是否会造成CT图像及MRI图像测量结果之间的差异,以及在多大程度上会影响测量结果。我们假设MRI图像测量得到的PCA要小于CT图像的测量结果。
2018 年11 月—2020 年2 月,本院71 例患者(73例内翻性膝骨关节炎膝关节)被纳入本项研究,纳入标准:关节线交角(joint line convergency angle,JL⁃CA)≥5°的中重度内翻性膝骨关节炎患者。这些患者在进行膝关节置换术前接受了全下肢多排CT 平扫及术侧膝关节MRI检查。病例排除标准:①外翻性膝骨关节炎患者;②非单纯骨关节炎患者,类风湿性关节炎、强直性脊柱炎、痛风性关节炎等;③股骨或胫骨侧合并有关节外畸形者;④术侧膝关节既往有骨折或截骨手术史。患者男12 例,女59 例,平均(68.2±6.2)岁,平均体重指数(body mass index,BMI)为(27.0±3.3)kg/m2。患者的基本特征信息及各角度测量见表1。本研究已获得本院伦理委员会批准(2021⁃SR⁃027)。
1.2.1 通过全下肢CT 及立位膝关节DR 图像的各角度测量
所有全下肢的CT 及立位膝关节DR 图像分别使用德国Siemens CT 扫描设备及荷兰Philips DR 扫描设备拍摄。在立位膝关节正位DR 图像上,股骨远端髁切线与胫骨平台两侧边缘连线JLCA 平均为(7.02±1.68)°(图1A)。轴位CT 图像厚度为3 mm。在接受全下肢CT检查时,患者平卧于CT检查床上,并使双下肢处于最大伸直位。通过获取的CT 扫描数据对股骨及胫骨进行3D⁃CT 重建,分别测量股骨机械轴远端外侧角(mechanical lateral distal femur angle,mLDFA)及胫骨近端内侧角(medial proximal tibia angle,MPTA)以排除关节外畸形。mLDFA 平均为(87.89±1.28)°,MPTA 平均为(86.87±1.11)°。同时,在股骨后髁最突出的轴位CT 图像上,PCL 为连接股骨内外侧后髁的连线。而在另一轴位图像上,股骨外科通髁轴(surgical epicondylar axis,SEA)连接股骨外上髁突点和股骨内上髁凹陷。PCA 即为PCL与SEA之间的夹角(图1B、C)。
1.2.2 通过MRI图像的角度及软骨厚度测量
所有术侧膝关节MRI 图像由德国Siemens MRI扫描设备拍摄。在轴位MRI 图像上的PCA 测量(PCA⁃MRI)与使用CT 图像测量方法相同(图1D、E)。同时在PCL 与股骨后髁接触点上测量股骨后髁软骨厚度(该点为股骨后髁最突点,软骨磨损严重且外科医生通常将术中截骨导板紧贴股骨后髁最突点)(图1E)。用矢状位MRI图像测量股骨远端内外侧髁软骨厚度。线A连接股骨远端髁的最前端与最后端表面,线B通过线A的中点并与线A垂直,在线B 与股骨远端髁软骨表面的相交点上,获取股骨远端内外侧髁的软骨厚度,通过该方法找到股骨远端内外侧髁近中心点位置,且该位置为软骨磨损常见位置(图1F)。所有CT和MRI图像数据均导入影像归档和通信系统(picture achieving and commu⁃nication system,PACS,上海Carestream Health 公司)进行测量分析。
1.2.3 在股骨后髁标本上测量软骨厚度
在实际股骨后髁标本上测量软骨厚度,以明确股骨内侧后髁与股骨外侧后髁的软骨磨损情况,以及确认术前MRI 测量的准确性。切除的股骨后髁标本在最突出部垂直切片,用电子卡尺测量软骨厚度,电子卡尺精度为±0.01 mm,最终读数保留1位小数。测量时分别取股骨后髁最突出部位附近2 个点,测量结果取平均值。切除的股骨后髁标本送组织病理检查,进一步明确软骨退变情况及内外侧后髁软骨磨损差异。
采用配对t检验比较通过MRI测量的股骨内外侧后髁和股骨远端内外侧髁软骨厚度,实际标本股骨内侧后髁软骨厚度(cartilage thickness of medial posterior condyle of specimens,CMPCs)与标本股骨外侧后髁软骨厚度(cartilage thickness of lateral pos⁃terior condyle of specimens,CLPCs),标本股骨后髁软骨厚度与MRI 测量值,以及CT 图像测量的PCA(PCA⁃CT)与MRI 图像测量的PCA(PCA⁃MRI)之间差异是否有统计学意义。用Pearson 相关分析对PCA⁃CT与PCA⁃MRI之间的差值和MRI测量股骨外侧后髁软骨厚度(cartilage thickness of lateral posteri⁃or condyle,CLPC)与MRI 测量股骨内侧后髁软骨厚度(cartilage thickness of medial posterior condyle,CMPC)之间的差值进行相关性分析。同时也给出了MRI 测量CLPC 与MRI 测量CMPC 差值和MRI 测量股骨远端外侧髁软骨厚度(cartilage thickness of lat⁃eral⁃distal femoral condyle,CLDFC)与MRI 测量股骨远端内侧髁软骨厚度(cartilage thickness of medial⁃distal femoral condyle,CMDFC)差值之间的散点图。
图1 各角度及软骨厚度测量方法Figure 1 Measurement method of angles and cartilage thickness
为了检验测量方案的可重复性,采用了组内相关系数(intraclass correlation coefficient,ICC)这一统计量。1 名有经验的关节外科医生和1 名关节外科住院医师同时进行测量,以检验观察者之间的可靠性。所有的测量数据在4周后由2名观察者进行第2 次测量,以检验观察者内部的可靠性。观察者内部信度采用单因素方差分析模型,采用双因素混合方差分析统计观察者之间的信度。两个观察者之间彼此的测量结果是双盲的。所有数据采用IBM SPSS23.0统计学软件进行统计分析,P<0.05为差异有统计学意义。
各角度及软骨厚度测量结果见表1。所有测量结果,观察者内部信度ICC范围为0.83~0.91(表2),观察者之间的信度ICC 范围为0.84~0.94(表3),均表现出极好的可靠性。这表明通过CT及MRI图像对软骨厚度和各角度的测量方法是可信的。PCA⁃CT与PCA⁃MRI 的平均相差(1.84±0.96)°。配对t检验显示,CMPC[(1.9±0.6)mm]与CLPC[(2.8±0.5)mm],CMDFC[(1.3±0.4)mm]与CLDFC[(2.5±0.4)mm],PCA⁃CT[(4.09±1.39)°]与PCA⁃MRI[(2.25±1.01)°],CMPCs[(1.9±0.6)mm]与CLPCs[(2.8±0.6)mm]之间差异均具有统计学意义(P<0.01,图2)。而标本股骨内外侧后髁软骨厚度与MRI 测量值之间无明显差异(P>0.05)。相关性分析显示,PCA⁃CT和PCA⁃MRI 的差值与CLPC 和CMPC 的差值存在一定的相关性(r=0.62,P<0.01,图3),并得出两者之间的线性回归方程Y(°)=1.29X+0.75(Y:PCA⁃CT minus PCA⁃MRI,X:CLPC minus CMPC)。从回归方程可以看出,当股骨外侧后髁与股骨内侧后髁软骨厚度相差2 mm 时,PCA⁃CT 比PCA⁃MRI 大接近3°。而CT与MRI 测量PCA 结果的差异将会随股骨内外侧后髁软骨磨损程度不同而有所变化(图4)。此外,从CLPC 和CMPC 差值与CLDFC 和CMDFC 差值的散点图看出,在本研究纳入的所有膝骨关节炎患者中,股骨远端外侧髁的软骨均比股骨远端内侧髁软骨厚。在这种结果下,73例膝关节中有71例(97%)膝关节股骨外侧后髁软骨比股骨内侧后髁软骨厚(2 例膝关节股骨外侧后髁软骨与股骨内侧后髁软骨厚度相等)(图5)。
表1 患者基本信息及各角度、软骨厚度测量结果Table 1 Basic information and measurement results of angles and cartilage thickness of patients
表2 观察者内部信度Table 2 Intra⁃observer reliability ICC
图2 各角度及软骨厚度配对样本t检验Figure 2 Paired sample t test for various angles and cartilage thickness
图3 CLPC 与CMPC 差值同PCA⁃CT 与PCA⁃MRI 差值之间的相关性分析Figure 3 Correlation analysis between CLPC minus CMPC and PCA⁃CT minus PCA⁃MRI
随着手术技术、假体设计和手术器械的改进,全膝关节置换术已成为终末期膝关节疾病的常规治疗方法。同时,假体位置的准确放置对患者术后满意度至关重要。既往研究表明,股骨假体外旋与间隙平衡、髌股轨迹、髌股接触应力、胫股运动力学和膝关节生物力学有关,而股骨假体过度外旋会导致膝前痛、关节僵硬、伸膝受限、步态异常、加快聚乙烯衬垫磨损等[9-14]。因此,关节外科医生通常利用Whiteside线、TEA、PCL等几个解剖标志以在手术过程中获得股骨假体的正确放置[15]。在这些解剖标志中,PCL 在手术过程中更容易被识别。手术者习惯于把截骨导板紧贴股骨内外侧后髁表面,并参照股骨后髁线外旋一定角度,使股骨假体与股骨通髁轴平行。然而,在测量截骨中,如果外科医生使用X线或CT图像进行术前设计,由于股骨内侧后髁和股骨外侧后髁软骨的磨损程度不同,可能会得到不准确的股骨假体外旋角度。因此,股骨内侧后髁和股骨外侧后髁软骨厚度不同所导致的股骨假体外旋不良不能被忽视。而本研究的目的在于探讨内翻性膝骨关节炎是否通常伴有股骨后髁的软骨磨损,如存在股骨后髁软骨的磨损,在这种情况下通过MRI图像测量的PCA与CT图像测量的PCA是否存在差异,并对股骨假体的旋转产生影响。
本研究中所有的病例都排除了关节外畸形,并且股骨远端内侧髁的软骨磨损比股骨远端外侧髁的软骨磨损程度重。这保证了患者的内翻畸形是由关节内软骨磨损造成的。同时,从CLPC和CMPC差值与CLDFC 和CMDFC 差值之间的散点图看出,在本研究纳入的内翻性膝骨关节炎患者中,97%的膝关节呈现出更严重的股骨内侧后髁软骨的磨损。同时通过实际标本测量的股骨内侧后髁软骨比股骨外侧后髁软骨更薄,实际标本测量的结果与MRI 测量的结果无明显差异,这表明在内翻性膝骨关节炎当中,股骨远端内侧髁软骨磨损的同时常伴有股骨内侧后髁的软骨磨损,而这种软骨磨损形式会对股骨假体的旋转对线产生一定的影响。以往的研究大多集中在股骨远端和胫骨近端软骨的磨损形式上,而关于发生在股骨后髁的软骨退变的研究很少。一项研究比较了单髁膝关节置换术(UKA)时股骨内侧后髁和股骨外侧后髁关节软骨厚度的差异。研究者发现内侧髁UKA 患者的股骨内侧后髁关节软骨厚度比外侧髁UKA 患者的股骨外侧后髁关节软骨厚[20]。结合本项研究,股骨后髁的软骨磨损在膝骨关节炎患者中普遍存在,内翻性膝骨关节炎通常伴有股骨内侧后髁软骨的磨损,而外翻性膝骨关节炎患者股骨外侧后髁的软骨磨损更为严重。
图4 CT与MRI测量结果的差异随股骨内外侧后髁软骨磨损程度不同而发生变化Figure 4 The differences between CT and MRI varies with the different degrees of cartilage wear on medial and lateral femoral condyles
图5 CLPC与CMPC差值同CLDFC与CMDFC差值之间的散点图Figure 5 Scatter plot between CLPC minus CMPC and CLDFC minus CMDFC
通过对PCA⁃CT 和PCA⁃MRI 之间的对比,发现CT图像测量得到PCA显著增大,这可能导致股骨假体外旋角度增加。一项研究比较了分别使用术中多平面重建图像及术中导航系统图像获得的股骨扭转角(condylar twist angle,CTA),结果显示导航系统图像(包含软骨)测量的CTA[(4.8±2.0)°]小于多平面重建图像(不含软骨)测量的CTA[(6.6±2.1)°](P<0.05)[16]。同时,也有学者研究表明如果忽略股骨内外侧后髁的残余软骨,约30%TKA 病例的CTA 会被错误地过高估计2°,从而导致股骨假体被放置到比预期更加外旋的位置[17]。
在本研究中,PCA⁃CT 与PCA⁃MRI 平均相差(1.84±0.96)°。由于软骨在CT 图像上不成像,但MRI图像可以清晰地显示软骨,因此CT图像测得的PCA 大于MRI 图像测得的PCA。实际上,在内翻性膝骨关节炎当中PCA⁃CT和PCA⁃MRI的差异可能会因软骨磨损程度不同而表现出不同的结果。CT 图像测量PCA 时不包括股骨内外侧后髁软骨。随着软骨的磨损,特别是内翻性关节炎膝关节内侧后髁的软骨磨损,使内侧后髁的软骨比外侧后髁的软骨更薄。此时,理论上PCA⁃CT 与PCA⁃MRI 之间的差异最为显著。当股骨内外侧后髁软骨均严重磨损,两侧软骨厚度差异不大,这时PCA⁃CT 与PCA⁃MRI之间的差异将会减小。假如当内外侧后髁软骨均全部磨损消失,骨质暴露,此时PCA⁃CT和PCA⁃MRI应无明显差异。
回归方程Y(°)=1.29X+0.75也反映出,如果股骨外侧后髁软骨与股骨内侧后髁软骨厚度存在2 mm的差异,在不考虑剩余软骨的情况下,股骨假体的外旋角度会被错误地估计近3°。Nedopil 等[18]分析了101 个运动学对线的初次TKA 膝关节,结果显示股骨假体在3°内旋至2°外旋的范围内,患者OKS和WOMAC 评分并没有显示明显的膝关节功能下降。Kia 等[11]利用计算机模型在3 具不伴膝骨关节炎并下肢力线良好的男性尸体膝关节上模拟TKA(PS假体)。他们发现,0~9°的股骨假体外旋会减轻内侧副韧带张力和内侧间室接触应力。同时既往研究报道,将股骨假体相对于股骨远端通髁轴5°内旋放置、5°外旋放置和平行放置,平行放置组可获得最佳的髌股轨迹,并可降低髌股剪切力、胫股假体磨损和不稳定性[14,19]。尽管股骨假体外旋转角度的可接受范围尚未明确,但为了避免股骨和胫骨假体之间旋转不良,关节外科医生应将股骨假体与股骨通髁轴平行放置。
尽管MRI是一个重要的和更精确的术前设计方法,可减少外科手术当中的错误,但MRI的费用较高,检查耗时较长,在临床工作中使用不方便且不常用。此外,患者自身的因素,如体内植入物、幽闭恐惧症等,也减少了MRI的使用。因此,当无法获取MRI图像时,关节外科医生必须把测量误差考虑在内。
内翻性膝骨关节炎通常伴有更严重的股骨内侧后髁软骨磨损,而MRI 和CT 测量的PCA 有显著差异,MRI是一种更精确的术前设计方法,可避免股骨假体的过度外旋放置。另外,术中导航系统也显现出了比传统TKA手术方式更精确的假体位置[21]。因此关节外科医生必须考虑到使用X 线或CT 图像进行术前设计时带来的测量误差,采用包括术前使用MRI或CT图像进行术前设计、术中的手术技术及术中导航等来恢复良好的下肢力线。
本项研究的局限性是纳入患者的数量相对较少,基于大样本量的研究可能会在这个问题上获得更高程度的准确性。该研究的另一个局限性是,只观察了内翻性膝骨关节炎患者,没有把外翻性膝骨关节炎患者纳入在内,今后应进一步探究外翻性膝骨关节炎的软骨磨损及假体旋转问题。