Taylor公式求极限时“阶”的分析

2021-05-18 15:01吕志宇
数学学习与研究 2021年11期
关键词:泰勒解析公式

吕志宇

【摘要】Taylor公式是一个用函数在某点的信息描述其附近取值的公式,其充分运用“无限接近”这一数学理论,将一些复杂的数学函数转化为简易的多项式函数,是数学函数中最基本的理论.本文阐述Taylor公式,分析并归纳Taylor公式求极限的具体方法,以期为初学者提供理论参考.

【关键词】Taylor公式;极限;“阶”

引 言

在高等数学中,极限通常是讨论数学函数的基础方式,是解析数学函数的基本形式,还是数学微积分中重点学习的内容.在学习数学函数时,学生掌握求取极限的基本方法尤为重要.应用泰勒公式求取函数极限是高等数学学习的重点.Taylor公式作为表达数学函数的一种基本形态,其将“无限接近”作为解析数学函数的基本思想理论,让繁杂函数以多项式数学函数形态呈现出来,为数学函数解析提供多重解析方法.在运用Taylor公式过程中,未定式极限计算是其重点与难点,更是专升本考试中的一个重要考点.为进一步了解Taylor公式在求极限时的具体应用,本文主要就Taylor公式求极限时“阶”的具体计算进行分析.

一、Taylor公式求極限时“阶”的具体分析

1.Taylor公式求极限时的具体应用

1.1利用Taylor公式展开求极限

在求极限过程中我们可以将其中一项应用泰勒公式展开,将原复杂函数转化为多项式函数形式来求极限.

例 求limx→∞x-x2ln1+1x.

解 根据泰勒公式展开,ln1+1x=1x-12x2+13x3-1[]4x4+…,

其中x指数最高为2,

因此原极限=limx→∞x-x2×1x-12x2+o1x2=limx→∞x-x+12-o1x2[]1[]x2=12.

1.2求满足Taylor公式的θ的极限

例 如果f′(x)在D上存在连续导函数,f ″(x)≠0,那么对于x0+h∈D有 f(x0+h)=f(x0)+hf′(x0+θh)(0<θ<1),求limh→0 θ.

解 已知f(x0+h)=f(x0)+hf′(x0+θh),

那么应用泰勒公式可得出

f(x0+h)

=f(x0)+hf′(x0)+12f ″(x0+θ1h)h2,

两式相减可得到

hf′(x0+θh)-hf′(x0)

=12f ″(x0+θ1h)h2,

limh→0f′(x0+θh)-f′(x0)h

=limh→012f ″(x0+θ1h)=12f ″(x0),

又因为 limh→0f′(x0+θh)-f′(x0)h=limh→0f′(x0+θh)-f′(x0)θh×θ=f ″(x0)limh→0 θ=1[]2f ″(x0),

所以limh→0 θ=12.

同理,如果已知

f(x0+h)=f(x0)+hf′(x0)+12f ″(x0+θh)h2,

那么应用泰勒公式可得

f(x0+h)=f(x0)+hf′(x0)+12f ″(x0)h2+16f (x0+θ1h)h3,

两式相减可以得到 f ″(x0+θh)h2-f ″(x0)h2=13f (x0+θ1h)h3,

即f ″(x0+θh)-f ″(x0)θh×θ=13f (x0+θ1h),limh→0f ″(x0+θh)-f ″(x0)θh×θ=limh→013f (x0+θ1h),

最终得到f (x0)limh→0 θ=13f (x0),

所以limh→0 θ=13.

二、Taylor公式求极限时的方法

1.实例分析

在应用泰勒公式求极限时,一般情况下需要解决三个问题:一是函数具体需要在哪个点上进行泰勒展开,即需要明确展开泰勒公式所需要的函数点;二是泰勒公式需要展开到第几次幂结束,一般情况下,泰勒公式通常是展开至展开系数无法相互抵消为止;三是在应用泰勒公式展开过程中,具体需要应用哪种带有余项形式的泰勒公式.通常情况下,在计算未定式极限时,使用已知的麦克劳林公式较为常见,且并不需要客观评估余项,因此只需选择皮亚诺型余项.

例 求极限limx→∞x-x2ln1+1x.

具体分析 由题目可知从极限变化过程为x→∞,归属于∞-0×∞类型,这与洛必达法则定理不相符.其中x和x2皆是x的幂的形式,因此可以将ln1+1x展开成泰勒公式,由于x→∞时,1x→0,因此只需使用ln(1+u)在点u=0处的泰勒公式展开式,同时令u=1x便可.

然而

x2ln1+1x

=x21x-12x2+13x3+o1x3,

将泰勒公式展开至三次幂是因为

x-x2ln1+1x

=x-x21x-12x2+13x3+o1x3=12+o1x

的系数无法相互抵消,因此

limx→∞x-x2ln1+1x

=limx→∞x-x21x-12x2+13x3+o1x3=limx→∞12+o1x=12.

在应用泰勒公式过程中,如果一般形式为f(x)xk或者xkf(x),那么f(x)展开至x的k次方,遵循上下同阶原则;如果一般形式为f(x)-g(x),那么将f(x),g(x)分别展开至其系数不相等的最低次幂为止.

2.错解分析

在计算极限过程中,应用泰勒公式能够快速解出答案,十分适用.但是在应用泰勒公式时,学生必须要掌握精准的计算技巧.学生在实际计算过程中极易计算错误,并且很难发现错误之处,这给学生掌握用泰勒公式求极限造成一定难度.再举一例.

例 用泰勒公式求極限limx→0ex(x-2)+x+2sin 3x.

错误解答 原式=limx→01+x+x22(x-2)+x+2x3=limx→012x3x3=12.

具体分析 以上解答表面看上去十分正确,实则存在多处错误.如在展开时没有写余项,此处乃初学者常犯错误之一.其实,按照正确计算方式将展开

至二阶ex=1+x+x22+o(x2),

ex(x-2)+x+2=1+x+x22+o(x2)(x-2)+x+2=x32+o(x2)=o(x2),(x→0)

此刻再代入原式中问题便凸显出来了,实际上,

limx→0ex(x-2)+x+2sin 3x=limx→01+x+x22+o(x2)(x-2)+x+2x3=limx→012x3+o(x2)x3≠12.

讨论:泰勒公式求极限时具体展开至几阶才算合适?

将ex泰勒公式展开至一阶,ex=1+x+o(x),那么

ex(x-2)+x+2=1+x+o(x)(x-2)+x+2=x-2+x2-2x+o(x)+x+2=x2+o(x)=o(x),(x→0)

进而

limx→0ex(x-2)+x+2sin 3x[ZK(]=limx→0(1+x+o(x))(x-2)+x+2x3=limx→0o(x)x3,[ZK)]

不存在正常极限.

将ex泰勒公式展开至三阶

ex=1+x+12!x2+13!x3+o(x3),

则ex(x-2)+x+2=1+x+12!x2+13!x3+o(x3)(x-2)+x+2=16x3+o(x3),(x→0)(1)将ex泰勒公式展开至nn≥4阶,那么

ex=1+x+12!x2+13!x3+14!x4+…+1n!xn+o(xn),

ex(x-2)+x+2=1+x+12!x2+13!x3+14!x4+…+1n!xn+o(xn)(x-2)+x+2=12x3-26x3+13!x4-24!x4+14!x5+…+o(xn+1)=16x3+o(x3),(x→0)(2)

因此,由(1)(2)综合可得

limx→0ex(x-2)+x+2sin 3x=limx→016x3+o(x3)x3=16+limx→0o(x3)x3=16.

综上所得,应用泰勒公式求00型的limx→0f(x)-g(x)xa形式的极限,具体有以下几点结论:一是如果将分子展开至小于a阶时,那么得不到正确极限;二是如果将分子展开至a阶,那么可以得到正确极限,而且计算快速方便,较为节约时间;三是如果将分子展开至大于a阶,那么可以得到正确极限,但是比较浪费时间,精力.

3.题型分类探讨

类型1

limx→0f(x)-g(x)xa=limx→0cxa+oxaxa=c.(1.1)

例 使用泰勒公式求极限:

limx→0exsin x-xx+1xsin x·tan x.

解 原式=limx→01+x+x22+o(x2)x-16x3+o(x3)-xx+1x3=limx→0x-16x3+x2+12x3+o(x3)-x-x2x3=13.

类型2

limx→0xaf(x)-g(x)=limx→0xadxa+oxa=limx→01d+oxaxa=1d.(1.2)

例2 使用泰勒公式求极限:

limx→0x4ln1+sin 2x-632-cos x-1.

原式=limx→0x4x2-56x4+o(x4)-616x2-124x4+o(x4)=limx→0x4-712x4+o(x4)=-127.

公式(1.1),(1.2)的积为类型3:

limx→0f(x)-g(x)u(x)-v(x)=limx→0cxa+oxadxa+oxa=limx→0c+oxaxad+oxaxa=cd.

4.结论

根据以上分析讨论可得以下几点结论:一是对于单侧极限x→0+,x→0-,以上分析讨论完全有效;二是当存在x→+∞,x→-∞,x→∞情况时,可以将变量进行替换,如t=1x,将其转化为x→0+,x→0-,x→0;三是当出现极限为0和无穷情况时,仍然可以使用泰勒展开式求极限,分别对应(1.1)中c=0和(1.2)中d=0的情况.

例 使用泰勒公式求极限:

limx→0cos x-e-x22x2.

解 由于cos x-e-x22=1-x22!+o(x2)-1-x22+o(x2)=o(x2),

同时根据公式(1.1)可得知

limx→0cos x-e-x22x2=limx→0o(x2)x2=0.

注:应用洛必达法则可以验证此结论,实际上有

limx→0cos x-e-x22x2=limx→0-sin x+xe-x222x=limx→0-cos x+e-x22-x2e-x222=0.

根据公式(1.2)可得知

limx→0x2cos x-e-x22=limx→0x2o(x2)=∞.

结 语综上所述,泰勒公式是一种将复杂函数转化为多项式函数的公式,在求取函数极限时发挥着至关重要的作用.在应用泰勒公式求极限过程中,泰勒公式应用条件较为苛刻,限制性较大,函数必须是n阶可连续函数,且求取的函数值与函数阶数息息相关,阶数越小,最终结果误差便会越大.因此,在应用泰勒公式求极限时,要注意分析题意,了解题目特点与函数形式,准确把握泰勒公式基本规律,熟练掌握应用泰勒公式求取极限时的方法与技巧.

【参考文献】

[1]陈叻,赵向青,吴涛.Taylor公式求极限时“阶”的分析[J].高等数学研究,2019(05):16-18.

[2]黄辉.巧用等价无穷小与泰勒公式求极限[J].江西电力职业技术学院学报,2019(04):50-51,54.

.

猜你喜欢
泰勒解析公式
组合数与组合数公式
排列数与排列数公式
等差数列前2n-1及2n项和公式与应用
睡梦解析仪
电竞初解析
相机解析
一起绵羊泰勒焦虫病的诊断治疗经过
泰勒公式的简单应用
泰勒公式与泰勒级数的异同和典型应用