罗 莹,刘 娜,孙善伟,侯 嵩,郭昌胜*,徐 建
我国地表水中典型DBPs的暴露水平及生态风险
罗 莹1,2,3,刘 娜3,孙善伟1,侯 嵩1,郭昌胜1,3*,徐 建1,3
(1.中国环境科学研究院,国家环境保护化学品生态效应与风险评估重点实验室,北京 100012;2.北京师范大学水科学研究院,北京 100875;3.中国环境科学研究院,环境基准与风险评估国家重点实验室,北京 100012)
氯消毒过程中可能生成有毒有害的副产物,会对水生态系统和环境健康产生直接和间接的次生危害.三卤甲烷(THMs)和卤乙酸(HAAs)是地表水中检出率最高的消毒副产物(DBPs),其毒性效应受到广泛关注.本文检索整理了三氯甲烷(TCM)、三溴甲烷(TBM)、二氯乙酸(DCAA)和三氯乙酸(TCAA)在我国地表水暴露浓度和对水生生物的毒性效应浓度,了解我国重点流域地表水环境中TCM、TBM、DCAA和TCAA的浓度水平,分别利用急、慢性毒性数据推导预测无效应浓度(PNEC),并使用风险商(RQ)和概率生态风险评价法(PERA)对我国重点流域水环境中TCM、TBM、DCAA和TCAA进行多层次生态风险评估.结果表明,我国地表水环境中TCM、TBM、DCAA和TCAA暴露浓度范围为n.d.~51μg/L.以致死和生长、繁殖等为测试终点的急、慢性毒性数据,构建物种敏感度分布(SSD)曲线,推导出TCM、TBM、DCAA和TCAA的PNEC值分别为0.586,0.857,0和44.880mg/L; 0.006,0.064,0.956和0.012mg/L.基于急、慢性毒性数据计算出的RQ小于1.我国重点流域中TCM和TCAA对1%的水生生物造成生长、繁殖等慢性毒性影响的概率分别为78.86%和20.61%,存在潜在的生态风险.
消毒副产物;地表水;生态风险评估
目前我国新冠肺炎疫情形势依然严峻,为防止传染病毒快速传播,含氯消毒剂大量使用,消毒剂在阻隔缓解病毒扩散的同时,也产生大量含氯消毒副产物,通过医疗废水和生活污水等途径由城镇排水系统进入河流水体.同时,为保证公众饮用水安全,氯化消毒通常也是国内外集中式供水最主要的消毒方式.但氯消毒剂会与水中的天然有机物反应,生成对人体和水生生物有害的消毒副产物(DBPs)[1],对人体健康和水生态系统产生直接和间接的次生危害.DBPs种类繁多[2],主要包括三卤甲烷(THMs)、卤乙酸(HAAs)、卤乙腈、卤代酚、卤代酮等物质[3],其中THMs和HAAs含量较高,并且已纳入饮用水监管体系[2].近年来,THMs和HAAs在地表水中均有检出,其浓度达到μg/L的水平[3-13].
20世纪70年代,国内外陆续对THMs和HAAs展开毒性研究,结果表明,两者具有“三致效应”[14-17].同时,相关研究证实,THMs和HAAs对水生生物具有死亡[18-40]、发育[18,32,41-43]和繁殖效应[27,44],评估THMs和HAAs存在的潜在生态风险对保护水生生物至关重要.
生态风险评估是预测环境中污染物对生态系统或其中一部分产生有害影响可能性的过程[45],主要将污染物暴露浓度与效应浓度进行比较.暴露浓度通常指实测或预测的环境中化合物的浓度,效应浓度指化合物对生物造成不良效应的浓度,通常由预测无效应浓度(PNEC)来表示.风险商(RQ)和概率生态风险评价法(PERAs)是风险评估中常用的方法. RQ是污染物暴露浓度与预测无效应浓度PNEC的比值[46].但RQ的不确定性较大,因而适用于低水平或多层次中较低层次的风险评估.为了得到更确切的风险概率,一般采用PERAs作为多层次风险评估中较高层次的评估方法[47].为了获得更准确的风险结果,一些学者和研究机构提出连续应用低层次到高层次的风险评价方法,即将RQ和PERAs进行综合,充分利用各种方法进行从简单到复杂的风险评价[47].本文通过文献检索和资料收集,获取THMs和HAAs在我国地表水环境中的暴露浓度和毒性效应浓度,对我国地表水中THMs和HAAs进行全面的多层次生态风险评估,为THMs和HAAs的环境管理提供理论依据和科学支撑.
THMs和HAAs是水环境中最主要的DBPs[8]. THMs包括三氯甲烷(TCM)、一溴二氯甲烷(BDCM)、一氯二溴甲烷(DBCM)和三溴甲烷(TBM)[48];HAAs包括一氯乙酸(MCAA)、二氯乙酸(DCAA)、三氯乙酸(TCAA)、一溴乙酸(MBAA)和二溴乙酸(DBAA)[48].通过检索国内外期刊文献、硕博学位论文等,获取我国重点流域及其水源地THMs和HAAs的暴露浓度数据,以全面评估THMs和HAAs在我国地表水环境中的暴露水平.结果表明,THMs和HAAs在水源水[3,6-8,10-12]和地表水[4-5,9,13]中均有检出.低于方法检出限的同一流域中不同检测点位的浓度数据按最低检出限的50%计算.使用IBM SPSS Statistics 24的Kolmogorov-Smirnov检验对THMs和HAAs在我国地表水中的浓度分布数据进行正态分布检验.
THMs和HAAs的水生生物毒性数据来自毒理数据库(如美国的ECOTOX数据库,http://cfpub.epa. gov/ecotox/)、已发表论文及期刊文献[47,49].数据筛选遵循相关性、可靠性、精确性的原则[50].根据暴露时间和测试终点将THMs和HAAs水生生物毒性数据分为:急性毒性(测试终点为致死)和慢性毒性,由于现有研究中THMs和HAAs的慢性毒性数据较少,因而将生长、繁殖、生物化学与分子生物学及其他行为学等慢性毒性测试终点合并分析.根据水生生物的测试终点,以半致死浓度(LC50)或半效应浓度(EC50)为测试终点的毒性数值作为急性毒性数据,以无观察效应浓度(NOEC)为测试终点的毒性数值作为慢性毒性数据.当NOEC数据不足时,采用最大可接受浓度、最低可观察效应浓度或EC50替代[47].当一个物种同一测试终点具有多个数值时,使用几何平均值;同一个生物有不同测试终点时,选择最敏感测试终点的毒性数据[51].
通过查阅文献和毒理数据库收集到THMs和HAAs的水生生物毒性数据,满足使用物种敏感度分布曲线(SSD)推导5%物种受到危害时的浓度(HC5)的要求,采用SSD推导HC5,以不同生物毒性数据的对数浓度值为横坐标,以累计概率为纵坐标作图.其中累计概率是将所有已筛选物种的最终毒性值按从小到大的顺序进行排列,并且给其分配等级,最小的最终毒性值等级为1,最大的最终毒性值等级为,依次排列,计算公式为[52]:
/1(1)
式中:为累计概率,%;为物种排序的等级;为物种的个数.
如果有2个或者2个以上物种的毒性值是相等的,则将其任意排成连续的等级,计算每个物种的最终毒性值的累计概率.该研究采用荷兰国家公共卫生与环境研究院(RIVM)开发的ETX 2.0推导基于50%置信度的HC5[47].
由于非本地物种数据、物种种类以及野外实际暴露等会对PNEC产生影响,最终PNEC值为:
PNEC=HC5/AF(2)
式中:HC5为5%物种受到危害时的化合物浓度, mg/L;AF取5[53].
本文采用多层次生态风险评估法对我国包括水源在内的地表水中的THMs和HAAs进行生态风险评估.首先,采用风险商进行评估,见下式:
RQ=MEC/PENC(3)
式中:MEC为实测环境浓度, μg/L;PNEC为预测无效应浓度,μg/L.
当RQ<0.1,该化合物对水生生物的风险可忽略;当0.1£RQ<1,该化合物对水生生物的风险较低;当1£RQ<10,该化合物对水生生物为中等风险;当RQ³10,该化合物对水生生物的风险高[47].
其次,采用联合概率分布曲线法(JPCs)作为概率生态风险评价对THMs和HAAs进行高层次风险评价.联合概率分布曲线法(JPCs)可以计算出某一特定百分比物种引起不利影响的浓度在地表水中出现的概率,反映各毒性损伤水平下暴露浓度超出相应临界浓度值的概率,体现暴露情况和暴露风险之间的关系[46-47].
我国地表水中THMs的浓度范围为0~51μg/L; HAAs的浓度范围为n.d~12.61μg/L(表1),其中, TCM、TBM、DCAA和TCAA分别是THMs和HAAs中检出率较高化合物,浓度范围分别为0~51,0.22~ 1.46,0.01~2.56和n.d.~12.61μg/L.从THMs和HAAs来看,除大连市地表水中DCAA和TCAA的平均浓度(6μg/L)外,水体中THMs的平均浓度(0.14~2.8μg/ L)高于HAAs的平均浓度(0.01~3.37μg/L),其中,THMs中TCM的最高浓度(51μg/L)高于HAAs中DCAA的最高浓度(12.61μg/L).同区域不同种类的消毒副产物,TCM的平均浓度高于DCAA和TCAA的平均浓度水平.由表1可知,THMs中主要的消毒副产物为TCM,其平均浓度的范围为0.33~ 2.80μg/L,远高于其余3种化合物;HAAs中, DCAA (0.01~6μg/L)和TCAA(0.12~1.30μg/L)是主要的化合物.
表1 我国地表水中THMs和HAAs污染水平
注:“-”表示数据不可获得.
本文通过文献和毒理数据库收集TCM、TBM、DCAA和TCAA的急性和慢性毒性数据(表2). 基于致死为测试终点,本文收集了大量脊椎和无脊椎水生动物以及藻类的急性毒性数据, TCM,TBM, DCAA和TCAA的急性毒性数值范围分别为2~7771.18, 2.90~75, 23~4060和1.2~9300mg/L,均值分别为341.77,29.10,1468.20和3576.45mg/L.从THMs和HAAs两类主要DBPs来看,THMs对水生生物的急性毒性远高于HAAs,因而THMs水生生物的生命具有较高的威胁.从不同化合物来看,TBM对水生生物的致死效应浓度最高,TCAA水生生物的致死效应浓度最低,TBM对水生生物的生存影响可能高于其他3种DBPs,地表水环境中TBM对水生生物的生存存在一定影响.基于生长、繁殖和分子生物学等为测试终点,本文收集了脊椎和无脊椎水生动物以及藻类的慢性毒性数据,TCM,TBM,DCAA和TCAA的毒性浓度范围分别为0.1~185, 0.24~38.6, 0.0002~1485和0.01~1740mg/L,均值分别为36.07, 13.45, 235.24和512.39mg/L.从THMs和HAAs 2类主要DBPs来看,THMs对水生生物的慢性毒性高于HAAs,地表水环境中THMs对水生生物的慢性毒性影响大于HAAs.从不同化合物来看,TBM对水生生物的生长、繁殖和分子生物学等慢性毒性效应浓度最高,TBM对水生生物的生长和繁殖等毒性影响可能高于其他3种DBPs.
表2 THMs和HAAs对水生生物的毒性数值
续表2
续表2
注:“-”表示信息不可获得.
基于对TCM、TBM、DCAA和TCAA各类水生生物急慢性毒性数据进行统计分析,获得相关参数(表3).通过Kolmogorov-Smirnov检验,数据均符合对数正态分布(>0.05).采用SSD曲线推导TCM、TBM、DCAA和TCAA的HC5.基于TCM的急性和慢性毒性数据推导的HC5分别是2.932和0.029mg/L,推导出的PNEC值分别为0.586和0.006mg/L;基于TBM的急性和慢性毒性数据推导的HC5分别是4.286和0.320mg/L,推导出的PNEC值分别为0.857mg/L和0.064mg/L;基于DCAA以生长、繁殖等为测试终点的慢性毒性数据推导的HC5是1.912mg/L,推导出的PNEC值为0.956mg/L,由于DCAA的急性毒性数据不满足构建SSD曲线最低条件,因此选择最敏感物种的急性毒性数据与AF(AF=1000)[59]相比,计算得到DCAA基于急性毒性数据的PNEC值为23mg/L;基于TCAA的急性和慢性毒性数据推导的HC5分别是224.40和0.061mg/L,推导出的PNEC值分别为44.880和0.012mg/L.综上所述,TCM、TBM、DCAA和TCAA对水生生物的生长、繁殖等慢性毒性更敏感,其中TCM对水生生物的慢性毒性高于其他化合物,DCAA对水生物的生长、繁殖、生物化学和分子生物学等慢性毒性相对较不敏感.从2类不同DBPs来看,THMs基于急性毒性数据推导出的PNEC值远低于HAAs,水生生物的生存对水环境中THMs更加敏感,尤其是TCM,这一结果与毒性数据进行均值比较的结果存在一些差异,为获得更准确的结果,不能仅仅进行简单的分析,应该使用更科学的统计分析方法,例如SSD[47].从不同化合物来看, TCM对水生生物的生长、繁殖和分子生物学等毒性更加敏感,TCAA次之,同样的,与利用毒性均值比较时存在一些差异,根据国内外研究人员的结果表明[47,51-52,63-64,66],采用SSD曲线进行毒性效应分析更加科学,准确.
表3 基于不同测试终点构建THMs和HAAs的SSD曲线相关参数
注:“-”表示数据不可获得.
该研究采用RQ对我国地表水中的THMs(TCM和TBM)和HAAs(DCAA和TCAA)平均浓度进行风险评估,我国地表水中TCM、TBM、DCAA和TCAA的平均浓度分别与急性毒性数据推导出的PNEC相比,求出RQ值(图1).
图1 基于急性毒性计算TCM、TBM、DCAA和TCAA的RQ
由图1可知,基于TCM、TBM、DCAA和TCAA急性毒性数据计算出的RQ均小于1.从不同流域来看,除中山市河流中TCM的RQ超过0.1,其他流域中基于TCM、TBM、DCAA和TCAA的平均浓度与急性毒性数值计算得出的RQ均小于0.1,表明TCM、TBM、DCAA和TCAA在我国地表水中的生态风险较小,可以忽略.从不同消毒剂副产物的种类来看,我国地表水中THMs基于急性毒性数据计算出的RQ高于HAAs基于急性毒性数据计算出的风险商,中山市河流中TCM的RQ最高(RQ=0.11).此外,DCAA和TCAA在大连市地表水中的RQ最高,分别为0.026和0.00013,表明THMs对我国地表水中水生生物的致死风险高于HAAs.此外,我国地表水中TCM 基于急性毒性数据计算出的RQ高于TBM基于急性毒性数据计算出的RQ;DCAA基于急性毒性数据计算出的RQ高于TCAA的RQ.
基于我国水源中TCM、TBM、DCAA和TCAA的平均浓度与慢性毒性数据推导出的PNEC相比,求出RQ,如图2所示.
图2 基于慢性毒性计算TCM、TBM、DCAA和TCAA的RQ
图2表明,基于TCM、TBM、DCAA和TCAA慢性毒性数据计算出RQ,除中山市河流中TCM的RQ,其余均小于1.从不同化合物来看,我国地表水中THMs(TCM和TBM)和HAAs(DCAA和TCAA)基于慢性毒性数据计算出的RQ排序依次为TCM、TCAA、DCAA和TBM.从THMs和HAAs的空间分布来看,除常州市河流中TCM的RQ外(RQ= 0.056),其余流域中TCM基于慢性毒性数据计算出的RQ均高于0.1,中山市河流中TCM的RQ最高(RQ=1.12).其次,我国地表水中TCAA的RQ较高,范围为0.002~0.099. TCM基于慢性毒性数据计算出的RQ值高于TBM基于慢性毒性数据计算出的RQ值,TCAA和DCAA基于慢性毒性数据计算出的RQ值呈现相同的规律.综上,TCM对地表水中的水生生物具有一定的生态风险,且对我国地表水中水生生物的繁殖、生长及生物化学及分子生物学的毒性影响高于TBM、TCAA和DCAA.
TCM和TCAA对我国地表水中的水生生物具有一定的慢性毒性生态风险,因而选择JPC进行较高层次的生态风险评估.JPC是以所有生物毒性数据的累积函数和污染物暴露浓度的反累积函数作图,将风险评价的结论通过连续分布曲线的形式表现.联合概率曲线的轴表示不良效应产生的强度,即水生生物受到影响的百分比;轴表示事件发生的概率;联合概率曲线上的每一个点表示在目标水体(评价对象)中,一定百分比的生物受到影响(事件)的概率.联合概率曲线越靠近轴,生物受到影响的可能性越小,则目标水体越安全[63-65].
根据地表水中TCM和TCAA浓度分别与慢性毒性数据建立联合概率曲线(图3).结果表明,我国地表水中TCM对1%、5%和10%的水生生物造成繁殖、生长及其他行为学等慢性毒性影响的概率分别为78.86%、3.6%和0.07%;我国地表水中TCAA对1%和5%的水生生物的繁殖、生长及其他行为学等造成慢性毒性影响的概率分别为20.61%和0.01%.综上所述,我国地表水中TCM浓度对水生生物的风险高于地表水中TCAA浓度对水生生物的风险,TCM对我国地表水中水生生物存在一定的生态风险, TCAA对我国地表水具有潜在生态风险.
图3 TCM和TCAA水生态风险联合概率曲线
不确定性在生态风险评估过程中是不可避免的,无论是低层次的生态风险评估还是较高层次的生态风险评估.水体中THMs和HAAs浓度的实际变化,毒性数据与生态的关联性以及风险表征模型的选择是生态风险评估过程中产生不确定性的主要因素.
首先,THMs和HAAs在地表水中的暴露浓度数据有限,为了更全面精确地了解THMs和HAAs的暴露情况,需要进一步搜集整理并开展全国范围地表水中THMs和HAAs暴露浓度的时空变化数据监测.其次,研究表明THMs和HAAs对水生生物的繁殖、生长等慢性毒性更为敏感,该研究中THMs和HAAs的毒性数据均以致死为测试终点的急性毒性数据为主,不能充分反映THMs和HAAs对水生生物的慢性毒性的影响.若考虑对水环境中THMs和HAAs开展更加全面的毒性评估,则需要更多鱼类、无脊椎动物等水生生物慢性毒性相关试验.此外,由于生物具有地域性的特点,收集的所有毒性数据是否具有代表性仍存在争论[45].Jin等[64]的研究表明当本地物种毒性数据不足时,使用一定的安全系数(AF=2~10)即可将非本土物种的毒性数据纳入风险评估的研究.生态风险评估过程中,数据分析模型的选择影响SSD曲线的构建[66],例如对数正态分布、对数逻辑斯蒂、波尔III模型等.因而,通过数据的随机性、评估过程和数据分析模型的选择所产生的误差,导致风险评估结果具有一定的不确定性.
3.1 通过文献检索和资料收集,我国地表水中TCM、TBM、DCAA和TCAA的浓度范围分别为0~51,0.22~1.46,0.01~2.56和n.d.~12.61μg/L.
3.2 根据RQ的评价结果,TCM基于急性和慢性毒性数据计算得出的RQ值大于1,其余THMs和HAAs的RQ值均小于1.利用JPCs得到TCM和TCAA对1%的水生生物产生慢性毒性影响的概率分别为78.86%和20.61%,TCM对我国地表水中水生生物具有一定的生态风险.
3.3 地表水中TCM和TCAA对水生生物的繁殖、发育等具有较低影响,毒性影响不可忽略,其余化合物对地表水中的水生生物具有潜在的影响.
[1] Regli S, Chen J, Messner M, et al. Estimating potential increased bladder cancer risk due to increased bromide concentrations in sources of disinfected drinking waters [J]. Environmental Science& Technology, 2015,49(22):13094-13102.
[2] Richardson S D, Plewa M J, Wagner E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research [J]. Mutation Research/Reviews in Mutation Research, 2007,636(1/3):178-242.
[3] 钱洪智.不同饮用水源水氯化消毒副产物的特征与风险评价[D]. 杭州:浙江大学, 2013. Qian H Z. Characteristics and risk assessment of DBPs in different chlorination drinking water source [D]. Hangzhou: Zhejiang University, 2013.
[4] Hao R J, Zhang Y, Li Y, et al. Effect of water chemistry on disinfection by-product formation in the complex surface water system [J]. Chemosphere, 2017,172:384-391.
[5] Du Y, Wu Q Y, Hu H Y, et al. Increase of cytotoxicity during wastewater chlorination: Impact factors and surrogates [J]. Journal of Hazardous Materials, 2017,324:681-690.
[6] 梅玉琴,李 谦,刘天洁,等.自贡市乡镇自来水厂氯化消毒副产物调查[J]. 预防医学情报杂志, 2012,28(11):851-854. Mei Y Q, Li Q, Liu T J, et al. Investigation of chlorinated disinfection by products in township waterworks in Zigong [J]. Journal of Preventive Medical Information, 2012,28(11):851-854.
[7] 刘晓琳.饮用水中THMs、HAAs、含氮类和卤代酮类消毒副产物检测识别与风险评估[D]. 上海:复旦大学, 2013. Liu X L.Determination and risk assessment of THMs, HAAs,nitrogen containing DBPs and haloketones in drinking water [D]. Shanghai: FudanUniversity, 2013.
[8] 刘丽颖.南方某地农村集中供水消毒副产物水平研究[D]. 北京:中国疾病预防控制中心, 2012. Liu L Y. Study on disinfection by-product levels in centralized water supplyfrom a southern rural area [D]. Beijing:Chinese Center for Disease Control and Prevention, 2012.
[9] 李肖楠.海河口三卤甲烷分布和生态风险评价[D]. 天津:天津大学, 2013. Li X N. Distribution of trihalomethanes in Haihe river estuary and ecologicalriskassessment [D]. Tianjin: Tianjin University, 2016.
[10] 蔡 靖.石河子市饮用水中消毒副产物的污染水平研究及风险评估 [D]. 石河子:石河子大学, 2018. Cai J. Study on the pollution level and risk assessment of disinfectionbyproducts in drinking water in Shihezi City [D]. Shi Hezi: Shi Hezi University, 2018.
[11] 宋 月,魏麟欢,郭维静,等.大连市饮用水中消毒剂副产物调查[J]. 中国消毒学杂志, 2015,32(5):517-518. Song Y, Wei L H, Guo W J, et al. Investigation of disinfectant by-products in drinking water, Dalian City [J]. Chinese Journal of Disinfection, 2015,32(5):517-518.
[12] 刘祖发,周月英,张骏鹏,等.广州市饮用水中消毒副产物卤乙酸的毒性及其降解研究[J]. 亚热带资源与环境学报, 2015,10(3):1-10. Liu Z F, Zhou Y Y, Zhang J P, et al. Disinfection by-products halo acetic acids of Guangzhou drinking water: toxicity and degradation [J]. Journal of Subtropical Resources and Environment, 2015,10(3):1-10.
[13] 王晓云,李启明,付爱明.福鼎市桐江溪卤乙酸分布特征及潮汐影响分析[J]. 河北工业科技, 2019,36(4):263-270. Wang X Y, Li Q M, Fu A M. Distribution characteristics and tidal effects of halo acetic acids in Tongjiang river, Fuding City [J]. Hebei Journal of Industrial Science and Technological, 2019,36(4):263-270.
[14] Zhao W J, Boyd J M, Qin F, et al. Formation of-Nitrosamines and two new N-containing disinfection by-products from chlorination of water containing diphenylamine [J]. Environmental Science& Technology, 2009,43:8443-8448.
[15] Choi J, Valentine R L. Formation of-Nitroso dimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product [J]. Water Research, 2002,36:817-824.
[16] Gerecke A C, Sedlak D L. Precursors of N-Nitroso dimethylamine in natural waters [J]. Environmental Science& Technology, 2003,37: 1331-1336.
[17] Chen W Y, Yong T M. Influence of nitrogen source on NDMA formation during chlorination of diuron [J]. Water Research, 2009, 43:3047-3056.
[18] Kaydos E H, Soarez J D, Roberrts N L, et al. Haloacid induced alterations in fertility and the sperm biomarker SP22in the rat are additive: validation of an ellsa [J]. Toxicological Sciences, 2004,81:430-442.
[19] Schell J D J. Interactions of halogenated hydrocarbon mixtures in the embryo of the japanese medaka (Oryzias latipes) [D]. New Brunswick: The State University of New Jersey, 1987.
[20] Cherkin A, Catchpool J F. Temperature dependence of anesthesia in golfish [J]. Science, 1964,144:1460-1462.
[21] Slooff W. Detection limits of a biological monitoring system Based on fish respiration [J]. Bulletin of Environmental Contamination and Toxicology, 1979,23(4/5):517-523.
[22] Mattice J S, Tsai S C, Burch M B, et al. Toxicity of trihalomethanes to common carp embryos [J]. Transactions of the American Fisheries Society, 1981,110(2):261-269.
[23] Ward G S, Parrish P R, Rigby R A. Early life stage toxicity tests with a saltwater fish: effects of eight chemicals on survival, growth, and development of sheepshead minnows [J]. Journal of Toxicology and Environmental Health, 1981,8(1/2):225-240.
[24] Buccafusco R J, Ells S J, Leblance G, et al. Acute toxicity of priority pollutants to bluegill (Lepomis macrochirus) [J]. Bulletin of Environmental Contamination and Toxicology, 1981,26(4):446-452.
[25] Heitmuller P T, Hollister T A, Parrish P R. Acute toxicity of 54industrial chemicals to sheepshead minnows (cyprinodon variegatus) [J]. Bulletin of Environmental Contamination and Toxicology, 1981, 27(5):596-604.
[26] Gibson C I, Tone F C, Wilkinson P, et al. Bioaccumulation and depuration of bromoform in five marine species [R]. Richland: Batelle Northwest National Laboratories, 1979.
[27] Fisher D L, Yonkos G, Ziegler E, et al. Acute and chronic toxicity of selected disinfection byproducts to daphnia magna, cyprinodont variegatus, and isochores galbanum [J]. Water Research, 2014,55:233-244.
[28] Knapek R, Lakota S. Biological testing to determine toxic effects of pesticides in water [J]. Tauscher Ditch Demark Redub Ditch Akkad Land Berl, 1974,126:105-109.
[29] Linden E, Bengtsson B E, Sundstrom G, et al. The acute toxicity of 78chemicals and pesticide formulations against two brackish water organisms, the bleak (alburnus) and the harpacticoid Nicotra snipiness [J]. Chemosphere, 1979,8(11/12):843-851.
[30] Jirasek J, Adamek Z, Kepr T. Toxicity of some herbicides for fish [J]. Zivoc Vyroba, 1980,53(11):857-862.
[31] Birge W J, Black J A, Kuehne R A. Effects of organic compounds on amphibian reproduction [R]. Lexington: Research Report No. 121, Water Resources Research Institute, 1980.
[32] Black J A, Birge W J, Ramey B A, et al. The aquatic toxicity of organic compounds to embryo-larval stages of fish and amphibians [R]. Lexington: Research Report No.133, Water Resources Research Institute, 1982.
[33] Byrne T D. The Effects of Four Trihalogenated methanes on the embryonic development of rana pipiens and xenopus laevis [D]. Minnesota: St Cloud State University, 1978.
[34] Fort D J, Stover E L, Rayburn J R, et al. Evaluation of the developmental toxicity of trichloroethylene and detoxification metabolites using xenopus [J]. Teratog Carcinog Mutagen, 1993,13(1):35-45.
[35] Khangarot B S, Das S. Acute toxicity of metals and reference Toxicants to a freshwater ostracod, cypris subglobosa sowerby, 1840 and correlation to EC50values of other test models [J]. Journal of Hazardous Materials, 2009,172(2/3):641-649.
[36] Calleja M C, Persoone G, Geladi P. Comparative acute toxicity of the first 50multicentre evaluation of in vitro cytotoxicity chemicals to aquatic non-vertebrates [J]. Archives of Environmental Contamination and Toxicology, 1994,26(1):69-78.
[37] Horne J D, Oblad B R. Aquatic toxicity studies of six priority pollutants [J].Bulletin of environmental contamination and toxicology, 1983,32(5):586-594.
[38] Leblanc G A. Acute toxicity of priority pollutants to water flea (Daphnia magna) [J]. Bulletin of Environmental Contamination and Toxicology, 1980,24(5):684-691.
[39] Jolley R L, Brungs W A, Jacobs V A, et al. Investigation of the effects of halogenated organic compounds produced in cooling systems and process effluents on aquatic organisms [M]. Ann Arbor: Environmental Impact and Health Effects, 1978:163-173.
[40] Richie J P, Mills B J, Lang C A. The verification of a mammalian toxicant classification using a mosquito screening method [J]. Fundamental and Applied Toxicology, 1984,4(6):1029-1035.
[41] Cowgill U M, Milazzo D P, Landenberger B D. Toxicity of nine benchmark chemicals to speleothems causatum, a marine diatom [J]. Environmental Toxicology and Chemistry, 1989,8(5):451-455.
[42] Erickson S J, Hawkins C E. Effects of halogenated organic Compounds on photosynthesis in estuarine phytoplankton [J]. Bulletin of Environmental Contamination and Toxicology, 1980,24(6):910-915.
[43] Curieux F L, GauthierA L, Erb F, et al. Use of the SOS chromates, the ames-fluctuation test and the new micronucleus test to study the genotoxicity of four trihalomethanes [J]. Mutagenesis, 1995,10(4): 333-341.
[44] Hanson M L, Solomon K R. Halo acetic acids in the aquatic environment. part I: Macrophyte Toxicity [J]. Environmental Pollution, 2004,130(3):371-383.
[45] 雷炳莉,黄圣彪,王子健.生态风险评价理论和方法[J]. 化学进展, 2009,21(2/3):350-358. Lei B L, Huang S B, Wang Z J. Theories and methods of ecological risk assessment [J]. Progress in Chemistry, 2009,21(2/3):350-357.
[46] Liu N, Jin X W , Wu F C, et al. Ecological risk assessment of fifty Pharmaceuticals and Personal Care Products (PPCPs) in Chinese surface waters: A proposed multiple-level system [J]. Environment International, 2020,136:105454.
[47] Liu N, Wang Y Y, Jin X W, et al. Probabilistic assessment of risks of diethylhexyl phthalate (DEHP) in surface waters of China on reproduction of fish [J]. Environmental Pollution, 2016,213:482-488.
[48] 王冬梅.城市污水处理过程中消毒副产物HAAs及其前体物的研究[D]. 西安:西安建筑科技大学, 2013:7-11. Wang D M. Research of HAAs formation and its precursors in municipalsewage treatment process [D]. Xi’an:Xi’an University of Architecture and Technology, 2103.
[49] Jin X W, Wang Z, Giesy J, et al. Do water quality criteria based on nonnative species provide appropriate protection for native species [J]. Environmental Toxicology and Chemistry, 2015,34(8):1793-1798.
[50] 刘 娜,金小伟,王业耀,等.生态毒理数据筛查与评价准则研究[J]. 生态毒理学报, 2016,11(3):1-10. Liu N, Jin X W, Wang Y Y, et al. Review of criteria for screening and evaluating ecotoxicity data [J]. Asian Journal of Ecotoxicology, 2016, 11(3):1-10.
[51] 金小伟,雷炳莉,许宜平,等.水生态基准方法学概述及建立我国水生态基准的探讨[J]. 生态毒理学报, 2009,4(5):609-616. Jin X W, Lei B L, Xu Y P, et al. Methodologies for deriving Water quality criteria to protect aquatic life (ALC) and proposal for development of ALC in China: a review [J]. Asian Journal of Ecotoxicology, 2009,4(5):609-616.
[52] 梁 霞,周军英,李建宏,等.物种敏感度分布法(SSD)在农药水质基准推导中的应用[J]. 生态与农村环境学报, 2015,31(3):398-405. Liang X, Zhou J Y, Li J H, et al. Application of species sensitivity distribution (SSD) to derivation of water quality criteria for pesticides [J]. Journal of Ecology and Rural Environment, 2015,31(3):398-405.
[53] Zhou S B, Paolo C D, Hollert H, et al. Optimization of screening-level risk assessment and priority selection of emerging pollutants – The case of pharmaceuticals in European surface waters [J]. Environment International, 2019,128:1-10.
[54] Loekle D. The Effects of chlorinated hydrocarbons on carassius auratus (Goldfish) [D]. Binghamton:State University of New York, 1987.
[55] Bringmann G, Kuhn R. Testing of substances for their toxicity threshold: model organisms microcystis (Diplocystis) aeruginosa and scenedesmus quadricauda [J]. Int Ver Theor Angew Limnol, 1978,21: 275-284.
[56] Zhu Y H, Jiang G J. Combined toxic effects of typical mutagens - dimethylphenol, tribromethane and dinitroaniline, on unicellular Green Algae dunaliella salina [J]. Journal of Food Safety and Food Quality, 2009,29(1):1-13.
[57] Bantle J A, Finch R A, Fort D J, et al. FETAX validation using 12compounds with and without an exogenous metabolic activation system [J]. Journal of Applied Toxicology, 1999,19(6):447-472.
[58] Felicio A A, Crago J, Maryoung L A, et al. Effects of alkylphenols on the biotransformation of diuron and enzymes involved in the synthesis and clearance of sex steroids in juvenile male tilapia (Oreochromus mossambica) [J]. Aquatic Toxicology, 2016,180:345-352.
[59] Applegate V C, Howell J H, Smith M A, et al. Toxicity of 4346chemicals to larval lampreys and fishes [J]. Specific Science Reproduction Wild, 1957,207:157.
[60] Roberts J F, Price O R, Van Egmond R. Toxicity of halo acetic acids to freshwater algae [J]. Ecotoxicology and Environmental Safety, 2010, 73(1):56-61.
[61] Calabrese E J, Chamberlain C C, Coler R, et al. The effects of trichloroacetic acid, a widespread product of chlorine disinfection, on the dragonfly nymph respiration [J]. Environmental Health Science, 1987,22(4):343-35.
[62] Correa M, Calabrese E J, Coler R A. Effects of trichloroacetic acid, a new non-Tamiment found from chlorinating water with 0rganic Material, on dragonfly nymphs [J]. Bulletin of Environmental Contamination and Toxicology, 1985,34(2):271-274.
[63] Jin X W, Wang Y Y, Wang Z J, et al. Eclogical risk of nonylphenol in china surface waters based on reproductive fitness [J]. Environmental Science& Technology, 2014,48:1256-1262.
[64] Jin X W, Zha J M, Xu Y P, et al. Derivation of aquatic predicted no-effect concentration (PNEC) for 2,4-dichlorophenol: comparing native species data with non-native species data [J]. Chemosphere, 2011,84(10):1506-1511.
[65] Solomon K, Giesy J, Jones P. Probabilistic risk assessment of agrochemicals in the environment [J]. Crop Protection, 2000,19(8): 649-655.
[66] Wang Y Y, Zhang L S, Meng F S, et al. Improvement on species sensitivity distribution methods for deriving site-specific water quality criteria [J]. Environmental Science and Pollution Research, 2015, 22(7):5271-5282.
Occurrence and ecological risk of typical DBPs in Chinese surface water.
LUO Ying1,2,3, LIU Na3,SUN Shan-wei1, HOU Song1, GUO Chang-sheng1,3*, XU Jian1,3
(1.State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;2.College of Water Sciences, Beijing Normal University, Beijing 100875, China;3.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)., 2021,41(4):1806~1814
Trihalomethanes (THMs) and haloacetic acids (HAAs), the disinfection by-products (DBPs) in surface water, have given rise to major concern in recent years. In this study, exposure and ecotoxicity data of 4 DBPs (trichloromethane, tribromomethane, dichloroacetic acid and trichloroacetic acid) were collected from literature published in China and abroad, and a multiple-level environmental risk assessment was performed. THMs and HAAs were collected from previous studies, with concentrations range from n.d. to 51μg/L. Predicted no effect concentration (PNEC) for trichloromethane (TCM), tribromomethane (TBM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) was based on acute and chronic toxicity data. The PNEC of TCM, TBM, DCAA and TCAA derived from acute and chronic toxicity data which based on endpoints of survival, reproduction and development, with concentrations range from 0mg/L to 44.88mg/L, 0.006mg/L to 0.956mg/L, respectively. Besides, risk quotient (RQ) and probabilistic ecological risk assessments (PERA) were calculated by exposure data, and PNEC of acute and chronic toxicity data. The results showed that RQ were less than 1. TCM of probabilities of exceeding NOEC based on chronic toxicity for 1% of the species were 78.86%. And TCAA of probabilities of exceeding NOEC based on chronic toxicity for 1% of the species were 20.61%. Based on these results, the ecological risks of TCM and TCAA in Chinese surface water were low.
disinfection by-products;surface water;ecological risk assessment
X171.5;X824
A
1000-6923(2021)04-1806-09
罗 莹(1992-),女,新疆奎屯人,北京师范大学博士研究生,主要研究方向为生态毒理及风险评价.发表论文4篇.
2020-08-04
中央级公益性科研院所基本科研业务专项(2020-JY-003; 2019YSKY-022)
* 责任作者, 副研究员, guocs@craes.org.cn