高观点指导下的中学数学教学

2021-04-17 20:20郑毓信南京大学哲学系210093
中学数学月刊 2021年5期
关键词:思维数学教学

郑毓信 (南京大学哲学系 210093)

1 “小数”的启示

何谓“高观点指导下的数学教学”(包括小学与中学阶段)?由于相对于中学而言,这一论题应当说在小学获得了更多关注,因此,我们就可通过对于后一方面工作的综合考察引出关于如何做好“高观点指导下的中学数学教学”的直接启示.主要包括这样几点:

第一,“高观点指导下的数学教学”不应仅仅被理解成将更高层面的一些内容“下放”到较低层次,如将方程、负数等原先属于中学的内容提前到小学进行教学.当然,我们不应完全排斥后一方面的工作,而应进行积极、慎重的探索与试点,但这又不应被看成“高观点指导下的数学教学”的主要涵义,因为,后者应当集中于观念的问题,也即相应的指导思想,包括后者对于具体内容教学的指导与渗透.

第二,这是小学层面在论及数学教育改革时经常提到的一个话题,即是“代数思维的渗透”,后者并被看成为小学教师更好从事算术内容的教学指明了努力方向,特别是,我们应当切实做好由“程序性(操作性)观念”向“结构性(关系性)观念”的转变,这也就是指,教学中我们不应唯一关注如何能够通过正确的计算去求得所需的结果,而应更加注重数量关系、特别是等量关系的分析.以下就是这方面的一段相关论述:

小学低年级的教学中需要特别强调对等式的理解……在小学一年级时经常会让学生口算,比如3+4,这里值得注意的是我们要强调3+4“等于”7,而不要说“得到”7.因为这里的等号有两个层面的意义:一是计算结果,就是我们经常说的“得到”;二是表示“相等关系”.我们在学生刚接触等号时就要帮助他们建立起对等号的这种相等关系的理解.因此,有时候让一年级的学生接触 7=3+4这样的算式是有必要的,因为在这样的算式中,你就没法将等号说成“得到”.当然,这里也要尝试让学生理解7同样也等于4+3,3+4=4+3……在这之后,可以让学生尝试看两边都不止一个数的等式,如17+29= 16+30……此外,还可以给学生利用相等关系判断正误的式子,比如,199+59=200+58,148+68=149+70-2,149+68=150+70-3.[1]

第三,尽管强调“代数思维的渗透”有一定道理,但这又应被看成“高观点指导下的数学教学”的一个实例:尽管由此我们也可获得关于后一方面工作的重要启示,但仍然不应以特殊代替一般,这也就是指,即使就小学数学教学而言,我们也不应将“代数思维的渗透”看成“高观点指导下的数学教学”的全部涵义,而应从更高层面做出进一步的研究.

上述分析对于中学数学教学当然也是成立的,包括我们应当针对中学教学的具体内容做出相关研究,如初中数学教学是否应当特别强调“变量思想的渗透”等.

第四,与各种具体数学思想的分析相对照,所谓“高观点指导下的数学教学”应当更加重视围绕数学教育的基本目标进行分析思考,也即应当以这一方面的基本认识自觉地指导日常的教学工作.以下就是这方面工作特别重要的两个环节:

(1)关于数学教育基本目标的认识应当切实可行,而不应停留于“大而空”的论述.例如,关于“深度学习”的以下论述就可被看成后一方面的一个典型例子:“深度学习‘深’在哪里?首先‘深’在人的心灵里,‘深’在人的精神境界上,还‘深’在系统结构中,‘深’在教学规律中.”[2]

更一般地说,我们既应明确肯定一般性教育理论的指导作用,但又应当从专业的角度做出进一步的分析思考.例如,这显然也是我们面对“努力提升学生的核心素养”这一总体性教育思想应当采取的立场,特别是,我们不应满足于能够正确地去复述“核心素养”的“3个方面、6大要素、18个基本要点”,并能通过逐条对照去发现每一堂课的不足之处与努力方向;恰恰相反,作为数学教育工作者,我们应当进一步去思考数学作为一门基础学科对于提升个人与社会的整体性素养究竟有哪些特别重要、甚至是不可取代的作用,并能通过“理论的实践性解读”很好落实于自己的每一天工作、每一堂课!

以下就是笔者在这一方面的具体思考:数学教育的主要目标应是促进学生思维的发展,特别是,能帮助学生逐步学会更清晰、更深入、更全面、更合理地进行思考,并能由理性思维逐步走向理性精神.[3]进而,这又应被看成“高观点指导下的数学教学”的主要涵义,即我们应当通过自己的教学很好落实上述的主张,而不应满足于数学基础知识与基本技能的教学.简言之,数学教学应当努力实现的这样一个境界,即是“用深刻的思想启迪学生”.

在此我们并应对“帮助学生学会思维”与“帮助学生学会数学地思维”做出明确的区分.相信读者由以下分析即可清楚地认识到这样一点,包括我们为什么不应将所谓的“三会”(会用数学的眼光观察世界,用数学的思维思考世界,用数学的语言表达世界[4])看成数学教育的主要目标:大多数学生将来未必会从事数学或其他与数学直接相关的工作,“数学思维”也不是唯一合理的思维形式(对于“数学语言”和“数学眼光”我们显然也可引出同样的结论),从而,与后一主张相对照,我们就应更加注重著名数学家波利亚的以下论述:“一个教师,他若要同样地去教他所有的学生——未来用数学和不用数学的人,那么他在教解题时应当教三分之一的数学和三分之二的常识.对学生灌注有益的思维习惯和常识也许不是一件太容易的事,一个数学教师假如他在这方面取得了成绩,那么他就真正为他的学生们(无论他们以后是做什么工作的)做了好事.能为那些70%的在以后生活中不用科技数学的学生做好事当然是一件最有意义的事情.”[5]

进而,依据上面分析相信读者也可更好理解笔者为什么又要提出努力做好“数学深度教学”这样一个主张,后者即是指,数学教学必须超越具体知识和技能深入到思维的层面,由具体的数学思维方法和策略过渡到一般性的思维策略与思维品质的提升,并应帮助学生由在教师(或书本)指导下进行学习逐步转变为学会学习,包括善于通过同学之间的合作与互动进行学习,从而真正成为学习的主人.简言之,这就是对于这里所说的“高观点”的进一步解读.[6]

(2)尽管相关论述提到了三个“深化”或“提升”,但我们并不应将其中的对立双方,如“具体知识和技能的学习”与“思维的学习”等,看成绝对地相互排斥、互不兼容的,我们更不应脱离数学知识、技能与数学思维的学习去从事一般性思维策略的教学和努力提升学生的思维品质,而应更加注重后者的渗透与指导,从而使我们的教学达到更大的深度.再者,由于中小学教学内容不同,从而在这方面也应有不同的要求,特别是,我们应根据学生的认知水平很好地去把握相应的“度”,而不应好高骛远,脱离实际;但就总体而言,我们又应始终坚持促进学生的思维发展这样一个总方向,特别是,努力做好以下一些方面的工作:联系的观点与思维的深刻性,变化的思想与思维的灵活性,总结、反思和再认识与思维的自觉性.

第五,我们应清楚地看到切实做好“高观点指导下的数学教学”的现实意义:当前的中学数学教学在很大程度上被看成完全集中于“习题教学”,现实中更可看到“题海战术”泛滥这样一个现象;但是,即使我们暂时不去论及如何才能很好地落实“立德树人”这一基本目标,仅仅依靠相关做法也难真正提升学生解决问题的能力,而只是使我们的学生和教师始终处于巨大的压力之下.因为,正如人们普遍地认识到,学生解题过程中思维策略的产生往往具有以下几个特征[7]:1)非逻辑性,2)快速性,3)个体性,4)或然性,从而就与教学工作的方法论特征与规范性质构成了直接冲突.但在笔者看来,后者恰又更清楚地表明了这样一点,即相对于各个具体的解题策略或数学思维方法的学习而言,我们应当更加重视一般性思维策略与学生思维品质的提升.另外,尽管解题策略的发现、包括结果的猜想等常常表现为顿悟,也就是“快思”的结果,但这恰又是数学教育应当发挥的一个重要作用,即帮助学生学会“长时间的思考”,因为,只有经过事后的长时间思考相关发现才能得到详细的展开和清楚的表述,包括必要的检验、理解与改进;更一般地说,我们又应特别重视“总结、反思与再认识”的工作,也即应当将此看成“长时间思考”的主要内容.

但是,上述目标是否真的可行?以下就以初一数学教学为例对此做出具体分析.希望读者也能联系自己的教学做出进一步的分析,这并可被看成先前所提到的“理论的实践性解读”这一思想的具体运用.

2 用案例说话:聚焦初一数学教学

除去具体内容的教学以外,“习题教学”显然也是数学教学十分重要的一个方面,更与“变化的思想与思维的灵活性”密切相关.由于笔者对此已专门撰文进行了分析[8-10],在此就不再赘述.

(1)如众所知,研究对象由“数”扩展到了由数和字母组成的“式”是中小学数学的一个明显区别,当然,对此我们不应简单地理解成“量”的增加,因为,这也意味着达到了更高的抽象层次,并为学生逐步学会用“联系的观点”进行分析思考、从而达到更大的认识深度提供了很好的切入点,当然,以后者为指导去从事教学也有益于学生更好地掌握相关的知识和技能.

具体地说,尽管我们在此关注的主要是“式”的运算,但又应当将此与学生已学过的数的运算联系起来,更好地发挥“类比”这一方法在认识活动中的重要作用,特别是,我们应以学生已学过的数的知识为背景帮助他们很好地建立关于新的学习内容的整体性认识,从而就可在学习中获得更大的自觉性.例如,“式的运算”的学习也是按照由“加减”到“乘除”这样一个顺序逐步展开的;我们还可通过“乘法公式”“因式分解”与小学所学的“速算法”和“数的分解”的直接类比帮助学生更好掌握相关的内容.当然,除去所说的“共同点”以外,我们也应十分重视它们的不同点,即如“同类项”概念的引入等.另外,尽管存在直接的类比关系,但由于“乘法公式”与“因式分解”的学习更加集中,从而我们在教学中也就不应唯一关注计算技能的掌握,而应更加突出这样一个思想,即我们应当善于根据需要与情境对“式”做出适当变形,这可以看成“变化的思想与思维的灵活性”的具体应用.

当然,从更高的层面看,这一内容的学习也有助于学生很好认识成功应用“类比联想”的这样一个关键:“求同存异”.再者,由于学生在小学阶段往往未能很好建立起关于“数学结构”的整体性认识,特别是清楚地认识它的丰富性和层次性,因此,我们在教学中就应首先引领学生对相关内容做出回顾和“再认识”,从而很好地实现这样一个目标:“以发展代替重复,以深刻达成简约”.(1)也正因此,对于相关内容的教学我们就不应认为只是涉及到了一些具体技能、特别是有很多学生早已通过各种渠道进行了学习就掉以轻心,即如教学中只是一带而过,而没有注意分析学生是否已经达到了真正的理解,更未能认真地思考如何能够通过自己的教学使学生有新的提高.例如,通过“乘法公式”的学习我们即可对学生是否已经达到了更高的抽象层次做出必要的检验;另外,教学中我们显然也应注意避免这样一种倾向,即仅仅从纯形式的角度去理解相应的“变化”,如“计算”与“因式分解”,但却未能很好地指明我们究竟为什么要做出这样的变化,包括我们又如何能够通过相关内容的教学提升学生的思维品质.

当然,“式”的引入也更清楚地表明了数学结构的层次性质——从认识的角度看,这意味着达到了更高的抽象层次,包括这样一个更深层次的认识:我们应将“优化”看成数学学习的本质.

(2)如果说“由少到多,由简单到复杂”即可被看成数学发展的基本形式,那么,数学认识的发展就可被归结为“化多为少,化复杂而简单”,从而也就更清楚地表明了这样一点:数学学习主要是一个不断优化的过程,而不仅仅是指知识和技能以及“数学经验”的简单积累,尽管后者确又可以被看成为认识的发展和深化提供了现实的可能性和必要的途径.

特殊地,我们显然也可从上述角度更好认识学习方程的意义,包括通过这一内容的学习帮助学生很好认识“优化”对于数学学习的特殊重要性,从而逐步地学会学习,并能真正成为学习的主人.

进而,从上述角度我们显然也可更好理解笔者的这样一个看法:如果说小学阶段教师不允许学生用由各种非正规渠道提前学到的方程方法去求解算术应用题尚有一定道理,因为,这时学生对于方程的掌握往往只是一种机械的运用,而未能达到真正的理解,而且,算术应用题的学习对于学生学会思维也有重要作用;那么,在初中学习方程时再做出类似的规定,也即只允许学生用方程方法、而不准用算术方法去求解问题,就可说完全没有道理.因为,解题教学最重要的目标就是努力提升学生解决问题的能力,而后者主要地又是指我们能否综合地、灵活地应用各种方法去解决问题,而不是指所使用的方法是否符合某种外部的硬性规定——也正因此,上述规定事实上就只能被看成解题活动“程式化和机械化”的一种表现.[11]

与此相对照,我们应当更加重视如何能够帮助学生很好认识方程方法相对于算术方法的优点,又由于优化的实现主要取决于我们能否使之真正成为学生的自觉选择,而非基于外部压力的被动服从.因此,我们在教学中也就应当特别重视比较与反思的工作,这也就是指,教学中我们不仅不应禁止学生用算术方法求解问题,还应积极鼓励他们用多种不同的方法去解决问题,特别是,更应有意识地放慢节奏让学生有更多时间进行比较和体会,包括认真的反思,从而就不仅可以顺利地实现相关的过渡或优化,也可通过这一过程很好地体会到养成长时间思考的习惯和能力、特别是“总结、反思与再认识”的重要性.

最后,我们还可通过方程的教学帮助学生具体地去体会数学发展的基本形式和途径,后者即是指,尽管相关内容的学习有一定的时间差,但在学生已经掌握了一元一次方程的相关知识以后,我们即可引导他们对将来的学习做出“预测”,也即研究对象“由一元到多元”“由一次到高次”“由方程到不等式”等发展的合理性,包括这样一个重要的认识:数学认识的发展主要表现为“化多为少,化复杂为简单”,我们并应善于通过类比联想、通过化归去实现上述的目标.

(3)尽管上述分析集中于“式的运算”与“方程”的教学,我们显然也可从同一角度对初一数学的其他内容做出分析,包括它们各自又有什么特殊之处.

例如,除去“数学结构”的丰富性和层次性以外,负数的引入显然也有助于我们更好地认识数学系统的开放性和发展性,特别是,现实需要并非促进数学发展的唯一因素,在很大程度上也是由数学的内在因素决定的,或者说,就是表现出了很强的相对独立性.因为,这正是这方面的一个基本事实:“负数不是测量出来的.凡是能够量出来的都是正数.”进而,由以下论述我们即可更好地认识教学中突出这样一点的重要性:“负数是由具体数学向形式数学的第一次转折.要完全掌握这种转折中出现的问题,需要有高度的抽象能力.”(克莱因语)“我认为超越直观而运用推理方法的首先是负数.”(弗赖登塔尔语)

另外,“幂的运算”的学习显然也为我们更好理解“化多为少,化复杂为简单”这样一个思想提供了重要的契机,因为,由高级运算(乘方、乘除)向较低层次运算(乘、加减)的转变正是“幂的运算”的明显特点,从而,我们也就可以以此为背景做出进一步的思考,即我们能否借助“幂的运算”实现运算的简化——如众所知,从历史的角度看,正是后一方面思考直接导致了“对数计算法”的创建,尽管后者的重要性由于计算机的发明已不复存在,但仍可被看成通过适当变化解决问题的又一范例.

再则,就几何内容的教学而言,我们则应突出这样一个思想:“数学家有这样的倾向,一旦依赖逻辑的联系能取得更快的进展,他就置实际于不顾.”[12]我们更应通过自己的教学帮助学生很好理解采取这一做法的优越性,也即我们应当按照“由简单到复杂”“由一维到高维”这样一个顺序、而不是日常的认识顺序去从事相关的研究,包括逐步形成这样一个更加重要的认识:数学学习的主要功能就是有助于人们思维方式与行为方式的改进.

还应强调的是,正如波利亚的上述引言所已表明的,我们不应将“逻辑思维”“数学思维”与“常识(和有益的思维习惯)”绝对地对立起来,而应清楚地看到它们之间的同一性;当然,我们在此所应追求的不是“常识”的简单回归,而是其在更高层面的重构.(2)在笔者看来,我们也可从后一角度去理解弗赖登塔尔的这样一个论述:“数学的本质是人们的常识.”[13]

(4)通过上述途径我们显然也可帮助学生很好适应由“初等数学思维”向“高层次数学思维”的过渡,而不至于因为中小学数学教学在这方面有不同要求而出现一时无法适应中学数学学习的情况.

在此还可特别提及笔者针对小学数学教学提出的这样两个“大道理”:1)小学关于“数的认识与运算”的教学不仅应当突出“比较”这一核心概念,从而帮助学生很好掌握“大小”“倍数”“分数”“比”等概念,也应帮助学生逐步建立关于“数学结构”的整体性认识,特别是清楚地认识它的丰富性与层次性、开放性与统一性等,并能真正做好“化多为少”“化复杂为简单”,包括更好认识数学与现实世界之间的关系.2)小学几何教学不仅应当突出“度量”这一核心概念,很好发挥直观认知的作用,也应努力实现对于“度量几何”与“直观几何”的必要超越,即应对图形的特征性质及其相互关系的逻辑分析予以足够的重视.显然,如果小学数学能够按照这样的思想去进行教学,传统上中小学数学教学之间的巨大间距就将不复存在.显然,基于同样的理由,中学(特殊地,初中)数学教师也应认真地去思考什么是中学(初中)数学教学的“大道理”,从而为学生将来的数学学习做好必要的准备.

(5)我们还可从同一角度对其他一些密切相关的问题做出自己的分析,如教学中为什么应给学生更多的表述机会,包括积极提倡“合作学习”这样一种学习方式.因为,这些都十分有益于学生的深入思考,如表述前主体显然必须对自己的想法做出梳理、评价与改进,仔细倾听别人的想法也十分有助于学生通过比较、反思与再认识对自己的已有想法做出改进,等等.当然,教师也应在这些方面给学生必要的指导,而不只是停留于“大声地说、仔细地听”这样的一般性要求.

再者,就当前而言,这应当说又是特别重要的一个认识:数学教育的主要任务应是帮助学生学会思维、乐于思维,而不是学会解题,我们更不应唯一集中于如何能够通过大量练习、机械记忆和简单模仿使学生在各类考试中取得较好成绩.毋宁说,即使在这一方面我们也应通过更高层面的分析切实做到“少而精”,包括通过“习题教学”的改进更有效地促进学生思维的发展,从而自然也就能够取得更好的成绩.

最后,尽管我们在此是以初一数学教学作为直接对象进行分析的,但相关结论显然具有超出这一范围的普遍意义,后者即是指,无论就小学、初中或高中的数学教学,或是课堂教学和习题教学而言,我们都应以“促进学生思维的发展”作为主要的指导思想,并以“深度教学”作为改进数学教学的主要方向.笔者在这方面有这样一个看法:只有在上述方向做出持续努力,也即很好地落实不同阶段数学教学的同一性与连续性,我们才能对于“努力提升学生的核心素养”这一教育的总体性目标做出自己的应有贡献,并切实防止与纠正因深深陷入“应试教育”而无法自拔这样一个巨大的危险.

愿我们大家都能在上述方向做出切实的努力!

猜你喜欢
思维数学教学
思维跳跳糖
思维跳跳糖
思维跳跳糖
思维跳跳糖
微课让高中数学教学更高效
“自我诊断表”在高中数学教学中的应用
对外汉语教学中“想”和“要”的比较
我为什么怕数学
数学到底有什么用?
跨越式跳高的教学绝招