魏玉丽, 王利萍, 代佳华
(北京建筑大学 理学院,北京 100044)
Kazhdan-Lusztig多项式的首项系数是Kazhdan-Lusztig理论中的核心研究对象[1],这些系数对研究该理论起到了至关重要的作用。为了计算一些最低双边胞腔上的Kazhdan-Lusztig多项式的首项系数,需要知道李代数中不可约模的张量积重数;而张量积中不可约模的重数在李代数理论中也是一个重要的问题。许超[2]给出了A2的不可约模的张量积分解的一个计算方法。于桂海等[3]给出了特征数大于0的代数闭域上C2型单连通半单代数群,限制支配权所对应的不可约模的张量积分解。对于A型李代数的张量积分解,理论上有Young图法、Klymik公式、Pieris公式。
W0={e,s1,s2,s3,s1s3,s2s1,s1s2,s2s3,s3s2,s1s3s2,
s1s2s3,s1s2s1,s2s1s3,s2s3s2,s3s2s1,s1s3s2s1,
s1s3s2s3,s1s2s3s1,s2s1s3s2,s2s3s2s1,s2s1s3s2s1,
s1s3s2s1s3,s1s2s3s1s2,s2s1s3s2s1s3}
1)s0ω=ωs1,s1ω=ωs2,s2ω=ωs3,s3ω=ωs0。
2)s0ω2=ω2s2,s1ω2=ω2s3,s2ω2=ω2s0,s3ω2=ω2s1。
3)s0ω3=ω3s3,s3ω3=ω3s2,s2ω3=ω3s1,s1ω3=ω3s0。
并且有Λ=x1+x2+x3,Λ+=x1+x2+x3,Λr=α1+α2+α3。
设L=sl(4,F), 为上A3型李代数。设V(λ)为首权是λ的不可约最高权L-模,V(λ)的权格为∏(λ),且L的基本支配权为x1、x2、x3。如果μ∈Λ,定义μ在V(λ)(λ∈Λ+)内的重数为mλ(μ)=dimV(λ)μ[5]。
引理2[5]如果λ∈Λ+,则不可约L-模V=V(λ)是有限维的,且权集合∏(λ)被W0所置换,使得对于σ∈W0,有dimVμ=dimVσμ。
引理3[5](Freudenthal公式)设V=V(λ)是首权为λ(λ∈Λ+)的不可约L-模,如果μ∈Λ,则μ在V内的重数m(μ)可从如下的递推得到:
[(λ+δ,λ+δ)-(μ+δ,μ+δ)]m(μ)=
(1)
计算m(μ)分三步:第一步确定集合D={λ,比λ低的支配权};第二步计算和D中元素共轭的元素;第三步将前两步的所有元素按照一定水平进行排列。然后根据引理2~3计算出m(μ)。
引理4[5]使得V(λ)可能出现在V(λ′)⊗V(λ″)的加项中的λ∈Λ+,只能形如μ+λ″,μ∈∏(λ′)。当这样的μ+λ″都是支配权时,V(μ+λ″)出现在张量积内,且重数为mλ′(μ)。
首先定义S(λ)(λ∈Λ+)为W0中的元素作用在λ上所得到的元素的集合,即为和λ共轭的元素的集合,同时定义H={x1,x2,x3,2x1,2x2,2x3,x1+x3,x2+x3,x1+x2}。对于λ∈H有:
S(x1)={x1,-x3,x3-x2,x2-x1}
S(x2)={x2,x1-x2+x3,x3-x1,x1-x3,
x2-x1-x3,-x2}
S(x3)={x3,-x1,x2-x3,x1-x2}
再利用编程可得:
S(2x1)={2x1,-2x3,2(x3-x2),2(x2-x1)}
S(2x2)={2x2,-2x2,2(x1-x2+x3),
2(x3-x1),2(x1-x3),2(x2-x1-x3)}
S(2x3)={2x3,-2x1,2(x2-x3),2(x1-x2)}
S(x1+x2)={2x2-x1,2x1-x2+x3,x1+x2,
x2+x3-2x1,x1-2x2+2x3,2x1-x3,
2x2-2x1-x3,2x3-x1-x2,x1-2x3,
x2-x1-2x3,x3-2x2,-x2-x3}
S(x1+x3)={x2-x1+x3,x1+x3,x1+x2-x3,
2x2-2x1-x3,2x3-x2,2x1-x2,
x2-2x1,x1+x3-2x2,x2-2x3,x3-x1-x2,
x1-x2-x3,-x1-x3}
S(x2+x3)={x2+x3,x1-x2+2x3,2x2-x3,
2x3-x1,2x1-2x2+x3,x1+x2-2x3,
2x2-x1-2x3,x3-2x1,2x1-x2-x3,
x2-2x1-x3,x1-2x2,-x1-x2}
接下来计算上述λ对应的∏(λ),∏(λ)中含有λ、比λ低的支配权,以及它们在W0下共轭的元素:
∏(x1)={x1,-x3,x3-x2,x2-x1}
∏(x2)={x2,x1-x2+x3,x3-x1,
x1-x3,x2-x1-x3,-x2}
∏(x3)={x3,-x1,x2-x3,x1-x2}
∏(2x1)={2x1,-2x3,2(x3-x2),2(x2-x1),x2,
x1-x2+x3,x3-x1,x1-x3,x2-x1-x3,-x2}
∏(2x2)={2x2,-2x2,2(x1-x2+x3),
2(x3-x1),2(x1-x3),2(x2-x1-x3),
x2-x1+x3,x1+x3,x1+x2-x3,
2x2-2x1-x3,2x3-x2,2x1-x2,
x2-2x1,x1+x3-2x2,x2-2x3,
x3-x1-x2,x1-x2-x3,-x1-x3,0}
∏(2x3)={2x3,-2x1,2(x2-x3),2(x1-x2),
x1-x2+x3,x3-x1,x1-x3,x2-x1-x3,-x2}
∏(x1+x3)={x2-x1+x3,x1+x3,
x1+x2-x3,2x2-2x1-x3,2x3-x2,2x1-x2,
x2-2x1,x1+x3-2x2,x2-2x3,x3-x1-x2,
x1-x2-x3,-x1-x3,0}
∏(x1+x2)={2x2-x1,2x1-x2+x3,
x1+x2,x2+x3-2x1,x1-2x2+2x3,
2x1-x3,2x2-2x1-x3,2x3-x1-x2,
x1-2x3,x2-x1-2x3,x3-2x2,
-x2-x3,x3,-x1,x2-x3,x1-x2}
∏(x2+x3)={x2+x3,x1-x2+2x3,
2x2-x3,2x3-x1,2x1-2x2+x3,x1+x2-2x3,
2x2-x1-2x3,x3-2x1,2x1-x2-x3,x2-2x1-x3,
x1-2x2,-x1-x2,x1,-x3,x3-x2,x2-x1}
命题1设V=V(λ)是首权为λ的不可约L-模,λ∈{x1,x2,x3,2x1,2x3}。如果μ∈∏(λ), 则μ在V内的重数m(μ)=1。
命题2设V=V(2x2)是首权为2x2的不可约L-模,如果μ为0权时,则m(μ)=2。如果μ不是0权且μ∈∏(2x2), 则μ在V内的重数m(μ)=1。
命题3设V=V(x1+x3)是首权为x1+x3的不可约L-模,如果μ为0权时,则m(μ)=3。如果μ不是0权且μ∈∏(x1+x3), 则μ在V内的重数m(μ)=1。
命题4设V=V(x1+x2)是首权为x1+x2的不可约L-模,如果μ∈{x3,x2-x3,x1-x2,-x1}时,则m(μ)=2。否则,m(μ)=1。
命题5设V=V(x2+x3)是首权为x2+x3的不可约L-模,如果μ∈{x1,-x2+x3,-x1+x2,-x3}时,则m(μ)=2。否则,m(μ)=1。
定理1根据引理4,得到以下结论:
1)当λ′∈{x1,x2,x3,2x1,2x3}时,对V(λ′)⊗V(λ″)进行分解之后各项的重数皆为1。
2)当λ′=2x2时,V(λ″)对应的模重数为2,其余为1。
3)当λ′=x1+x3时,V(λ″)对应的模重数为3,其余为1。
4)当λ′=x1+x2时,V(λ″+x3),V(λ″-x1),V(λ″+x2-x3),V(λ″+x1-x2)对应的模重数为2,其余为1。
5)当λ′=x2+x3时,V(λ″+x1),V(λ″-x3),V(λ″+x3-x2),V(λ″+x2-x1)对应的模重数为2,其余为1。
V(x1)⊗V(x1)=V(2x1)⊕V(x2);
V(x1)⊗V(x2)=V(x1+x2)⊕V(x3);
V(x1)⊗V(x3)=V(x1+x3)⊕V(0);
V(x1)⊗V(2x1)=V(3x1)⊕V(x1+x2);
V(x1)⊗V(2x2)=V(2x2+x1)⊕V(x2+x3);
V(x1)⊗V(2x3)=V(2x3+x1)⊕V(x3);
V(x1)⊗V(x1+x3)=
V(2x1+x3)⊕V(x1)⊕V(x2+x3);
V(x1)⊗V(x1+x2)=
V(2x1+x2)⊕V(2x2)⊕V(x1+x3);
V(x1)⊗V(x3+x2)=
V(x2)⊕V(2x3)⊕V(x1+x2+x3);
V(x1)⊗V(x1+x2+x3)=V(2x1+x2+x3)⊕
V(2x3+x1)⊕V(x1+x2)⊕V(2x2+x3);
V(x2)⊗V(x1)=V(x1+x2)⊕V(x3);
V(x2)⊗V(x2)=V(2x2)⊕V(x1+x3)⊕V(0);
V(x2)⊗V(x3)=V(x3+x2)⊕V(x1);
V(x2)⊗V(2x1)=V(2x1+x2)⊕V(x1+x3);
V(x2)⊗V(2x2)=V(3x2)⊕V(x1+x2+x3)⊕V(x2);
V(x2)⊗V(2x3)=V(2x3+x2)⊕V(x1+x3);
V(x2)⊗V(x1+x3)=V(x1+x2+x3)⊕V(2x1)⊕
V(2x3)⊕V(x2);
V(x2)⊗V(x1+x2)=V(x1+2x2)⊕V(x2+x3)⊕
V(2x1+x3)⊕V(x1);
V(x2)⊗V(x3+x2)=V(2x2+x3)⊕V(2x3+x1)⊕
V(x1+x2)⊕V(x3);
V(2x3)⊗V(2x2)=V(2x3+2x2)⊕V(2x1)⊕
V(3x2)⊕V(x1+x2+x3)⊕V(x2);
V(x3)⊗V(x1)=V(x1+x3)⊕V(0);
V(x3)⊗V(x2)=V(x3+x2)⊕V(x1);
V(x3)⊗V(x3)=V(2x3)⊕V(x2);
V(x3)⊗V(2x1)=V(2x1+x3)⊕V(x1);
V(x3)⊗V(2x2)=V(2x2+x3)⊕V(x1+x2);
V(x3)⊗V(2x3)=V(3x3)⊕V(x2+x3);
V(x3)⊗V(x1+x3)=V(x1+2x3)⊕
V(x1+x2)⊕V(x3);
V(x3)⊗V(x1+x2)=V(x1+x2+x3)⊕
V(x2)⊕V(2x1);
V(x3)⊗V(x3+x2)=V(x2+2x3)⊕
V(2x2)⊕V(x1+x3);
V(x3)⊗V(x1+x3+x2)=V(x1+x2+2x3)⊕
V(x2+x3)⊕V(2x1+x3);
V(2x1)⊗V(2x1)=V(4x1)⊕V(2x2)⊕
V(2x1+x2)⊕V(x1+x3);
V(2x1)⊗V(2x2)=V(2x1+2x2)⊕V(2x3)⊕
V(3x2)⊕V(x1+x2+x3)⊕V(x2);
V(2x1)⊗V(2x3)=V(2x1+2x3)⊕V(0)⊕
V(x2+2x3)⊕V(x1+x3);
V(2x1)⊗V(4x1)=V(6x1)⊕V(2x1+2x2)⊕
V(x2+4x1)⊕V(x3+3x1);
V(2x1)⊗V(4x2)=V(4x2+2x1)⊕V(2x2+2x3)⊕
V(5x2)⊕V(x1+3x2+x3)⊕V(3x2);
V(2x1)⊗V(4x3)=V(4x3+2x1)⊕V(2x3)⊕
V(x2+4x3)⊕V(x1+3x3);
V(2x3)⊗V(2x1)=V(2x1+2x3)⊕V(0)⊕
V(2x1+x2)⊕V(x1+x3);
V(2x3)⊗V(2x3)=V(4x3)⊕V(2x2)⊕
V(x2+2x3)⊕V(x1+x3);
V(2x3)⊗V(4x1)=V(4x1+2x3)⊕V(2x1)⊕
V(4x1+x2)⊕V(3x1+x3);
V(2x1)⊗V(2x1+2x3)=
V(4x1+2x3)⊕V(2x1)⊕V(2x2+2x3)⊕
V(2x1+x2+2x3)⊕V(x1+3x3)⊕V(3x1+x3)⊕
V(x1+x2+x3);
V(2x1)⊗V(2x1+2x2)=V(4x1+2x2)⊕
V(2x1+2x3)⊕V(4x2)⊕
V(2x1+3x2)⊕V(3x1+x2+x3)⊕
V(x1+2x2+x3)⊕V(2x1+x2);
V(2x3)⊗V(4x2)=V(4x2+2x3)⊕V(2x1+2x2)⊕
V(5x2)⊕V(x1+3x2+x3)⊕V(3x2);
V(2x1)⊗V(2x3+2x2)=V(2x1+2x2+2x3)⊕
V(2x2)⊕V(4x3)⊕V(2x3+3x2)⊕V(x1+x2+3x3)⊕
V(x1+2x2+x3)⊕V(2x3+x2);
V(2x1)⊗V(2x1+2x2+2x3)=V(4x1+2x2+2x3)⊕
V(2x1+2x2)⊕V(2x1+4x3)⊕V(2x3+4x2)⊕
V(2x1+3x2+2x3)⊕V(3x1+x2+3x3)⊕
V(x1+2x2+3x3)⊕V(3x1+2x2+x3)⊕
V(x1+3x2+x3)⊕V(2x1+x2+2x3);
V(2x3)⊗V(4x3)=V(6x3)⊕V(2x2+2x3)⊕
V(x2+4x3)⊕V(x1+3x3);
V(2x3)⊗V(2x1+2x3)=V(2x1+4x3)⊕V(2x1+2x2)⊕
V(2x3)⊕V(2x1+x2+2x3)⊕V(x1+3x3)⊕
V(3x1+x3)⊕V(x1+x2+x3);
V(2x3)⊗V(2x1+2x2)=V(2x1+2x2+2x3)⊕
V(4x1)⊕V(2x2)⊕V(2x1+3x2)⊕V(3x1+x2+x3)⊕
V(x1+2x2+x3)⊕V(2x1+x2);
V(2x3)⊗V(2x3+2x2)=V(2x2+4x3)⊕V(4x2)⊕
V(2x1+2x3)⊕V(3x2+2x3)⊕V(x1+x2+3x3)⊕
V(x1+2x2+x3)⊕V(x2+2x3);
V(2x2)⊗V(2x1)=V(2x1+2x2)⊕V(2x3)⊕
V(x1+x2+x3)⊕V(3x1+x3)⊕
V(x2)⊕2V(2x1);
V(2x3)⊗V(2x1+2x3+2x2)=V(2x1+2x2+4x3)⊕
V(2x1+4x2)⊕V(4x1+2x3)⊕
V(2x2+2x3)⊕V(2x1+3x2+2x3)⊕
V(3x1+x2+3x3)⊕V(x1+2x2+3x3)⊕
V(3x1+2x2+x3)⊕V(x1+3x2+x3)⊕
V(2x1+x2+2x3);
V(2x2)⊗V(2x2)=V(4x2)⊕V(2x1+2x3)⊕
V(0)⊕V(x1+2x2+x3)⊕V(x2+2x3)⊕
V(x2+2x1)⊕V(x1+x3)⊕2V(2x2);
V(2x2)⊗V(2x3)=V(2x3+2x2)⊕V(2x1)⊕
V(x1+3x3)⊕V(x1+x2+x3)⊕
V(x2)⊕2V(2x3);
V(2x2)⊗V(4x1)=V(4x1+2x2)⊕
V(2x1+2x3)⊕V(3x1+x2+x3)⊕
V(5x1+x3)⊕V(2x1+x2)⊕2V(4x1);
V(x2)⊗V(x1+x2+x3)=V(x1+2x2+x3)⊕
V(2x1+2x3)⊕V(x2+2x3)⊕
V(x2+2x1)⊕V(2x2)⊕V(x1+x3);
V(2x2)⊗V(4x3)=V(4x3+2x2)⊕
V(2x1+2x3)⊕V(x1+5x3)⊕
V(x1+x2+3x3)⊕V(2x3+x2)⊕2V(4x3);
V(2x2)⊗V(4x2)=V(6x2)⊕V(2x1+2x2+2x3)⊕
V(2x2)⊕V(x1+4x2+x3)⊕V(3x2+2x3)⊕
V(3x2+2x1)⊕V(x1+2x2+x3)⊕2V(4x2);
V(2x2)⊗V(2x1+2x3)=V(2x1+2x2+2x3)⊕
V(4x3)⊕V(4x1)⊕V(2x2)⊕V(x1+x2+3x3)⊕
V(3x1+3x3)⊕V(3x1+x2+x3)⊕
V(x1+2x2+x3)⊕V(x2+2x3)⊕
V(2x1+x2)⊕V(x1+x3)⊕2V(2x1+2x3);
V(2x2)⊗V(2x1+2x2)=V(2x1+4x2)⊕
V(4x1+2x3)⊕V(2x2+2x3)⊕
V(2x1)⊕V(x1+3x2+x3)⊕V(3x1+2x2+x3)⊕
V(2x1+x2+2x3)⊕V(4x1+x2)⊕V(3x2)⊕
V(3x1+x3)⊕V(x1+x2+x3)⊕2V(2x1+2x2);
V(2x2)⊗V(2x3+2x2)=V(4x2+2x3)⊕
V(4x3+2x1)⊕V(2x1+2x2)⊕
V(2x3)⊕V(x1+2x2+3x3)⊕V(x1+3x2+x3)⊕
V(x2+4x3)⊕V(2x1+x2+2x3)⊕V(x1+3x3)⊕
V(3x2)⊕V(x1+x2+x3)⊕2V(2x3+2x2);
V(x1+x2)⊗V(2x1)=V(x1+2x2)⊕
V(3x1+x2)⊕V(x2+x3)⊕2V(2x1+x3)⊕2V(x1);
V(x1+x2)⊗V(2x2)=V(2x1+x2+x3)⊕
V(x1+3x2)⊕V(x1+2x3)⊕
V(x3)⊕2V(2x2+x3)⊕2V(x1+x2);
V(2x2)⊗V(2x1+2x2+2x3)=
V(2x1+4x2+2x3)⊕V(4x1+4x3)⊕V(2x2+4x3)⊕
V(4x1+2x2)⊕V(4x2)⊕V(2x1+2x3)⊕
V(x1+3x2+3x3)⊕V(3x1+2x2+3x3)⊕
V(3x1+3x2+x3)⊕V(x1+4x2+x3)⊕
V(2x1+x2+4x3)⊕V(4x1+x2+2x3)⊕
V(3x2+2x3)⊕V(3x1+3x3)⊕V(2x1+3x2)⊕
V(x1+x2+3x3)⊕V(3x1+x2+x3)⊕
V(x1+2x2+x3)⊕2V(2x1+2x2+2x3);
V(x1+x2)⊗V(2x3)=V(x1+x2+2x3)⊕
V(2x1+x3)⊕V(x1)⊕2V(3x3)⊕2V(x3+x2);
V(x1+x2)⊗V(4x1)=V(3x1+2x2)⊕
V(5x1+x2)⊕V(2x1+x2+x3)⊕
2V(4x1+x3)⊕2V(3x1);
V(x1+x2)⊗V(4x2)=V(2x1+3x2+x3)⊕
V(x1+5x2)⊕V(x1+2x2+2x3)⊕
V(2x2+x3)⊕2V(4x2+x3)⊕2V(x1+3x2);
V(x1+x2)⊗V(4x3)=V(4x3+x1+x2)⊕
V(2x1+3x3)⊕V(x1+2x3)⊕
2V(5x3)⊕2V(x2+3x3);
V(x1+x2)⊗V(2x1+2x3)=
V(x1+2x2+2x3)⊕V(3x1+x2+2x3)⊕
V(x2+3x3)⊕V(4x1+x3)⊕V(2x2+x3)⊕
V(3x1)⊕V(x1+x2)⊕2V(2x1+3x3)⊕
2V(2x1+x2+x3)⊕2V(x1+2x3);
V(x1+x2)⊗V(2x1+2x2)=
V(x1+4x2)⊕V(4x1+x2+x3)⊕V(3x1+3x2)⊕
V(3x2+x3)⊕V(3x1+2x3)⊕V(x1+x2+2x3)⊕
V(2x1+x3)⊕2V(2x1+2x2+x3)⊕2V(3x1+x2)⊕
2V(x1+2x2);
V(x1+x2)⊗V(2x3+2x2)=V(2x1+x2+3x3)⊕
V(x1+3x2+2x3)⊕V(x1+4x3)⊕
V(2x1+2x2+x3)⊕V(x1+2x2)⊕V(3x3)⊕
V(x2+x3)⊕2V(2x2+3x3)⊕
2V(3x2+x3)⊕2V(x1+x2+2x3);
V(x2+x3)⊗V(2x1)=
V(2x1+x2+x3)⊕V(x1+2x3)⊕
V(x3)⊕2V(3x1)⊕2V(x1+x2);
V(x1+x3)⊗V(2x3)=3V(2x3)⊕V(x1+3x3)⊕
V(x1+x2+x3)⊕V(x2);
V(x2+x3)⊗V(2x2)=V(3x2+x3)⊕
V(x1+x2+2x3)⊕V(2x1+x3)⊕
V(x1)⊕2V(x1+2x2)⊕2V(x2+x3);
V(x2+x3)⊗V(2x3)=V(3x3+x2)⊕V(2x2+x3)⊕
V(x1+x2)⊕2V(x1+2x3)⊕2V(x3);
V(x1+x2)⊗V(2x1+2x2+2x3)=
V(x1+4x2+2x3)⊕V(4x1+x2+3x3)⊕
V(3x1+3x2+2x3)⊕V(3x3+3x2)⊕
V(3x1+4x3)⊕V(4x1+2x2+x3)⊕
V(4x2+x3)⊕V(x1+x2+4x3)⊕
V(3x1+2x2)⊕V(x1+3x2)⊕V(2x1+3x3)⊕
V(2x1+x2+x3)⊕2V(2x1+2x2+3x3)⊕
2V(2x1+3x2+x3)⊕2V(3x1+x2+2x3)⊕
2V(x1+2x2+2x3);
V(x2+x3)⊗V(4x1)=
V(4x1+x2+x3)⊕V(3x1+2x3)⊕
V(2x1+x3)⊕2V(5x1)⊕2V(3x1+x2);
V(x2+x3)⊗V(4x2)=V(5x2+x3)⊕
V(x1+3x2+2x3)⊕V(2x1+2x2+x3)⊕
V(x1+2x2)⊕2V(x1+4x2)⊕2V(3x2+x3);
V(x2+x3)⊗V(4x3)=V(5x3+x2)⊕
V(2x2+3x3)⊕2V(3x3)⊕
V(x1+x2+2x3)⊕2V(x1+4x3);
V(x2+x3)⊗V(2x1+2x3)=
V(2x1+x2+3x3)⊕V(2x1+2x2+x3)⊕
V(x1+4x3)⊕V(3x1+x2)⊕V(x1+2x2)⊕
V(3x3)⊕V(x2+x3)⊕2V(3x1+2x3)⊕
2V(2x1+x3)⊕2V(x1+x2+2x3);
V(x2+x3)⊗V(2x1+2x2)=
V(2x1+3x2+x3)⊕V(3x1+x2+2x3)⊕
V(x1+2x2+2x3)⊕V(4x1+x3)⊕
V(2x2+x3)⊕V(3x1)⊕V(x1+x2)⊕
2V(3x1+2x2)⊕2V(2x1+x2+x3)⊕2V(x1+3x2);
V(x2+x3)⊗V(2x3+2x2)=
V(3x2+3x3)⊕V(x1+x2+4x3)⊕
V(4x2+x3)⊕V(2x1+3x3)⊕
V(x1+3x2)⊕V(2x1+x2+x3)⊕
V(x1+2x3)⊕2V(x1+2x2+2x3)⊕
2V(2x2+x3)⊕2V(x2+3x3);
V(x2+x3)⊗V(2x1+2x2+2x3)=
V(2x1+3x2+3x3)⊕V(3x1+x2+4x3)⊕
V(2x1+4x2+x3)⊕V(x1+2x2+4x3)⊕
V(4x1+3x3)⊕V(3x1+3x2)⊕
V(4x1+x2+x3)⊕V(3x2+x3)⊕
V(3x1+2x3)⊕V(x1+x2+2x3)⊕
2V(3x1+2x2+2x3)⊕2V(2x1+2x2+x3)⊕
2V(2x1+x2+3x3)⊕2V(x1+3x2+2x3);
V(x1+x3)⊗V(2x1)=
3V(2x1)⊕V(x1+x2+x3)⊕V(3x1+x3)⊕V(x2);
V(x1+x3)⊗V(2x2)=3V(2x2)⊕V(x1+2x2+x3)⊕
V(2x3+x2)⊕V(2x1+x2)⊕V(x1+x3);
V(x1+x3)⊗V(4x1)=3V(4x1)⊕
V(3x1+x2+x3)⊕V(5x1+x3)⊕V(2x1+x2);
V(x1+x3)⊗V(4x2)=3V(4x2)⊕V(x1+4x2+x3)⊕
V(3x2+2x3)⊕V(2x1+3x2)⊕V(x1+2x2+x3);
V(x1+x3)⊗V(4x3)=3V(4x3)⊕
V(x1+5x3)⊕V(x1+x2+3x3)⊕V(x2+2x3);
V(x1+x3)⊗V(2x1+2x3)=3V(2x1+2x3)⊕
V(x1+x2+3x3)⊕V(3x1+3x3)⊕V(3x1+x2+x3)⊕
V(x1+2x2+x3)⊕V(x2+2x3)⊕
V(x2+2x1)⊕V(x1+x3);
V(x1+x3)⊗V(2x1+2x2)=
3V(2x1+2x2)⊕V(x1+3x2+x3)⊕
V(3x1+2x2+x3)⊕V(2x1+x2+2x3)⊕
V(4x1+x2)⊕V(3x2)⊕
V(3x1+x3)⊕V(x1+x2+x3);
V(x1+x3)⊗V(2x3+2x2)=
3V(2x3+2x2)⊕V(x1+2x2+3x3)⊕
V(x1+3x2+x3)⊕V(x2+4x3)⊕
V(2x1+x2+2x3)⊕V(x1+3x3)⊕
V(3x2)⊕V(x1+x2+x3);
V(x1+x3)⊗V(2x1+2x3+2x2)=
3V(2x1+2x2+2x3)⊕V(x1+3x2+3x3)⊕
V(3x1+2x2+3x3)⊕V(3x1+3x2+x3)⊕
V(x1+4x2+x3)⊕V(2x1+x2+4x3)⊕
V(4x1+x2+2x3)⊕V(3x2+2x3)⊕
V(3x1+3x3)⊕V(2x1+3x2)⊕V(x1+x2+3x3)⊕
V(3x1+x2+x3)⊕V(x1+2x2+x3).
本文借助李代数中的张量积分解知识,通过计算机编程,得到了以下结论:
1)对于基本支配权λ∈H,可以求出V(λ)的权格∏(λ)。
2)对于μ∈∏(λ),根据Freudenthal公式计算出A3型李代数的权重数m(μ)。
3)对于基本支配权λ∈H,根据计算出的权格∏(λ)和权重数m(μ),通过李代数的张量积分解计算出A3型李代数的张量积分解。
可以看到:在计算A3型李代数的张量积分解时,权重数m(μ)的计算起着至关重要的作用。随着首权λ的系数的增加,重数的计算越发复杂。