王伟丽
(桂林三金药业股份有限公司,广西 桂林 541199)
在诸多领域的工作中都涉及微生物检验环节,如食品、药品等的检验,对保障相关产品的质量具有重要作用。微生物检验也是实验室检测的重要手段,根据检测需要和实际情况采取相应的微生物检验手段能更好地提升微生物检验效果与水平,这就需要相关人员不断深入研究微生物检验技术,把握好微生物检验的发展趋势,使其在相关工作中得到更好的应用。
微生物检验主要是对部分产品(一般是口服的食品、药品)中的微生物污染开展定性或者定量检验的技术。该技术涉及诸多领域与行业,如食品、饮用水、外用或口服的药品、需灭菌的产品和化妆品等,此类产品卫生标准有明确的规定,通过微生物检验技术对其微生物污染实现严格控制,避免各类有害病原微生物侵入人体而对广大消费者的健康造成危害。在微生物的常规检验中,主要的测定内容有需氧菌的总数、霉菌的总数、肠道的致病菌、化脓性的致病菌、食物的中毒菌、破伤风的厌氧菌、活螨虫和螨虫卵以及大肠菌群等。在微生物检验中,一定要严格执行检验的程序,在样品检验前一定要对操作的环境提前采取灭菌处理,操作期间谨防出现二次污染[1]。
在微生物检验中,基本操作有接种、分离纯化、培养、鉴定和保存等。在接种方面,常用的方法有划线接种、三点接种、穿刺接种、浇混接种、涂布接种、液体接种、注射接种、活体接种等。对培养基完成高压灭菌后,通过已灭菌处理的工具在无菌条件下进行含菌材料向培养基上接种。在分离纯化方面,若一个菌落内的所有细胞都来自一个亲代细胞,此菌落就被称作纯培养。在鉴定菌种时,用到的微生物要求是纯培养物,而纯培养物的获取就是分离纯化的过程,方法也有很多,如倾注平板、涂布平板、平板划线、富集培养、厌氧处理、单细胞分离等。在培养方面,以培养时对氧气的需求情况为标准,可以分为好氧培养、厌氧培养;以培养基的物理状态为标准,可以分为固体培养、液体培养。在鉴定方面,主要涉及形态学的观察、生理生化的试验、化学成分的分析、基因型的分析、系统发育的分析等内容。在保存方面,基本原理是挑选优良的纯培养物,使其处于休眠状态,然后人为创造有利于其休眠的环境,使其在长期保存后依然具备菌种原有的优良特性[2]。比较常用的方法有定期移植方法、液体石蜡方法、真空冷冻干燥法、低温冻结方法等。
在微生物鉴定中,基因检测是一种新技术,目前已经研究出下一代测序(Next Generation Sequencing,NGS),此方法主要是对大量DNA的小片段进行检测,通过特定算法对个体检测的数据与参考基因的序列实施对比,发现可能存在的变异情况。以医学临床中的微生物检验为例,NGS可以用于感染性疾病病原体的鉴定。对病原微生物的传统鉴定方法主要包括涂片镜检处理、分离培养、质谱和生化反应等,但此类方法呈现出周期长、灵敏度低和过程复杂等缺点,对分枝杆菌的菌种鉴定用时需30~40 d,对苛养菌、病毒等的培养条件也极为苛刻,大大增加了培养的难度。分子诊断基于聚合酶链反应(Polymerase Chain Reaction,PCR)有效解决了上述病原体的鉴定问题,但不能解决未知的微生物检验难题,因为未知的微生物核酸序列也未知,无法设计引物,这也成为该技术最大的难题[3]。在NGS检测中,不需要对病原体实施分离培养处理,也不依赖已知的核酸序列,能直接实现标本的测序、鉴别,有效节省了检测时间、提升了诊断效率,在对未知物种和难培养病原体的鉴定中具有显著的优势。在对病原体的鉴定中,NGS的应用主要包括两种方法,分别是rRNA基因测序、全基因组测序(Whole Genome Sequencing,WGS)。其中,rRNA基因测序法在临床上主要用于细菌和真菌等鉴定,也是菌群分析环节的基础;WGS和rRNA基因测序方法相比,WGS能获取更加全面的信息,适合在病毒的鉴定中使用。大部分的病毒是不可培养的,且存在高度变异的情况,NGS和基因芯片、Sanger测序法等相比,NGS具有更高的效率,也不需要设计特定探针,适用于复杂的临床标本病毒鉴定。
微生物鉴定的定义是以现有的分类系统对未知微生物的特征实施测定,以对其实施细菌、霉菌和酵母菌等大类区分,或对属、种和菌株水平进行确定的过程。在鉴定污染微生物时,一般结合鉴定的水平合理选择鉴定的方法。在微生物的鉴定中,传统方法(经典的生化反应、革兰氏染色的显微镜鉴别等)一般适用于大多数非无菌类药品的生产以及部分无菌生产环境中的风险评估。但在药品的微生物污染相关事件中,通过传统的方法并不能满足快速分型、准确鉴定和溯源分析等需求,所以,研究分子生物学时产生的基因型鉴定法逐渐得到应用[4]。
采用传统技术鉴定表型主要包括菌落形态的观察、染色、生化鉴定、显微镜检查等环节,呈现出成本低和便于操作等优点。但微生物表型存在一定的可变性,不同的生长环境会对其表观形态产生影响,如不同培养基内的微生物可能有不同的颜色。同时,传统表型鉴定技术对人员经验和培养条件较为依赖,在一些生长缓慢、培养难度大、需特殊营养的微生物鉴定中具有很大的局限性。随着社会的发展,现代化的微生物鉴定技术逐渐在药品污染的微生物鉴定、溯源分析以及污染调查等方面得到广泛运用,此类技术实现了对传统表型鉴定的拓展与丰富,如生化鉴定系统(如ⅤITEK和API的系统)、FTIR(傅里叶红外光谱)、MALDI-TOF-MS(基质辅助激光解吸电离飞行时间质谱)、以碳源分析为基础的全自动化微生物鉴定系统、脂肪酸鉴定系统等,有效提升了微生物的鉴定效率和药品质量的控制水平。
随着鉴定技术的发展,基因型鉴定技术被研发出来,这是一种以微生物的基因序列为基础,对其分子实施生物学鉴定的技术,不依赖微生物的培养,是一种现代化的鉴定技术类型。基因型鉴定技术和表型鉴定技术存在很大不同,其数据库较为完善,能以微生物的遗传物质为基础,通过差异分析对微生物进行鉴定,呈现出高效率、高准确度和高通量等特点。在自然环境中,约有10%的物种能以分离培养的方法获取,以微生物的培养为基础的传统表型鉴定具有很大的应用局限性,而采用基因型鉴定,以16S rRNA的高通量式测序法获取的微生物群落信息就十分全面。当然,基因型鉴定也有一定的缺陷,使用16S rRNA法时,不能对某些亲缘较近、不明显的特征序列类微生物进行准确鉴定;采用高通量的测序分析混合样本时,不能有效排除已死亡的微生物干扰因素等[5]。
在微生物检验技术的发展过程中,逐渐产生了很多技术类型,各有优缺点。为了有效地弥补各检验方式的缺陷,可以对多种方式实现联合运用。在选择检验方式时,需要综合考虑相应条件,特别是检验中对灵敏度的要求。因此,提升灵敏度、消除假阳性是检验技术研究过程中的重要关注内容。在计算机技术迅速发展的背景下,微生物检验技术朝着高度自动化以及简便快速的方向发展。目前,分子生物学相关技术在自动化的仪器联合中,已经被运用于病原菌的诊断和鉴定、耐药基因的检测等方面。要想实现高质、高效和价格低廉等有效统一,就要改变临床中病原菌的检验现状以及传统观念,在各学科的交叉发展中,新型检验技术也会越来越多。
近年来,新型技术得到了迅速发展,如电化学和比浊法等技术,可以对药品内的活微生物实现直接测定;固相细胞的计数法以及流式细胞的计数法等,能分析微生物细胞内的特定成分。上述技术能提高药品检测的准确性,也能保证检测人员的安全,因此,应用前景十分广阔。基于技术的迅速发展,要想实现药品中微生物检验的进步,还要完善检验标准,提升相关检验人员的综合素质和专业水平。因为药品检验期间需要人工操作,操作人员的技术水平会对检测结果产生直接影响。为了提升操作人员的技术水平,要对检测人员开展定期培训。目前,在药品微生物的检验中,软硬件设备都得到了显著改善,且药品的微生物检验技术也朝着标准化方向发展,特别是对无菌制剂的研究已取得显著成就,推动着检验项目和方法、药典制定的依据等朝着更科学的方向发展[6]。
微生物的检验在诸多领域得到了应用,也逐渐产生了很多检验技术和方法,各有优点与不足。为了促进相关技术作用的充分发挥,还需要对检验技术不断进行研究,把握好检验技术的发展趋势,推动检验技术的现代化发展。