张抑扬, 陈森, 蔡洋, 卢磊, 范端, 史进春,*, 黄俊宇,*, 罗胜年
含能材料储存了大量化学能,会在热或力刺激下快速释放[1–4]。依据储存的化学能及其释放速率,含能材料通常分为炸药(起爆药或二级炸药)、推进剂和烟火剂等[3,5]。来自军民应用和基础科学研究的广泛需求推动了对含能材料的持续兴趣[6]。对含能材料力学、物理和化学的深入理解不仅有助于预测和控制其性能,也有助于解决含能材料日益增长的环境和安全问题 [1,7]。
含能材料在制备、加工或外刺激(如冲击压缩)过程中的热力学、物理和化学过程跨越多个时空尺度[6,8]。在制备和加工中产生的微结构(晶格缺陷、空洞、裂纹、界面等)涵盖亚纳米到毫米尺度[9,10],并影响含能材料对外刺激的响应以及随后的化学动力学和宏观性能[11,12]。在热力刺激下,这类微结构所在区域会产生应变、应力或热量局域化,诱发局部化学反应(热点)[13–16]。在外刺激下,含能材料的力学和物理过程(塑性变形[17,18]、相变[19,20]和热点形成等)和化学过程(化学反应动力学[12,21]和固态碳形成[22,23])跨越飞秒到微秒时间尺度,涵盖单分子到微米晶格或更大的空间尺度。冲击化学起爆通常发生在分子水平和亚皮秒尺度[15,24–28];而介观尺度上,冲击波波阵面作用于含能材料的复杂微结构,产生相变和热点;冲击转爆轰(SDT)[29]则发生在宏观尺度。用于模拟含能材料外刺激的典型加载形式包括激光烧蚀、平板冲击、分离式霍普金森杆、激波管燃烧和准静态压缩,其时间尺度分别为100 fs [30,31]、100 ns [32–34]、100 µs [35,36]、10 ms[37,38]和100 s。鉴于含能材料在生命周期不同阶段的多时空尺度,可靠的工程仿真必须诉诸包含多尺度结构和物理化学动力学的物理预测模型[6,7,39],而该模型亟需时空分辨的实验数据。
虽然含能材料的静态[9,40–42]或宏观[18,34]表征比较常见,但在微介观和匹配的时间尺度上表征材料结构及物理和化学动力学一直是一个挑战性的技术难题。由于外刺激下含能材料的物理和化学过程常发生在极端条件下[6,18,33],诊断技术应该具有无损、可穿透性和高时空分辨率等特性。常规技术如折射率匹配光学显微镜[43]、激光共聚焦扫描显微镜[44]、偏振光学显微镜[33]和扫描电镜[45]等仅能提供表面测量,因此需要补充具有穿透能力和适当时间分辨率或能提供其他额外信息的诊断技术。X射线源、太赫兹(THz)源、探测器以及光谱和成像系统[46,47]的显著进步为解决含能材料诊断难题提供了机会。例如,先进同步X射线源[46,48]和X射线自由电子激光(XFEL)[49,50]产生飞秒和皮秒脉冲,能够以前所未有的高时空分辨率解析含能材料的结构以及物理和化学动力学。
本文中,我们简要回顾了一些新兴的或已存在但较少应用于含能材料的新型诊断技术。针对的科学问题和工程难题包括缺陷、强度[51]、变形[18]、热点、相变、反应和冲击感度[52,53]。本文着重讨论了这些诊断技术的时空分辨能力。此外,本文介绍了测试和数据分析的基本原理并用示例加以说明。在第2部分,我们介绍了二维(2D)和三维(3D)X射线成像技术,包括X射线相衬成像(PCI)、X射线断层扫描(CT)、X射线衍射(XRD)、相干衍射成像(CDI)、X射线小角散射(SAXS)。第3部分介绍了THz和光学吸收/发射光谱,包括THz吸收光谱、高温计和激光诱导击穿光谱(LIBS)以及超快成像干涉技术,超快成像干涉技术又分为一维和二维任意反射面速率干涉系统(VISAR)和瞬态成像位移干涉仪(TIDI)。第4部分对全文进行了总结。
高亮度、高相干性、高重频和短脉冲的先进同步辐射装置和X射线自由电子激光可原位、实时和多尺度测量多种材料体系和过程[49,50,54,55]。常见的X射线诊断方法包括实空间成像、倒易空间衍射和散射以及谱学。X射线谱学不在本文讨论范围之内,在此不予讨论。
不同X射线诊断方法涵盖不同的空间尺度,因此具有不同的空间分辨率。图1(a)展示了三种X射线诊断方法:成像(包括PCI和CT)、散射(包括SAXS)和XRD。它们的典型空间尺度分别为微米到亚微米、1~100 nm和晶格尺度(Å)[46,56]。CDI通过在傅里叶空间进行相位检索,可以实现亚纳米尺度的空间分辨率。这样一系列X射线诊断方法使得在多空间尺度上对含能材料进行结构表征成为可能。
对单脉冲同步辐射X射线测量来说,同步辐射的射频信号可以作为主时钟,来对四个关键组成部分即加载设备、X射线快门、X射线脉冲序列和探测器进行同步[46]。其中的时间特性,即X射线的脉冲宽度和脉冲间隔取决于电子束填充的时间结构。图1(b)的内插图展示了一种先进光源的标准填充模式:脉冲宽度约为80 ps,脉冲间隔为153.4 ns。相应地,X射线测量的最高时间分辨率受到脉冲宽度限制,约为百皮秒,而帧频则被脉冲间隔所限制。相对来说,自由电子激光实验中最高时间分辨率能达到10~100 fs,而最短脉冲间隔在直线加速器相干光源(LCLS)、LCLS-II和欧洲自由电子激光分别为10 ms、1 µs和220 ns。对于微秒级的时间分辨率,同步辐射填充模式的时间结构变得无关紧要,X射线可以视为连续光,而时间分辨能力可以通过探测器的电子快门实现。利用不同的时间分辨率,我们能在多个时间尺度和空间尺度上探讨含能材料中的物理和化学过程。
含能材料在不同的刺激或载荷下会经历不同的加载率、加载时间、应力条件以及温度环境。这些外刺激或加载包括激光、气炮、分离式霍普金森杆、材料试验机(MTS)和激波管等。图1(b)以气炮加载为示例[57],展示了基于同步辐射的多种原位实时多尺度X射线测量技术[56]。气炮发射的弹丸撞击含能材料靶材,引发物化反应,再通过X射线成像和衍射以及光学测速仪进行探测。气炮加载下的事件持续时间为100~1000 ns,因此需要进行单脉冲X射线探测。
基于波传播的相衬成像(PCI)可同时提取X射线束的相位信息以及材料对X射线的衰减信息[58,59]。具有非均匀相位的物体会引起X射线相位ϕ(x, y)和透射波阵面局部曲率的空间变化。这种波阵面在传播和干涉过程中产生的强度变化与其相位分布ϕ(x, y)的拉普拉斯变换成正比,从而产生边缘增强效应[58]。
因此,PCI特别适用于含能材料这类低密度材料的高分辨率成像。如今,基于同步辐射和XFEL的先进X射线PCI可以实现动载下物体内部变形、损伤和反应动力学的原位实时观测,时间分辨率分别可达100 ps[46,56]和10~100 fs [49,50]。
聚合物黏结炸药(PBX)是目前应用最广泛的钝感高能炸药[33,60]。PBX在晶体内部、晶体与黏结剂界面处、部分溶解的晶体黏结剂混合区或者黏结剂内部都存在大量缺陷,这些缺陷可能诱导热点成核[13,14],并引发异常条件下的爆燃或爆轰。因此,高速同步辐射X射线PCI被用来表征动载下PBX的变形和破坏,动载包括超声[35]、分离式霍普金森杆(SHPB)[35,61]和气炮[62,63]等。其中时间和空间分辨率分别可达约1 μs和1~10 µm [46,48]。图2(a)显示了一种颗粒载量较低的HMX基PBX炸药样品在SHPB加载下的相衬成像照片。得益于边缘增强,PCI可以清楚分辨密度相似的晶体颗粒和聚合物基体。高分辨率的成像照片揭示了晶体颗粒与基体间脱黏(95 μs处)以及颗粒破碎(240 μs处)等破坏机制。
图1. X射线的原位多尺度测量。(a)XRD、SAXS/CDI和PCI/CT技术的示意图。图示为XRD、SAXS和数字图像相关(DIC)的典型数据。这里,qx和qy是倒易空间基矢,x和y是实空间基矢。(b)结合(a)中所示X射线成像和衍射/散射诊断技术的气炮加载实验装置以及光学干涉仪系统[多普勒针系统(DPS)]。加载装置也可以换成材料试验机(MTS)、分离式霍普金森杆、激光、磁驱和激波管等。内插图:典型的同步辐射填充模式的时间结构。
图2. (a)PBX在SHPB压缩下的X射线相衬成像图集;(b)铝板中孔洞生长过程的X射线相衬成像图集;(c)相应的拉格朗日剪切应变(E12)和拉伸应变(E11)场。(a)在AIP Publishing ©2016许可下摘自文献[35];(c)在AIP Publishing ©2014许可下摘自文献[65]。
含能材料的应变测量,可以揭示应变局域化和机械能沉积区的位置和特征,对理解热点形核至关重要。微观结构(如PBX中晶体颗粒)的X射线投影图可以提供天然散斑,用于相关分析来追踪物体位移和应变场[64–66]。X射线数字图像相关(DIC)的计算原理和程序与传统光学DIC相似[67];但是得益于相衬成像,X射线DIC可以提供更小(50 µm或更小)的斑点和更高的空间分辨率(10 µm或更高)[68],其可用于获取局部小区域(如颗粒基体界面)的变形动力学过程。当物体内部特征(如炸药的晶体颗粒)可通过PCI产生天然散斑的时候,X射线DIC相比光学DIC更具优势[57,69],在研究内部变形上也比光学DIC具有更高的空间分辨率。而且光学DIC仅限于低温,在爆轰极限附近无法使用。X射线DIC可以根据散斑的制备方式来灵活选择测量表面还是内部变形场,并为2.5维应变测量开辟了新思路。此外,X射线DIC还可以与X射线衍射相结合,揭示晶格尺度的变形机制[48,57],详见第2.4节。
图2(b)、(c)展示了首次发表的X射线DIC的研究范例,其测量了动态拉伸加载下铝板内预设孔洞周围的应变场[64]。图中显示,随着载荷增加,拉格朗日拉伸(E11)和剪切(E12)应变集中区在孔洞周围成核和长大,其位移和应变误差分别低于0.01像素和0.01%。
基于实验室或同步辐射X射线光源的CT装置是一个独特的工具,可对各种材料[70–72]包括含能材料[10,43,73,74]的微观结构进行三维无损表征[66,75,76]。随着X射线源的快速发展,原位CT在解决力学加载(如制备、运输或压胚过程)过程中炸药或模拟炸药的变形和破坏问题上应用越来越广泛[75–78]。各种微型加载设备(如微型MTS)被设计出来并应用于原位CT扫描[71,72]。虽然台式CT机也可用于原位实验,但同步辐射CT通常在穿透力、时间和空间分辨率等综合性能上更优[72]。图3(a)展示了一个颗粒柱在压缩加载下的CT表征结果[70]。从三维图像中可以清楚分辨颗粒旋转和破碎等微观变形机制,并与力-位移曲线中的应力降吻合。颗粒本身、粒内孔隙和裂纹网络的三维形貌还可以通过包括旋转张量和分形在内的拓扑分析方法来量化 [70,79]。
通过数字体积相关(DVC)技术可以从体积图像序列中计算出三维位移和应变场[72,73,75]。对于PBX样品,晶体颗粒可作为DVC分析的天然散斑。目前学界已经提出了多种增量DVC算法来进行三维变形测量[80],多种三维相关准则也被用于建立参考图像和当前图像之间的对应关系,这与DIC相似。而为了获得较高的计算精度,DVC通常都采用迭代相关算法。图3(b)[73]展示了一种模拟炸药(PBS)通过CT表征的三维结构和相应的DVC分析结果。结果表明,PBS试样中轴向位移场的演化与试样的非均匀微观结构以及界面脱黏和颗粒破碎等变形机制密切相关。
图3. (a)颗粒柱在微型MTS压缩下的力位移曲线以及原位三维图像,图像时刻与曲线上的标记相对应;(b)1 Hz动态CT表征的发泡过程,左图展示了两个代表性时刻的泡沫三维图像,右图是通过PIV得到的气泡位移场;(c)颗粒材料在准静态压缩下的三维轴向位移场;(d)基于PBX样品CT图像建立的二维有限元模型(左图)以及两个体积应变下的最大主应变场(右图)。(a)经Elsevier ©2020许可,转载自文献[72];(c)经Elsevier ©2012许可,转载自文献[75];(d)经MDPI ©2017许可,转载自文献[77]。
利用同步辐射光源,CT的时间分辨率最高可达约5 ms(即每秒208帧CT成像)[81]。这种快速CT已被应用于研究发泡[81,82]、烧结[83]和断裂[84,85]等动态过程。图3(c)是在1 Hz帧频下捕获的两个代表性时刻的发泡过程的三维图像,通过粒子成像测速技术(PIV)对气泡的速度场进行了量化[86]。这些信息对于了解炸药颗粒压实过程中的堆积动力学很有意义。虽然亚秒的时间分辨率还不足以解决瞬态冲击或撞击问题,但动态CT可以揭示低加载速率下PBX的变形动力学,也可获取PBX炸药在制备和加工过程或者热分解过程中的空隙产生和流体流动过程[87]。近年来,基于多源多探测器和闪光X射线成像的高速CT系统已经被研制出来[88],时间和空间分辨率可达亚微秒和亚毫米,但三维图的数量和质量仍有待于通过整合更多的X射线源和探测器来提高。高速CT技术在研究含能材料冲击起爆方面具有巨大的前景。
动态CT获得的PBX炸药的三维结构可以作为细观有限元模型的输入,同时还可与有限元模拟结果进行对比以校验模型[67,89]。有关模拟程序、材料模型和材料参数的具体细节[89–91]不在本文的讨论范围。图 3(d)显示,细观有限元模型可以很好地再现晶体黏结剂界面脱黏和晶间裂纹扩展[67]等机制。然而,为简便起见,前人研究中主要采用二维模型,且颗粒数量有限[67,89];而能够充分描述材料宏观力学行为的代表性三维体元的合适尺寸还有待研究[67,76]。通过高分辨率三维成像和先进图像处理技术,具有真实三维构型的细观有限元模型是定量研究PBX结构性能关系的利器,尤其是针对高应变率和热力耦合加载等工况[20,90]。此外,相变和化学反应动力学也可以通过用户子程序如UMAT/VUMAT [92]集成到细观有限元模型中。
2.3.1. X 射线衍射
X射线衍射(XRD)本质上是通过散射的X射线测量有序/无序晶格中原子的电子密度分布。同时,它也是无损确定晶体结构、相成分、相变及其途径、晶粒尺寸、织构、变形(包括应变张量)以及间接测量残余应力和强度等物理量的必不可少的工具。X射线衍射的作用对象包括多晶和单晶固体以及液体等。
例如,单晶和粉末衍射联合技术已被用于研究环三亚甲基三硝胺(RDX)在常压和高压下的性态结构。RDX自1899年首次合成,现已成为广泛使用的炸药类型之一[93]。结果表明,在常压下RDX存在稳定的α-RDX相和亚稳态β-RDX相,这些晶体结构主要由单晶X射线衍射获得[94–98]。而金刚石对顶压砧(DAC)实验结果表明[19,40,99],RDX具有复杂的相图并且富含多种形态,包括γ-RDX、δ-RDX、ε-RDX相及最近发现的ξ-RDX和η-RDX相[100]等。
RDX的静态压缩衍射实验主要通过DAC完成[40,101,102]。而RDX在冲击压缩下的离位和原位X射线衍射实验都已有开展[103,104],但后者的数据还未见发表。尽管如此,在同步辐射或X射线自由电子激光上结合冲击压缩实验的动态X射线衍射能力已经建立[46,56,105,106],其在含能材料方面的应用兴起正当其时。
为验证利用瞬态X射线衍射(TXD)研究冲击压缩下含能材料的可行性,我们开展了单晶(图4)[102,107]和多晶RDX(图5)的X射线衍射模拟并用以研究其在平板撞击下的相变过程、状态方程以及强度演化。在模拟中,模型结构在散射矢量q处的衍射强度是结构因子F(q)及其复共轭F*(q)的乘积[108,109],即
和
式中,i表示虚数单位;rj表示第j个原子在原子模型中的位置;fj是第j个原子在q处的原子散射因子。
针对RDX在约4.0 GPa时的α→γ相变[101,110] [图4(a)和(b)],我们根据典型的同步辐射和X射线自由电子激光光源模拟了相应的单晶衍射谱。我们选用先进光子源上同步辐射波荡器光谱(周期为18 mm,间隙为13 mm)的第一个谐波,其带宽为8% [图4(g)]。值得一提的是,波荡器的带宽是可调的,这对单晶衍射来说是一个优势。相变前后的单晶衍射图[图4(c)和(d)]显示出明显差异。尽管RDX具有较低的对称性和较大的晶胞,但单晶衍射实验的q分辨率对于部分相结构分析也已经足够。对于带宽为0.1%的X射线自由电子激光,也能获得用于部分相结构分析的单晶衍射图谱[图4(e)和(f)]。
图4. 基于单脉冲同步辐射和X射线自由电子激光源的冲击压缩下RDX单晶X射线衍射模拟。(a)α-RDX的晶体结构[107]。(b)γ-RDX的晶体结构[102]。α-RDX和γ-RDX分别在同步辐射“粉光”源(c)和(d)以及X射线自由电子激光源(e)和(f)下的二维X射线衍射谱。其中,2θ表示衍射角,χ表示衍射矢量投影到衍射屏上的方位角。(g)典型的波荡器X射线光谱,其中,λ表示X射线波长。X射线自由电子激光中心能量为22.68 keV,带宽(BW)为0.1%。
对于多晶衍射而言,来自变形样品的衍射环携带有物相、应变以及强度信息。正如我们最近所报道的那样[51],通过适当设计的衍射探测几何,就能运用辛格理论[111]从衍射环推导出体应变和残余强度。
图5(a)展示了冲击压缩下动态X射线衍射的实验几何。ψ表示衍射晶面法线和加载方向之间的角度,可以从衍射角和方位角计算得到。ψ在二维探测器上的分布如图5(b)所示。此外,根据布拉格定律从2D衍射图样中提取出来的晶格间距dm(hkl)也与ψ相关。
式中,dp(hkl)表示等效静水压下的特定衍射晶面(hkl)的晶面间距;Q依赖于强度、残余强度和单晶弹性模量。残余强度t由式t = 6G〈Q(hkl)〉f给出,其中,G是剪切模量,参数f 对所有晶体来说都约为1。
为模拟平板冲击下的加载-衍射-探测几何,我们将多晶α-RDX样品单轴压缩至5%。冲击压缩前后的衍射图分别如图5(c)和(d)所示。拟合常压下的衍射环可得Q = 0,与预期的零残余强度和零体积应变吻合。而拟合冲击压缩下的衍射环则给出残余强度为t =0.88 GPa,剪切模量G = 7.83 GPa [112],也与预设的5%体积应变吻合。因此,与金属类似[51],辛格方法也可用于获得冲击压缩下含能材料的体积应变和残余强度。
2.3.2. 相干衍射成像(CDI)
单个晶粒或颗粒代表了含能材料的最小结构成分,它们的大小、形状和内部缺陷会显著影响含能材料的性能[113]。例如,“晶粒尺寸”对高能炸药冲击感度的影响已有广泛研究[114]。同时也有一些通过减少晶体缺陷来降低冲击感度的尝试[115,116]。因此解读单颗粒的结构和动力学问题与含能材料的合成、处理和表现直接相关[113,117]。
相干X射线衍射成像技术,尤其是布拉格相干X射线衍射成像(BCDI)和平面波相干X射线衍射成像(PCDI),是一系列具有亚纳米和纳米级空间分辨率的新型X射线显微镜[118,119]。BCDI通过轻微旋转晶粒用以研究单晶晶粒的三维布拉格节点分布[图6(a)],并解析其三维结构、三维应变以及包括孪晶和位错在内的内部缺陷[119–122]。对在一个布拉格节点附近的散射矢量q来说,其散射强度I(q)可以写成
图5. 基于25 keV单色X射线的冲击压缩下多晶RDX的X射线衍射模拟。(a)加载和衍射几何,ψ表示冲击方向与特定衍射晶面的法线(n→)之间的夹角。(b)垂直于入射X射线的二维探测器上ψ的分布。未压缩(c)和5%压缩下(d)多晶α-RDX的X射线衍射。
图6. (a)CDI原理示意图。ki和kf分别表示入射和出射的X射线波矢。q代表衍射波矢。(b)具有单个孪晶的Cu样品的模拟倒易空间。qx、qy和qz是倒易空间的三个基矢。(c)从(b)中数据重构的结果。(d)金黄色葡萄球菌的代表性衍射图和重建图像。(d)经Springer Nature ©2016许可,转载自文献[130]。
式中,ρL(r)是晶格的电子密度;s(r)是晶体的形状函数;而u(r)代表原子与理想晶格位点相比的位移场。PCDI旨在通过探测相干散射的X射线从而重构出一个独立的晶体或非晶颗粒[123–125] [图6(b)]。不同于BCDI,PCDI的散射强度I(q)仅由粒子的电子密度分布函数ρ(r)决定,表达式为
尽管迄今为止CDI很少应用于含能材料,但它独具潜力。BCDI探测的单颗粒可以是多晶块体中取出来的,也可以是嵌在聚合物基体中的(如PBX)。对一个单独的颗粒来说,CDI能获得其三维结构、三维应变和内部缺陷等信息。此外,针对无机/金属纳米颗粒建立起的方法学和实验装置[126,127]可以直接应用于含能材料颗粒。对于多晶块体或聚合物基体中的单个晶粒来说,上述信息也可用于推断颗粒-颗粒和颗粒-黏合剂之间的相互作用。如文献[119,128]中所述,外加载荷下颗粒的响应和缺陷的动力学过程也可以通过原位BCDI来测量。考虑到进行含能材料BCDI实验的复杂性,先进的仿真工具(如GAPD)[108]成为实验设计和数据解读的关键。图6(b)展示了用GAPD计算的Cu纳米棒三维布拉格节点分布,其内部孪生缺陷可以被很好地重构出来[图6(c)]。当然,由于样品需要旋转,对于高速或超快测量而言,BCDI可能不太现实。而且,辐射对含能材料的损伤严重限制了入射X射线的通量[129]。
在X射线自由电子激光发出的飞秒级强X射线脉冲下,单脉冲PCDI已被证明能够以约10 fs的时间分辨率解读瞬态纳米尺度动力学过程[125]。图6(d)展示了自由电子激光单脉冲探测的细菌,以及相应的二维重构结果[130]。单脉冲PCDI也被用来研究蔗糖纳米球的爆炸动力学,并在泵浦后500 fs~1 ps观察到明显的样品膨胀[131]。考虑到蔗糖和有机炸药之间的相似性[132],这样的探测手段也可以扩展到含能材料。这里的泵浦可以是光学激光器,也可以是自由电子激光的X射线脉冲。对于采用分束时延方式的X射线泵浦和探测,第一束X射线脉冲可对颗粒点火并同时进行结构分析,而第二束X射线脉冲可以以一定的延迟探测点火/爆炸动力学[131]。此类实验使我们能够解读单个颗粒的生长、燃烧或爆炸动力学[113,133–135]。
2.3.3. X 射线小角散射
制备与加工引入的从纳米到微米尺度的不均匀缺陷[图7(a)]会显著影响含能材料的安全性和服役表现[141–144]。此外,爆轰过程也会产生纳米级产物。例如,固态碳颗粒被认为是富碳高能炸药爆轰的主要产物之一[图7(a)] [145–147]。在动态加载前后对这类纳米结构的形成和生长动力学进行表征,对建立含能材料的结构-性能关系以及对其物理和化学机制的理解具有十分重要的意义。
X射线小角散射(SAXS)对物质内部数纳米至微米尺度范围内的电子密度变化(或衬度)很敏感,非常适合在这些空间尺度上对含能材料进行结构表征。SAXS测量可以无损地获得丰富的信息,如颗粒尺寸分布(单分散或多分散)和孔洞形貌(开放或封闭)。对于由颗粒或孔洞组成的电子密度衬度为Δρ的单分散系统来说,颗粒的回转半径Rg和表面积S可以分别通过Guinier方法:
和Porod定律获得:
图7. SAXS测量揭示含能材料的结构不均匀性及其动力学。(a)爆轰模型示意图及该过程中涉及的亚微米结构。爆轰过程的化学分解发生在化学反应区(CRZ)。PN和PCJ分别表示峰值压力和在Chapman-Jouguet面(化学反应停止处)的压力。(b)利用Guinier方法和Porod定律从SAXS曲线获取颗粒/孔洞的尺寸和表面积。(c)利用SAXS谱拟合方法得到颗粒/孔洞尺寸分布函数(PVDF)。(d)纳米含能材料(nanoEM)的典型形貌。(e)不同纳米结构的SAXS曲线。(f)由具有择优取向的纳米棒组成的密实系统对应的各向异性SAXS谱。(c)经International Union of Crystallography ©2019许可,转载自文献[136];(d)分别经Elsevier ©2016,©2020,©2017,©2017许可,转载自文献[137–140]。
式中,I是散射强度;q是散射矢量的模。对于多分散系统,颗粒尺寸分布可以通过对散射曲线的拟合获得[图7(c)]。
SAXS已成功应用于获取高能炸药粉末和压装药柱的内部孔洞和颗粒表面积以及颗粒尺寸分布[148]。例如,基于同步辐射的原位SAXS测量表明,热循环会导致1,3,5-三氨基-2,4,6-三硝基苯(TATB)基PBX内部的孔洞尺寸和孔隙度增加[149],该项工作是原位SAXS在表征PBX制备中的典型应用。高亮度的先进X射线光源使我们能够研究瞬态过程[46,150]。基于同步辐射或X射线自由电子激光的时间分辨SAXS(TR-SAXS)测量,有望解决某些悬而未决的问题,尤其是那些由于其超快特性而缺乏适当诊断工具的难题。例如,文献[151–153]报道了基于同步辐射的粉红光TR-SAXS测量,探索了爆炸后固态碳颗粒的形成机理,同时也严格证明了粉红色光进行超快SAXS测量的可行性[154]。最新研究表明,金刚石颗粒在爆炸后300 ns内形成并缓慢生长[155,156]。结合TR-SAXS与XRD测量,同时X射线散衍射测量有望被用于上述过程的研究。
纳米含能材料(nanoEM)代表了一系列具有高能量密度和出色燃烧性能的含能材料[134,157,158]。纳米含能材料可具有多种形貌[图7(d)],如球[159]、棒/线[160]、网络[161]、层状[162]以及核-壳结构[163,164]等。SAXS在表征这些纳米结构方面具有独特优势[图7(e)],可获取颗粒尺寸分布和纳米棒半径等信息。值得一提的是,先进的模拟工具如SLADS [165]和GAPD,可为SAXS信号解读提供很大的帮助,尤其是那些无法用传统的模拟/分析方法建模的纳米结构。这两个代码能够计算出体系巨大且各向异性的密实纳米颗粒系统的散射谱。图7(f)展示了由具有择优取向纳米棒粒子组成的致密系统对应的各向异性SAXS谱。
由于含能材料中许多物理和化学过程本质上是多尺度的,因此在单次实验中急需获得多个空间尺度上的信息。原则上,可以将单独的“相同”实验整合起来以获取不同空间尺度的数据。但是,实际上没有两次实验是完全相同的。因此,同步多尺度测量从实验严密性角度来说有巨大优势,并且可以桥接在不同尺度上的测量结果,揭示不同空间尺度上的物理机制。
在X射线诊断的三种主要类型中,即成像、衍射和散射[图1(a)],可以通过两种或三种类型的结合(如XRD + PCI和XRD + SAXS)来获得微观和介观尺度的信息。此外,常规的宏观探测技术,如激光干涉技术、应变计或应力计则可用于宏观测量。因此,原则上,微观尺度、介观尺度和宏观尺度的探测可以在单次实验过程中同步执行。在这里,微观尺度可以广义地定义为晶格和纳米尺度。
对于XRD + PCI测量,微观尺度(晶格水平)和介观尺度(如在应变场方面)的信息可以分别通过XRD和PCI获取。例如,XRD和PCI联合技术已被用于研究带织构的镁合金AZ31 [57,166]:XRD揭示了变形孪生的出现与消失,PCI揭示了应变局域化的增加速率的变化,而应力-应变曲线(从应变计获得)则显示出不同的应变率硬化特征。这种同时的多尺度测量首次严格揭示孪生抑制了应变局域化的生长,进而导致镁合金AZ31应变率硬化增强的微观机制。这种探测的同时性可以建立有用的跨尺度关联并揭示内在机制。XRD +SAXS测量有助于获得纳米粒子的相结构和尺寸信息,并且可以用于理解爆炸产物(如碳冷凝物)的相结构、尺寸和动力学。更重要的是,同时多尺度测量也适用于含能材料。
THz波段位于电磁波谱的微波和中红外波段之间,覆盖0.3~10 THz(或10~300 cm–1)[47]。含能材料的特定振动模式产生独特的THz特征谱,这些特征谱可用于探测和鉴定含能材料[168]。此外,THz光谱可测得含能材料的吸收系数和折射率[169]。进一步地,含能材料分子构型的微小变化也可改变太赫兹特征谱。因此,THz光谱可反映含能材料在外界刺激下的动态化学和物理响应。
近年来,含能材料的太赫兹光谱已延伸到低温条件[170,171]。例如,图8(a)展示了利用THz时域光谱测试RDX单晶沿[002]方向上在77~300 K温度范围内的THz吸收谱。当温度升至大约200 K时,RDX在0.5 THz左右的吸收峰消失,显示可能存在相变。Melinger等[170]使用THz时域光谱测试了RDX薄膜在13~293 K温度范围内的THz吸收谱。在80 K以下,RDX薄膜有超过10个THz吸收峰。在80~293 K温度范围内,THz吸收谱只在0.84 THz有吸收峰,并且该吸收峰随温度上升变弱和变宽。但在图8(a)中,RDX单晶[002]取向的吸收峰在0.5 THz附近变弱乃至消失。Damarla等[172]报道了特氟隆基体中RDX粉末在303~573 K温度范围内的THz吸收谱。随着温度上升,RDX在0.84 THz附近的吸收峰在378 K变宽,显示热致裂解。
图8. (a)RDX沿[002]方向的温度相关THz吸收谱。(b)冲击加载下氩气稀释甲烷的辐亮度(GW·m–3·Sr–1)。(c)在氩气气氛中激光烧蚀硝基甲烷的CN分子发射谱。L是纵向位置。(c)经Elsevier ©2020许可,转载自文献[167]。
尽管THz吸收光谱已应用于静高压下的分子晶体,但是其还未被扩展至动态加载[173]。作为一种线性吸收光谱技术,THz吸收光谱的探测灵敏度要高于其他非线性光谱技术,如相干反斯托克斯拉曼光谱和拉曼光谱[174]。因此,THz吸收光谱在研究冲击压缩下含能材料方面具有重大的潜质。
由于具有很高的时间分辨率[175],光谱已经被用于研究含能材料的动态化学和物理过程。超快吸收光谱和拉曼光谱,包括紫外/可见吸收光谱[176]、红外吸收光谱[177]、拉曼光谱[178]和相干反斯托克斯拉曼光谱[179,180]等,时间分辨率分别可以达到探测激光的脉冲宽度(数十飞秒)。相反地,超快发射光谱(如高温计和LIBS)的时间分辨率主要受到探测器的限制,如条纹相机为1~100 ps [181,182],光电倍增管为亚纳秒。
基于光电倍增管的高温计通过不同的波长或通道采集光谱辐射,然后利用普朗克定律根据温度或波长依赖的发射率来推导冲击温度[32]。图8(b)展示了利用40路高温计采集冲击下氩气稀释甲烷的光谱辐射结果,通过辐射强度增加推断出在4500 ns发生点火。
Bouyer等[183]采用16路高温计采集了硝基甲烷数纳秒内的冲击转爆轰过程。他们清楚地观察到冲击转爆轰过程的不同阶段,包括冲击进入、超爆轰、强爆轰和稳定爆轰。
在LIBS技术中,一束脉冲激光聚焦到样品表面并烧蚀样品,产生用于发射光谱的微等离子体。基于分子和原子发射线,LIBS主要用于鉴定和检测含能材料[184,185]。双纳秒激光脉冲[186]或飞秒激光脉冲[187]常被用来提高LIBS灵敏度和选择性。时间分辨LIBS也被用来研究激光烧蚀中含能材料的化学反应机理[185,188,189]。近年来,Zhao等[167]使用飞秒LIBS研究了硝基甲烷在氩气或氮气气氛中的原子和分子发射光谱。他们确定了CN、C2和NH等分子的电子带以及CI、NI和Hα的原子跃迁线[图8(c)]。假设局域热力学平衡[191],通过以下公式可拟合CN分子的振转温度:
式中,I是发射强度;n、v和J分别是主量子数、振动量子数和转动量子数;Ce是发射系数;h、c和kB是普朗克常量、真空光速和玻尔兹曼常量;v͂J′,J′′是跃迁波数;Trot和Tvib是转动和振动温度;Qrot是转动配分函数;qv′,v′′和SJ′,J′′是弗兰克-康登系数和Hönl-London因子;F′和G′是转动和振动能量。
LIBS仅能检测少量的原子和分子,通过与敏感痕量气体技术(如质谱法)结合可扩展其检测能力[190]。例如,Civiš等[190]结合LIBS和选择离子流管质谱法研究了二氨基二硝基乙烯(FOX-7)激光烧蚀下的反应机理。选择离子流管质谱法鉴定了激光烧蚀微等离子体中的12种稳定气相物种。LIBS确定了C、H、N等原子和CN、OH、NO等分子。结合这两项测试结果,Civiš等提出了FOX-7在激光诱导击穿过程中的裂解机理。
激光诱导等离子体快速扩张产生的冲击波会干扰微等离子体中的分子形成[31]。例如,Harilal等[31]研究了在等离子体前端产生的冲击波影响下激光烧蚀铝中的分子形成机理。在等离子体扩张的初始阶段,冲击波通过阻止氧气进入微等离子体从而抑制铝的燃烧过程。在冲击波消失后,分子形成逐渐占主导。Hori等[191]利用条纹相机获得了激光诱导空气产生微等离子体中的时间分辨单发激光诱导击穿发射谱。Rabasovic等[192]使用基于条纹相机的激光诱导击穿光谱跟踪了激光诱导空气产生微等离子体快速扩张中最亮的位移,获得了35 km·s–1的等离子扩张速率。因此,LIBS可用于激光烧蚀下含能材料研究。
超快成像干涉法能对动态加载下的位移/速度进行时间和空间(一维或二维)分辨测量,这有助于将结构上的非均匀性和波阵面的不平整性与潜在的热点成核联系起来。这些干涉诊断方法包括一维线VISAR [193]、二维VISAR [194]和TIDI [195]。TIDI/二维VISAR能够获得表面(或界面)的离面位移/速度场。它们的最高时间分辨率可以达到探测激光的脉宽或探测器的时间分辨极限(飞秒至纳秒)[196,197],而空间分辨率通常为1~10 µm。TIDI的位移灵敏度和VISAR的速度灵敏度大约为10 nm及10 m·s–1。
TIDI系统中含有探测和参考两个光路(光臂),且探测光路的相位会随着样品对外部加载响应的变化而改变。两个光臂的干涉结果由二维探测器所记录,为
式中,I为光强;r为反射系数;f0为初始条纹频率;Φ为加载导致的相移。位移场可以通过解出Φ得到:
式中,λ0为探测光的波长;θ为入射光的倾斜角度。对于二维VISAR,两个光路从相同的样品处采集回光,但在参考光路中放置了一个标准具来引入时间延迟。
TIDI和二维VISAR已被用于测量金属的动态响应,而这些成功案例显示了它们在含能材料领域的应用潜力。图9(a)展示了一幅多晶材料在冲击加载下的TIDI条纹图和对应的位移场[198]。该离面位移场展示了位移梯度和相应波阵面的非均匀性,而该非均匀性是由加载的轻微扭曲(整体的趋势)和局部的晶体结构(局部的涨落)导致的。TIDI在研究含能材料中结构非均匀性对冲击响应的影响,尤其是和热点相关的热力学过程时大有前景。
借助条纹相机,线VISAR能够通过记录探测激光的多普勒频移得到一条直线上的速度场。该干涉仪由两个光路组成,其中一个光路中放置有标准具。由该标 准具导致的时间延迟使两个光路产生相差。线VISAR的典型时间、空间和速度分辨能力分别为1 ns、10 μm和20 m·s–1。图9(b)展示了利用线VISAR测量激光冲击铝样品的典型结果[199]。结果表明,线VISAR测量了自由面速度场(一维)和冲击波阵面的不平整性。尽管不平整性并不突出,但线VISAR的高时空分辨能力为超快测量具有多尺度结构非均匀性的含能材料(如PBX)的波阵面非均匀性提供了可能。
图9. 动态成像干涉技术。TIDI:冲击下铜的条纹图(a)和相对应的面外位移场(b)。线-成像VISAR:激光冲击下铝的条纹相机拍摄结果(c)和相应的速率历史(d)。(a)、(b)经AIP ©2007许可,转载自文献[198];(c)、(d)经Springer Nature ©2020许可,转载自文献[199]。
我们简要回顾了在多时空尺度下研究含能材料的X射线、太赫兹和光学诊断技术,包括二维和三维X射线成像、X射线衍射、相干X射线衍射成像、X射线小角散射、太赫兹和光学吸收/发射光谱以及一维和二维速度/位移干涉技术,并着重探讨了它们的时间和(或)空间分辨能力。我们介绍了探测和数据分析的基本原理并辅以示例说明。总体而言,所讨论的这些技术在含能材料的研究中拥有巨大的潜力,但还需多学科共同努力来定义科学问题和工程问题,从而进行实验设计、数据分析和解读以及多尺度建模。
致谢
我们感谢PIMS X射线小组的贡献。本工作得到国家自然科学基金项目(11627901和11802252)资助。
Compliance with ethics guidelines
Yiyang Zhang, Sen Chen, Yang Cai, Lei Lu, Duan Fan,Jinchun Shi, Junyu. Huang, and Sheng-Nian Luo declare that they have no conflict of interest or financial conflicts to disclose.