辽宁经纬工程管理有限公司
雷电天气通常都是伴随雨季而来,而雷击对配电线路的影响也最大,在配电线路的日常运行中,通常会遭受雷击导致跳闸。如何加强配电线路抗雷能力,就成了当下电力行业发展重点关注的课题。雷击天气具备较高的不确定性,在雷击到来之前进行防护并不现实,因此,加强配电线路的抗雷能力就成了当下电力企业的主要任务。由于雷击电压较大,速度较快,所以会对线路造成较为严重的影响,当前配电线路的事故中,雷击导致的跳闸问题占所有事故的三分之一,也就是说,提升配电线路的防雷能力是当务之急。
通过对电力系统的故障检测结果发现,雷击给架空输电线路带来的供电故障不在少数,尤其是在那些雷电频繁发生的地区,只要发生电力系统故障,基本上都是由雷击造成的,人民日常生活也深受其害。另外,在山区地段,由于地理位置的原因,传输线会在大山上起伏架设,因此传输线会出现很大的垂直高度差,这就给冷热空气提供了很好的交替场所,空气对流现象频繁,传输线容易受到闪电的侵袭。因此,在线路的初步设计中,有必要考虑防雷结构的设计并阐明其合理性和重要性。
随着我国高压供电线路工程技术的飞速发展,对高压输电线路的防雷工作也提出了更高标准的要求,这就需要电力企业采取综合有效的防雷措施,具体可以从以下5个方面入手:①降低塔杆的高度和塔顶的电位,进而降低实际接电电阻,提高供电线路的防雷水平;②不断提高高压供电线路的绝缘配合水平,进而加强对供电线路的绝缘保护;③调整保护间隙,通过利用电弧闪络加强对绝缘子的保护,进而避免输电线路被雷电击中;④增设防雷装置,如避雷针等,提高输电线路的防雷屏蔽能力;⑤在重污秽和重腐蚀地区选用新型耐腐蚀的地线,以提高地线使用年限,延长防雷效果。
配电线路的抗雷能力取决于节点电阻的大小,接地电阻越小,雷电通过导线的性能就越高,雷电对配电线路造成的影响就越小,防雷性能就越好。因此,在对既有杆塔的接地线进行更迭时,就要根据杆塔所在地区的生态环境以及天气信息尽量低的设置电阻,以此加强接地线的导电能力,减少雷击对配电线路的影响。同时,该种方法也是最为直接的减少雷击事件的方法,且需要的施工成本也最低,线路的磨损也较小。
在进行雷电防护过程中,发现有些电力杆塔的位置很高,因此闪电发生的位置会与高压塔线之间的距离非常接近,甚至是直接与塔线平行,在这种情况下,塔所在的电磁环境极其复杂,如此近距离的接触也大大增加了因雷击而跳闸的概率。为了更好地应对这种状况,考虑在塔架上安装侧向避雷针。具体的方法与途径是在10kV架空传输线的两极安装侧向的避雷针,同时在避雷针上增设绝缘体,目的是在引入雷电的同时提高绝缘效果,希望通过这个侧向避雷针来减少雷击现象的发生。
接地电阻增加的原因主要分为四种,分别是接地体腐蚀、雨水冲刷、施工时化学降阻剂性能不稳定以及外力破坏。接地体腐蚀主要发生在土质属酸性的土壤中,由于接地体长时间与突然接触,长期的腐蚀极易导致接地体的导电性能降低,有时甚至会发生接地体无法与地面良好连接的情况,导致雷击事故发生时无法将电流导入地下。解决这种问题的最佳方式就是使用扛腐性能好的材料做接地体外表皮,并且通过喷洒肥料等方式改变酸性土壤。雨水冲刷问题多发生于雨季较多的山区,长时间降雨导致埋土深度较浅的接地体暴露在表面,甚至悬浮在空中。在杆塔下半部分用水泥以及钢筋加固土壤即可。降阻剂问题,在施工过程中使用化学降阻剂,往往会因为降阻剂的质量问题以及降阻成分流失等问题造成杆塔接地体电阻增加,解决该问题只要适当检查接地体的电阻,并适时进行检修即可。外力破坏问题,外力破坏主要分为人为破坏和环境破坏,人为破坏就是接地体被盗,该类问题会直接让配电线路丧失抗雷能力,并且增加了配电线路的维护成本。环境破坏则是由于山体滑坡、滚石等原因造成的不可预知的破坏。可以在杆塔附近围上较高的铁丝围墙,以此避免接地体被盗或者破坏。
加强高压供电线路检修工作,可以采取以下措施:①对雷害故障发生较为频繁的地区,采取常态化监测,对频繁发生雷击的杆塔采取针对性的防雷措施;②加强常态化的运维检修工作,在日常运维检修过程中对线路产生的问题早发现,早排除;③加强对带电工作的推广,从而促进带电作业标准化进度。
首先是加强电力系统的建设,其次是必须要对高压供电线路进行定期的维护和修理,另外还有一些相应措施也可以实施,如改进防雷机制,改善线路的耐久性和绝缘性,以及施工改进应按照国家有关规定和相关电力规范进行等。通过这些有效手段可以保证国家电力系统的安全稳定运行,可以全面提高电网的工作效率,可以为国民经济的发展和建设服务。