大米适度加工和副产物综合利用现状及展望

2020-12-22 01:01:05赵志浩邓媛元魏振承唐小俊周鹏飞张名位
广东农业科学 2020年11期
关键词:米糠糙米精度

赵志浩,邓媛元,魏振承,刘 光,李 萍,唐小俊,张 雁,周鹏飞,张名位

(广东省农业科学院蚕业与农产品加工研究所/农业农村部功能食品重点实验室/广东省农产品加工重点实验室,广东 广州 510610)

水稻是我国乃至世界最重要的粮食作物和战略物资之一。我国水稻种植面积居世界第二位,仅次于印度,总产量居世界第一位。据国家统计局统计,2019年我国水稻播种面积2 966.7万hm2,稻谷单产为7 065 kg/hm2,总产量达2.096亿t。我国超过2/3的人口以大米作为主食,水稻消费量占口粮消费总量的6成以上。近年来,我国稻谷总消费量持续增长,但伴随主食消费量的持续下降,稻谷的食用消费量稳中略降,工业用及饲料用稻谷消费量增加。国家粮油信息中心数据显示,2018年我国稻谷消费量达1.93亿t,其中食用消费量为1.59亿t,占总消费量的82.38%。

随着经济、社会的发展和居民生活水平的不断提高,消费者对大米口感和外观品质的要求越来越高,大米加工业长期存在过度加工现象,“亮、白、精”的大米商品成为倍受市场青睐的消费主流。大米过度加工造成了稻米资源的巨大浪费,增加了电耗、水耗和污染物的排放,还损失大量营养成分,对我国的粮食安全和国民健康造成一定威胁。《农业部关于加强粮食加工减损工作的通知》中指出,我国每年因过度加工损失的粮食达到750万t以上,成为影响国家粮食安全和制约农业增效、农民增收的重要因素。中国营养学会制定的《中国居民膳食指南》中指出,稻米等谷物的过度加工导致了膳食纤维与B族维生素的大量损失,并推荐增加对全谷物等低加工精度谷物食品的摄入。同时,稻谷加工过程中产生的米糠和稻壳等副产物未能得到充分、有效利用,尤其缺乏高值化深加工产品,造成了副产物的资源浪费和环境污染,制约了大米加工行业的结构调整和整体效益提升。因此,大米的适度加工和加工副产物的综合利用是保障国家粮食安全,促进居民营养健康膳食,延长大米加工产业链、拓宽大米加工转化增值空间,提高资源综合效益的有效途径。

1 我国大米加工产业现状和发展方向

1.1 产业现状

稻谷籽粒包含外层稻壳和内部的颖果,颖果又称为糙米,由外向内具有果皮、种皮、珠心层、糊粉层等多个皮层结构,皮层内包被着胚和胚乳。稻谷经砻谷脱壳加工成为糙米,再经碾磨、抛光、筛选加工后成为精米。因过度迎合消费者对大米口感和外观的需求,大米加工业长期存在过度加工现象。糙米的过度加工降低出米率和整精米率,造成稻米资源浪费,抛光次数每增加一次,稻谷出米率将会降低1%。我国稻谷出米率约为65%,比大米加工出品率较高的日本低3%~5%。据估算,我国稻谷加工环节的损失率高达20%,每年稻谷损失近350万t[1],过度加工是主要原因。在糙米加工过程中被碾削、脱除成为米糠的果皮、种皮、糊粉层和胚等组成部分含有脂肪、蛋白质、膳食纤维、维生素、矿物质以及甾醇、酚类、谷维素等物质,营养价值远高于精米。过度加工还造成了能耗、水耗和污染物排放的增加。因此,大米过度加工严重威胁国家粮食安全,同时也对国民健康和节能减排产生不利影响。

此外,稻米加工副产物的精深加工和综合利用水平较低,制约了稻米加工业的高值化发展。每年稻米加工所产生的4 000万t稻壳、1 400多万t米糠等有价值的副产品尚未得到有效的开发利用,通常用于饲料、燃料等低附加值用途,甚至被直接丢弃或者露天焚烧,造成资源浪费和环境污染。综上所述,过度加工和副产物综合利用不足制约了行业整体提质增效和健康发展,是大米加工业亟待攻克的瓶颈问题。

1.2 发展方向

近年来,我国积极推动大米适度加工和副产物的综合利用。《国家粮食安全中长期规划纲要(2008—2020年)》指出要完善粮食加工体系,提高粮油食品加工副产品的利用率和增值效益。《粮油加工业发展规划(2011—2020年)》指出大米加工业存在产业结构不合理和过度加工的问题,要提高留胚米、发芽糙米、营养强化米等产品比重,充分利用米糠、碎米和稻壳等资源。2016年发布的《粮食行业“十三五”发展规划纲要》指出,要以供给侧结构性改革为主线,实施“绿色健康谷物口粮工程”,提高粮食加工副产物综合利用率,加快推进大米、小麦粉和食用植物油的适度加工,并制定了米糠综合利用率达到50%的发展目标。2019年5月1日正式实施的大米新国标(GB/T1354-2018)提出了“精碾” “适碾”的概念和判定标准,在优质大米判定标准中也降低了对总碎米量的要求,如一级优质籼米的总碎米量由旧版国标≤5%调整为≤10%。新国标这些变化对适度加工进行了引导和规范。综上所述,大米加工业正在积极推动适度加工和副产物的综合利用,对于保障国家粮食安全、促进行业整体提质增效和健康发展具有重要意义。

2 加工精度对大米营养、活性物质和食用品质的影响

大米的加工精度是指加工后米胚和皮层的残留程度,加工精度越高,米胚和皮层的残留越少。糙米碾磨过程中,伴随着加工精度的不断提高,米粒各化学成分的组成比例逐渐发生变化,加工精度不仅影响大米营养成分,也会对活性成分和食用品质等产生影响。

2.1 对营养成分的影响

糙米中营养成分的分布不均匀,膳食纤维主要分布于皮层,脂肪和维生素主要分布于糊粉层和胚,淀粉和大部分蛋白质主要分布于胚乳,糊粉层和胚中也分布有少量的蛋白质。糙米碾磨过程中,营养成分发生不同程度的损失,糙米碾磨成精白米,大约损失了85%的脂肪、15%的蛋白质、75%的磷、90%的钙和70%的B族维生素[2]。但营养素的损失程度和加工精度并不呈近似线性的规律,而是与稻米品种关联密切。谢有发[3]研究发现,大米碾减率在0~6%范围内,脂肪、蛋白质含量下降明显,2个品种大米的脂肪含量分别降低了62.7%和82.3%,蛋白质含量分别降低了22.68%和15.87%,淀粉含量则分别提高了4.14%和2.95%;碾减率由6%增加到10%过程中,上述成分含量变化幅度不明显;维生素和微量元素也有类似的变化规律。贺财俊[4]分析了加工精度对籼米营养品质的影响,发现随着碾磨程度的增加,籼米的灰分、脂肪、膳食纤维、维生素和微量元素含量呈明显下降趋势,直链淀粉和总淀粉含量显著上升,且在0~30 s的碾磨时间内变化幅度最大,提出碾磨时间40 s(相当于旧版国标的二级大米)可能是营养和外观品质的平衡点。

植酸是谷物中磷元素的主要存在形式,糙米的植酸主要存在于糊粉层中,碾磨过程其含量显著降低。长期以来,植酸被认为是谷物中主要的抗营养物质,能够抑制蛋白质和二价金属离子等营养成分的吸收,甚至造成相关营养素的缺乏症。但近年来的研究发现植酸具有抗氧化、抗炎症、抗菌以及预防癌症等多种生物活性[5-8],大米加工过程中植酸含量的降低对糙米营养价值的影响仍有待进一步研究。

2.2 对活性物质的影响

流行病学研究表明,糙米等全谷物食品的摄入能够预防多种与饮食和年龄相关的疾病,如II型糖尿病、心血管疾病、肥胖和多种癌症[9-12]。Aune等[13]通过META分析制定了增加全谷物摄入量(至少每天3次或75 g)以降低患慢性疾病风险的膳食指南。全谷物饮食能够降低20%~30%的II型糖尿病风险,其机制途径主要包括降低餐后血糖和外周胰岛素抵抗[14]。全谷物和全谷物制品的摄入量与肥胖风险呈负相关[15-16],每天摄入3份(48 g)以上全谷物食品的消费者具有较低的体重指数、较小的腰围和较低的体脂水平。另有多项研究表明,膳食中全谷物的摄入量和心血管疾病的发病率之间呈现显著的负相关[11-12,17]。此外,全谷物中植物化学物、微量营养素和宏量营养素之间的协同增效作用有助于降低肥胖相关的主动脉硬化[18]。世界癌症研究基金会的报告也指出,食用全谷物(90 g/d)可以降低结、直肠癌的风险,其作用机制可能包括抗氧化作用、维持血糖稳态调控细胞信号通路影响癌细胞的增殖、凋亡和入侵等[19-20]。糙米等全谷物营养均衡,可作为临床营养品基料、提供临床营养支持[21]。

各种代谢性疾病都与不健康的膳食习惯有关,主要是饮食中缺乏膳食纤维、微量营养素和有益的植物化学物质等。全谷物营养健康效应的物质基础,除膳食纤维之外,还包括糠麸和胚芽中富含的多种植物化学物,这些活性物质具有抗氧化[22]、抗炎症[23]、调节肠道菌群[24-25]等作用,且不同物质之间具有协同增效机制,从而对多种疾病呈现保护作用[26-28]。例如,Zhang等[29]探究了糙米中结合态酚类物质改善糖代谢的作用及其机制,发现糙米中结合态酚类物质与米糠膳食纤维以共价结合形式存在,米糠膳食纤维中的结合态酚类物质是其发挥改善糖代谢作用的必要成分,其作用机制为结合态酚类物质通过调节肠道微生态、增加肠道和循环系统中的丁酸水平,激活骨骼肌IRS1/AKT/GLUT4胰岛素信号通路,促进骨骼肌对葡萄糖摄取和利用。

糙米在碾磨过程中酚类、花青素、谷维素和生育酚等活性成分的含量显著降低,进而减弱其抗氧化等功能活性。与糙米相比,碾减率为2.67%、7.25%和9.60%的大米中酚类物质分别降低了21.1%、42.6%和55.6%,其抗氧化值相应地降低了37.4%、84.0%和92.8%,除总量降低之外,酚类物质的组成比例也发生了变化[30]。Laokuldilok等[31]研究发现,碾磨10 s的黑米能够满足适口性要求,同时保留较高的营养成分和抗氧化活性成分,虽然碾磨10 s后其花青素、γ-谷维素和α-生育酚的含量分别降低了74.49%、55.35%和 70.36%,但黑米提取物的抗氧化活性降低相对缓慢;当碾磨时间超过30 s后,抗氧化活性急剧降低。Rerkasem等[32]研究发现,紫米中花青素的含量随着碾磨时间的延长整体呈降低趋势,但不同品种之间具有明显差异;4种紫米花青素分布不同,其中两种紫米的花青素在表层含量最高,而另外两个品种的花青素在表层以下含量最丰富,在碾磨15 s后其花青素含量有所上升;在碾磨30 s后,其中3个品种的花青素含量分别降低了47.7%、73.7%、23.4%,另外一个品种已经检测不到原花青素。因此,需要针对不同稻米品种、不同活性成分进行系统的碾磨精度研究才能实现精准加工。

2.3 对食用品质的影响

大米的食用品质是指大米在蒸煮和食用过程中的各种理化和感官特性。碾磨对大米的食用品质影响较大,碾磨程度过低大米适口性差,而碾磨程度过高又会造成营养成分大量流失以及粮食和能源的浪费。因此,适宜的加工精度对于大米营养价值和食用品质的平衡非常关键。在碾磨初期,米饭的黏度、弹性显著升高,硬度、咀嚼性和回生值显著降低,外观评分、感官评分以及综合评分均显著提高;当碾磨至一定程度后,米饭的质构特性和感官评分趋于稳定,有研究结果显示旧国标中二级大米的加工精度(即背沟有皮、米胚和粒面去净占85%~90%)可能是大米食用品质趋于稳定、达到营养和感官的平衡点,但在新国标中,该加工精度属于精碾范围[4,33]。这也反映了过去很长的时期内,消费者对大米的食用品质过于苛求。此外大米的食用品质也较大程度地受到品种的影响,因此,最适加工精度需要根据大米品种进行分析判定。

3 大米加工精度检测方法

大米新国标将加工精度分为精碾和适碾。精碾大米背沟基本无皮,或有皮不成线,米胚和粒面皮层去净的占80%~90%,或留皮度小于2.0%。适碾大米背沟有皮,粒面皮层残留不超过1/5的占75%~85%,或留皮度在2.0%~7.0%之间。大米加工精度的测定方法依据其原理可以分为基于留皮度、白度、碾减率和化学组成4类。

3.1 基于留皮度

大米留皮度是指试样在平放状态下,残留皮层和米胚的投影面积之和占试样投影面积的百分率。米粒皮层、胚和胚乳对伊红Y-亚甲基蓝、品红石碳酸溶液和苏丹Ⅲ乙醇溶液等染色剂的亲和力不同而呈现不同颜色,通过人工对比、仪器辅助或自动检测等判定其加工精度。相比较人工对比观测,仪器辅助检测和仪器自动检测法在避免判定的主观性、降低误差、提高检测精度和检测效率等方面具有显著优势。

3.2 基于白度

糙米碾削过程中,伴随米糠剥离,米粒表面越来越洁白光亮,白度不断提高,因此,白度能够在一定程度上反映其加工精度。大米白度的测定可通过目测或者借助白度计等仪器辅助检测。白度计等仪器的使用能够避免目测的主观性,但大米白度仍然受品种、栽培、垩白粒和粉质粒比例等因素的影响,测定结果可能误差较大。因此,基于白度的测定方法需要根据原料特性有针对性地调整判别标准[34],实际应用具有一定难度。

3.3 基于碾减率

碾减率是指糙米在碾削过程中由于皮层与胚的去除而减少的质量百分率,碾减率越高,大米加工精度越高。碾减率的计算有两种形式,一种是基于糙米碾削前后的总质量,即:碾减率(%)=〔1-(精米重量/糙米重量)〕×100;另一种则基于糙米碾削前后的千粒重,即:碾减率(%)=〔1-(精米千粒重/糙米千粒重)〕×100。该方法虽然结果不够精确,但操作简便快捷、无需仪器投入,且基本能够实现客观评判,应用非常广泛。

3.4 基于化学组成

糙米表层结构和内部胚乳的成分差异较大,通过大米的化学组成或由此导致的理化性质差异可判断其加工精度。磷、硫氨素[35]、表面脂肪[36]、粗纤维、总灰分、硅[37]和色素[38]等含量均可判断大米加工精度,一般含量越低,加工精度越高,但同一含量也有可能对应两个加工精度。糙米种皮和糊粉层的脂肪含量高于更外层的果皮[39],碾磨过程中其含量先增加后降低[40],即同一表面脂肪含量可能对应两个加工精度。范玉英等[41]、陈坤杰等[42]分别基于大米浸出液的电导率和特征吸收峰值判定加工精度。这些方法虽然避免了主观误差,但操作复杂、检测时间长、受原料品种等因素影响较大,实际应用较少。

4 大米适度加工技术

大米的适度加工一方面要降低加工精度,提高精米率、降低碎米率、节约能耗;另一方面要提高适度加工大米的蒸煮性能、改善米饭食用品质,以提高消费者对适度加工大米的接受度。

4.1 糙米低精度加工技术

稻谷加工过程中历经多次砻谷,回砻谷和糙米分离不净将导致糙米的过度加工。谢天等[43]开发出重力谷糙分离机和色选机联用的新型回砻谷净化技术,将回砻谷中糙米含量降低至3%以下,使糙碎率下降2%,有利于防止过度加工、减少加工损失。与此类似,新型智能碾米和抛光设备可在线监测加工精度,实现加工精度的精准控制,防止过度加工。糙米皮层中含有丰富的不溶性膳食纤维,主要由纤维素、半纤维素和戊聚糖等成分组成,其中纤维素纤维和木质素相互作用,通过共价和非共价连接形成刚性结构[44],生物酶处理可破坏其结构,改善糙米的碾磨性能。Das等[45]利用木聚糖酶和纤维素酶对糙米进行酶处理,通过2 h酶处理得到的大米具有更高的得率和营养价值,其总固体损失量仅为1.5%(干基),粗脂肪和粗纤维含量分别较糙米降低16%和20%。Sarao等[46]在机械碾磨前利用纤维素酶、木聚糖酶和蛋白酶处理糙米,该酶解预处理使精米产率由64.6%提高到69%,碎米率由5%下降到3.10%,抛光时间和蒸煮时间也显著降低。贾富国等[47]利用非浸泡复合酶法预处理改善糙米碾磨性能,采用纤维素酶和木聚糖酶处理糙米,破坏其皮层粗纤维结构,该方法较加湿调质处理精米率提高3.98%,节约能耗13.06%。酶处理可以提高糙米的碾磨性能,甚至能够取代机械碾磨过程,但是酶剂成本、酶解时间以及可能需要额外的干燥处理制约了酶处理的大规模应用。

4.2 适度加工大米品质提升技术

热处理、超声、等离子体等处理技术均可在一定程度上改善糙米或低加工精度大米的蒸煮性能和米饭的食用品质。温度高于饱和点或沸点的蒸汽称为过热蒸汽,热效性高、含氧量低,在食品加工中具有广泛应用。过热蒸汽处理可有效钝化糙米等谷物中的酶活性,同时还有利于提高其食用品质,因此可用于生产轻碾米。吴建永[48]设计了过热蒸汽-热空气联用设备,在不破坏轻碾米理化性质的同时,对其进行有效的钝酶处理,制备的轻碾米产品具有良好的食用品质和贮藏性能,其营养价值优于精白米。Lu等[49]研究发现,超声处理能够破坏糙米皮层原有结构,降低其蒸煮时间。此外,等离子体处理也能造成糙米表面结构的破坏,使水在浸泡过程中容易被米粒吸收,缩短蒸煮时间、减少蒸煮损失[50]。这些处理方法通过不同方式破坏糙米表面的原有结构,促进水分吸收,改善其蒸煮性能,同时对米饭质构也有一定影响,有待于进一步研究以改善糙米和轻加工大米的蒸煮性能和米饭的食用品质。

5 大米加工副产物的综合利用

5.1 米糠

米糠是糙米碾制成精米过程中产生的副产物,主要包括果皮、种皮、外胚乳、糊粉层和胚等成分,约占糙米质量的8%[51]。米糠营养丰富,含有蛋白、脂肪、多糖、膳食纤维和酚类、甾醇、角鲨烯等活性成分。米糠中脂肪含量约为16%~20%,可经压榨/溶剂浸提制取米糠油,其不饱和脂肪酸达到80%,饱和脂肪酸、单不饱和脂肪酸和多不饱和脂肪酸比例约为1∶2.1∶1.8,与AHA和WHO的推荐比例[52]相近;米糠中蛋白质含量约为8.5%~10%,可用于提取大米蛋白[53],其具有生物效价高、低过敏性等特点,可用于婴幼儿辅食和老年人营养强化食品;脱脂或稳定后的米糠经酶解、发酵等处理,可作为优良的食品基料[54-56]。

米糠由于糊粉层中的脂肪酶在碾磨过程中被释放、与油脂接触,同时迅速被氧气激活,迅速将米糠中的甘油三酯分解为游离脂肪酸,导致酸值快速升高,进一步在氧化酶、光、热等因素的共同作用下发生脂肪酸败。新鲜米糠的游离脂肪酸含量在数小时内即可迅速升高,在最初的24 h内升高至7%~8%,并且以每天5%~10%的速度增长[57-58]。因此,米糠在上述加工利用之前必须要进行稳定化处理,而稳定化的关键在于抑制脂肪酶的活性。

米糠稳定化的方法多种多样,可以分为物理法、化学法和酶法3类。物理法包括直接加热法、微波处理法、挤压膨化法、红外处理法、欧姆加热法、辐射处理法和低温贮藏法等,除辐射法和低温贮藏法外,其他方法主要通过不同物理作用产生高温钝化脂肪酶的活性。物理法中辐射处理法稳定效果不佳,低温贮藏法在恢复到室温后脂肪酶能够恢复活力,稳定效果也不够理想;微波处理法、红外处理法和欧姆加热法处理时间短,有利于活性成分的保留。化学法主要通过向米糠中添加化学试剂或调节酸碱度抑制脂肪酶的活性,常用试剂有乙酸、盐酸、甲醇和二氧化硫等。化学法能够有效稳定米糠,延长其贮藏期,但化学试剂可能造成残留风险,还有可能对营养物质产生不利影响,如酸碱处理可能会造成米糠中淀粉和蛋白质的水解[59],因此其应用受到局限。酶法通过蛋白酶的水解作用使脂肪酶不可逆失活,反应条件温和、绿色安全,但由于成本、效率等综合因素,其应用也较少。

5.2 碎米

稻谷在脱壳、碾米等加工过程中会产生部分破碎的米粒,其比例甚至可高达20%~30%,碎米主要包括皮层、胚乳和胚三部分,含有丰富的淀粉,大米淀粉与其他作物淀粉相比具有独特的理化和加工特性。大米淀粉的颗粒较小、粒度均匀,不易引起食物过敏,而且香味柔和,糊化后吸水快,质构柔滑、具有脂肪口感,且容易涂抹开。蜡质大米淀粉除具有类似脂肪的性质之外,还具有良好的冻融稳定性[60]。以碎米为原料生产大米多孔淀粉、抗性淀粉和脂肪替代物等,是变废为宝、提高产品附加值的良好途径;碎米还可以用来开发米面包、米粉、重组米等;此外,碎米水提物营养较为丰富,可用于加工制作饮料[60-61]。

5.3 稻壳

稻谷脱壳产生的稻壳约占稻谷籽粒质量的20%左右,主要由外颖、内颖、护颖和小穗轴等部分组成,纤维素和木质素是其主要成分,这两种物质合占50%以上。稻壳中营养物质和活性成分含量较低,难以食品化应用,目前小部分用于燃料等低值化产业,大部分直接丢弃或就地焚烧。近年来相关研究显示稻壳在制备生物乙醇、生物丁醇、活性炭和吸附剂等方面均有巨大应用潜力[62]。稻壳中含有14%~16%的SiO2,低温焙烧后可形成纳米级的微粒,微粒间松散聚集形成大量纳米级的孔隙,具有巨大的比表面积,经过改性、复合等处理可以作为废水处理的吸附剂[63-64],吸附性能大大优于活性炭。热解稻壳还可用作天然填料替代工业碳黑和二氧化硅生产高性能橡胶制品[65]。

6 展望

大米的加工精度关乎精米率、碎米率、蒸煮性能、口感和营养价值等各方面。因此,选择合适的加工精度至关重要,适度加工能够使商品大米在营养价值、口感、蒸煮性能等方面得到均衡,还能够避免粮食资源浪费。避免大米过度加工、推动适度加工已经成为国家和行业的共同呼声,而修改后的大米新国标也做出了有效引导和规范。目前,大米加工精度的准确测定和精准控制技术已足够成熟,而提高糙米、轻加工米的食用品质、蒸煮性能、贮藏性能等方面仍有待于深入研究。大米的适度加工应该从避免过高加工精度的狭义范畴,推广到选择最适加工精度、提升适度加工大米品质和合理利用副产物的广义范畴,促进大米加工业全产业链的提质增效。为此,以下工作仍然有待加强:(1)针对不同水稻品种、不同加工用途和食用方式开展更加充分的加工适宜性研究,明确其合适的加工精度。(2)不断研发、改进基于留皮度测定方法的大米加工精度测定仪,降低成本,并提高其便携化、智能化水平。(3)加强适度加工大米稳定化贮藏技术和食用品质提升技术研究,研发绿色高效、经济可行的产业化工艺。(4)加强全谷物糙米和适度加工大米健康效应的研究和宣传,正确引导消费者树立科学、健康的消费理念,逐步转变追求“亮、白、精”的消费习惯。(5)不断拓宽米糠、碎米和谷壳等加工副产物的高值化利用途径,重点开展米糠稳定化、食品化和副产物功能因子提取等研发工作。

猜你喜欢
米糠糙米精度
喝糙米茶好处多
保健与生活(2023年9期)2023-05-19 21:07:36
基于DSPIC33F微处理器的采集精度的提高
电子制作(2018年11期)2018-08-04 03:25:38
GPS/GLONASS/BDS组合PPP精度分析
用针线“补”
改进的Goldschmidt双精度浮点除法器
化学法米糠稳定化技术研究
麦胚糙米混合粉的挤压制备工艺研究
巧用磨耗提高机械加工精度
河南科技(2014年14期)2014-02-27 14:11:53
脱脂米糠蛋白酶解物的制备及抗氧化性
食品科学(2013年15期)2013-03-11 18:25:27
长期施用有机肥对土壤和糙米铜、锌、铁、锰和镉积累的影响