王素芳 薛惠云 张志勇 汤菊香
棉花根系生长与叶片衰老的协调性
王素芳 薛惠云 张志勇*汤菊香
河南科技学院/ 河南省现代生物育种协同创新中心/ 河南省棉麦分子生态和种质创新重点实验室, 河南新乡 453003
为探索棉花根系生长和叶片衰老之间的协调性, 选用早熟性一致但衰老快慢有明显差异的棉花基因型百棉1号(叶片衰老慢)和DP99B (叶片衰老快), 于2011—2012年, 在田间条件下研究了其根系生长和活力、叶片衰老和产量。结果表明, 2年间百棉1号的纤维产量(皮棉及霜前皮棉)均显著高于DP99B。百棉1号的叶片光合作用或基于吸收光能的性能指数显著高于DP99B。百棉1号的根系长度密度和根系深层分布比例及根系活力(以伤流液总量和伤流液蛋白质含量表示)显著高于DP99B。2012年结果显示, DP99B根系生长比百棉1号快, 并且DP99B根系长度密度及根系活力分别在8月中旬和7月下旬显著高于百棉1号, 且伤流液分泌总量是百棉1号的1.7倍。棉花盛花期后, 根系密度大、伤流液分泌多和叶片衰老晚具有一致性, 证实棉花叶片衰老受后期根系生长和活力的调控。
棉花; 根系分布; 根长密度; 伤流液; 叶片衰老
作物根系生长、形态与分布对叶片衰老和产量有着十分重要的作用[1]。大的根系和高的根系长度密度(RLD)是超级稻高产的重要基础[2], 它们有利于提高玉米吐丝期后的氮素吸收, 增加叶片光合速率, 从而有利于高产[3-4], 同时在增强棉花后期耐钾缺乏能力及防止早衰方面发挥着重要的作用[5]。分布深而多的水稻根型有利于提高地上部叶片叶绿素含量,延缓衰老[6]; 小麦根系深层分布多显著延缓了开花后的叶片衰老, 增加了籽粒产量[7]。
根系活力和作物产量及叶片衰老也有着密切的关系。水稻根系活力的大小直接影响了地上部分生长发育的进程及产量的高低[8-9]。小麦根系活力在开花后急剧下降, 并与叶片衰老指数显著相关[10]。从田间土壤取根系样测定根系活力往往反映的是局部单位根量的活力, 而不是地下根群的总活力。而作物根系伤流液, 可以把作物的地上部与地下部有机地联系起来[11]。伤流强度能比较准确地反映整体根系活力的变化[12-14]。例如, 水稻在齐穗期和乳熟期, 根系伤流强度与剑叶等叶片衰减指数及千粒重、结实率呈显著正相关[15]。
棉花的熟性可被分为正常成熟衰老、早衰和贪青晚熟3类[16]。正常的成熟衰老可以帮助棉花抵御不利自然灾害, 提高生育期内有限能量和物质资源的利用效率从而提高产量[17]。但在生产中, 棉花叶片衰老快(早衰)是普遍现象, 一般导致产量损失10%左右, 严重情况下, 损失达20%以上[18-19]。因此, 棉花衰老的生理生化和分子机理被广泛研究[16,20-22]。董合忠等[23]通过利用2个遗传背景相似但衰老进程不同的转基因棉花进行嫁接发现, 叶片衰老主要依赖于根系。进一步研究发现, 不协调的根冠关系会引起棉花不正常的衰老表现[24]。但目前关于棉花叶片衰老与根系生长和根系活力关系的研究相对较少。棉花早熟与早衰存在遗传正相关, 所以在生产上早熟基因型经常早衰, 但不是必然伴随早衰现象。黄淮流域棉花, 春棉通常在7月中下旬至8月中旬进入棉花生殖生长旺盛期即盛花期, 这个生长阶段大量铃形成和生长, 需从叶片获取大量养分, 所以该阶段也是生殖和营养生长矛盾突出期。衰老通常也始发于8月中下旬, 但此阶段根系生长及与地上部生长协调性未见报道。因此, 本试验在大田条件下, 研究衰老特性不同但早熟性基本一致的棉花基因型的产量、叶片衰老及其根系形态、根系分布和根系活力, 以探索根系生长和叶片衰老之间的协调性。
百棉1号是国家审定的转基因抗虫棉品种, 由河南科技学院棉花研究所培育, 为钾高效性棉花品种, 生产上表现为早熟衰老慢[25]; DP99B是转基因抗虫棉, 由美国孟山都公司选育而成, 2000年通过河北省农作物品种审定, 为钾低效性品种, 生产上表现为早熟衰老快[26]。
1.2.1 大田试验设计与种植 新乡市试验田为沙质土, pH 8.5, 含有机物0.60%、速效氮18.6 mg kg-1、速效磷16.2 mg kg-1、速效钾158.5 mg kg-1。2011年, 小区内采用宽窄行种植, 宽行行距1 m, 窄行行距0.6 m, 株距约27 cm, 密度为4.5万株 hm-2, 起垄种植, 棉花种在垄背上。2012年, 小区内采用等行距种植, 株距约22 cm, 密度为4.5万株 hm-2, 平地种植。2年试验均采用完全随机设计, 每个基因型设3个重复, 共6个小区, 每个小区6行, 行长10 m。统一施肥、浇水和喷施调节剂等。
1.2.2 产量和霜前籽棉率测定 每年约从9月10日开始手工收花, 按小区每隔20 d收获一次直至收花结束, 分别称量其籽棉重。轧花后, 称量其皮棉重。10月20日前的籽棉产量除以总籽棉产量, 记为霜前籽棉率。
1.2.3 棉花开白花动态及白花以上主茎节数测定 随机挑选每个小区3~4行30株棉花, 从第一次看到有白花开放时, 记录当天开放的白花数量, 1周统计1次, 直到开花基本结束。同时, 从最上部果枝第1节位白花开放所在位置为起点, 记录上部主茎节数, 1周统计1次, 直至白花以上主茎节数小于5.0时终止调查。
1.2.4 叶片衰老指标(棉花叶片净光合速率和叶绿素荧光)测定 棉花叶片净光合速率(net photosynthetic rate,n)和叶片叶绿素荧光, 均可反映叶片的衰老过程。棉花打顶后逐渐进入生殖生长的盛期, 2011年7月17日打顶后不同时期于晴朗天气上午10:00-11:00用光合测定仪Li-6400 (USA)测定倒一叶的光合速率; 2012年7月15日打顶后不同时期用连续激发式荧光仪(Handy-PEA, England)测定倒一叶的荧光, 测定前叶片先暗适应30 min。
1.2.5 根系取样及测定 2011年依据叶片光合情况判定, 于2个基因型叶片衰老有明显差异时(9月中下旬即处于吐絮期)取样。在小区的中间2行, 使用内径为5 cm的土钻在棉株4周打孔取样, 其中2个取样点位于株行间, 距主茎20 cm, 另外2个孔位于同行相邻植株的正中间。垂直向下以0~20 cm、20~40 cm土层分别取样。每层土样的体积为392.5 cm3。2012年, 于叶片衰老前(7月初即初花期)至衰老后(10月中上旬即吐絮期), 间隔约20 d分别取样。在小区中间2行, 用内径为5.48 cm土钻在棉花行间靠其中一行棉花距离分别为25 cm和50 cm的部位取样, 取样深度为0~20 cm、20~40 cm、40~60 cm和60~80 cm。每层的土壤体积为471.5 cm3。将样品分别放入塑料袋内, 带回实验室, 放到筛网内(孔径为80目), 下面套放孔径较小的筛网(孔径为200目), 以防止根系流失。用自来水慢慢冲洗土壤, 直至冲洗干净为止。然后将筛网放在水面上, 用镊子挑选根系, 用于根系扫描。将待扫描根系放于盛有一定水的盘中, 用EPSON scan扫描仪在透射模式下扫描并保存, 通过WinRHizo软件分析得到根系的长度、表面积等指标。
1.2.6 根系长度(面积、体积)密度与根系分布 根系长度(面积、体积)密度为每层土中根系的长度、面积和体积分别除以每层土的体积。根系分布为较深层土壤中根系长度、面积和体积分别与较浅层土壤中根系长度、面积和体积的比值。因2年种植方式和取样深度不同, 故根系分布于2011年是土壤20~40 cm中根系长度、面积和体积分别与较浅层土壤0~20 cm中根系长度、面积和体积的比值; 2012年是土壤40~80 cm中根系长度、面积和体积分别与土壤0~40 cm中根系长度、面积和体积的比值。
1.2.7 根系伤流液获取 棉花根系伤流液的量可反映棉花的根系整体活力。伤流液取样时间和叶绿素荧光测定时间进程大致一致。每次从每个小区取4株, 于紧靠棉株子叶节下方剪断棉花主茎, 套乳胶管, 用封口膜将乳胶管和茎连接处缠好, 铝箔纸包裹乳胶管以避免光线照射, 用夹子夹紧乳胶管另一端, 放置在冰盒中, 每天8:00、11:00、19:00, 用注射器从乳胶管收集伤流液, 并注入离心管, 放入冰盒中带回室内, 存于-80℃冰箱。连续取3 d。
1.2.8 蛋白质浓度测定 用超微量核酸蛋白测定仪(Thermo SCIENTIFIC NANODROP 2000, USA)测定。
1.2.9 数据分析 采用SAS软件的ANOVA-test比较2个品种之间各测定指标。利用Microsoft Excel软件分析数据和绘图。
2011年, 百棉1号籽棉产量和霜前籽棉产量与DP99B相比没有显著差异, 但分别比DP99B高3.4%和5.9%; 百棉1号的皮棉和霜前皮棉显著高于DP99B, 分别高13.7%和16.7%。2012年, 百棉1号的籽棉、皮棉、霜前籽棉、霜前皮棉产量均显著高于DP99B (表1)。
2012年7月14日, 2个基因型棉花开白花数量均达到高峰。7月28日至8月4日, DP99B开白花数量显著低于百棉1号(表2), 这和DP99B的霜后籽棉和皮棉均低于百棉1号(表1)具有一致性。当最上果枝第1节位白花以上主茎节数等于5.0时, 表示棉花生长发育进入生理衰退期。2012年, 2个基因型棉花的生长发育进入生理衰退期的时间一致, 均在7月19日到7月26日之间。
2012年6月28日至7月19日, DP99B白花以上主茎节数均显著小于百棉1号, 表明在这个期间其营养生长相对弱于百棉1号, 更偏向生殖生长(表2), 与本年度的霜前花比例具有一致性(表1)。
表1 大田条件下, 2个棉花基因型的产量和霜前籽棉率
同一年份同一列标明不同字母的数值差异显著(< 0.05)。
Values within a column and the same year followed by different lowercase letters are significantly different between two cotton genotypes at< 0.05.
表2 2012年2个基因型棉花白花以上主茎节数/开白花动态
同一列“/”前后标明不同小写字母的数值分别表示2个基因型棉花白花以上主茎节数和开白花数量差异显著(< 0.05)。
Different lowercase letters before and after “/” in the same column indicate significant difference in main stem nodes above white flower and white flowers number between two cotton genotypes at< 0.05, respectively.
2011年棉花倒一叶刚进入功能期时(7月30日), 两基因型的n之间没有差异。随着时间的推移, 两基因型的n均明显下降, 但百棉1号倒1叶n下降幅度明显小于DP99B。在8月30日和9月20日, 百棉1号倒一叶的n分别比DP99B高40.6%和31.6%, 且差异显著(图1)。
图1 2011年2个基因型棉花倒一叶净光合速率Pn变化趋势
2012年7月20日, 2个棉花基因型的所有荧光参数之间无显著差异。从8月10日至10月11日, PIABS开始呈现整体下降趋势, 但百棉1号的PIABS始终显著高于DP99B。8月10日, 2个棉花基因型的o、v/m之间没有显著差异; 8月30日, 百棉1号的o显著小于DP99B, 2个基因型v/m无差异; 9月20日和10月11日, 百棉1号的o显著小于DP99B, 而百棉1号的v/m显著高于DP99B (表3)。
2011年棉花吐絮期(9月20日), 0~20 cm土层内百棉1号的RLD、RSD和RVD分别比DP99B少15.6%、27.1%和35.0%, 且两基因型RSD和RVD差异显著; 20~40 cm土层内, 百棉1号的RLD、RSD和RVD分别比DP99B大124.6%、96.7%和72.7%, 且均差异显著; 0~40 cm土层内, 百棉1号的RLD、RSD和RVD分别比DP99B大29.4%、14.6%和3.2%, 但仅RLD差异显著。2个基因型各根系纵向分布(20~40 cm/0~20 cm)差异显著, 且百棉1号上述各根系参数在深处分布分别比DP99B多166.2%、169.7%和165.7% (表4)。
2012年棉花生长从初花期至吐絮期(7月4日至10月13日), 2个基因型根系生长动态存在差异。0~20 cm土层内, DP99B的RLD、RSD和RVD变化大体呈现单峰曲线, 于8月11日(处于盛花期)达到高峰; 百棉1号的RLD、RSD和RVD变化总体呈现稳定上升趋势。在20~40 cm、40~60 cm和60~80 cm土层内, DP99B根系生长动态近似于0~20 cm土层内根系生长动态; 而百棉1号根系生长于9月23日达到高峰。总体上看, 0~80 cm土层内DP99B的RLD、RSD和RVD变化呈现双峰曲线; 8月11日, DP99B根系生长达到最高峰, 9月3日下降后, 于9月23日又达到一个小高峰(表5)。百棉1号的RLD、RSD和RVD变化呈现单峰曲线; 9月23日, 百棉1号的根系生长达到高峰(表5)。
表3 2012年不同基因型棉花叶片叶绿素荧光随时间的变化趋势
同一日期同一列标明不同字母的数值差异显著(< 0.05)。o: PSII的初始荧光;v/m: 最大光化学量子产量; PIABS: 基于吸收光能的性能指数。
Values within a column and the same date followed by different lowercase letters are significantly different between two cotton genotypes at< 0.05.o: minimal fluorescence of PSII;v/m: maximal photochemical efficiency of PSII; PIABS: performance index on absorption basis.
表4 2011年9月20日不同基因型棉花根系长度密度、面积密度、体积密度及纵向分布
同一行同一根系形态特征下标明不同小写字母的数值差异显著(< 0.05)。
Values within a row with the same root morphology trait followed by different lowercase letters are significantly different between two cotton genotypes at< 0.05. RLD: root length density; RSD: root surface area density; RVD: root volume density; LD: longitudinal distribution.
7月4日, 在40~60 cm土层, 百棉1号的RLD和RSD显著高于DP99B; 其他土层中2个基因型RLD、RSD和RVD均无显著差异。7月24日, 在20~40 cm土层, DP99B的RSD和RVD显著大于百棉1号, 其中DP99B的RVD比百棉1号高72.3%; 在40~60 cm土层百棉1号的RLD、RSD和RVD均显著高于DP99B, 其中百棉1号的RVD比DP99B高63.6%; 其余均无显著差异。8月11日, 在0~20 cm土层, DP99B的RLD和RSD均显著高于百棉1号; 在20~40 cm土层, DP99B的RSD显著高于百棉1号; 其余均无显著差异。
9月3日, 在0~20 cm土层, 百棉1号的RLD、RSD和RVD显著高于DP99B, 其中百棉1号的RVD比DP99B高28.0%; 其余均无显著差异。9月23日, 在0~20 cm、20~40 cm、40~60 cm和60~80 cm土层, 百棉1号的RLD比DP99B分别高出33.7%、38.3%、28.6%和123.8%, 均达到显著水平; 百棉1号的RSD比DP99B分别高出25.4%、28.1%、42.2%和106.8%, 均达到显著水平; 在0~20 cm、40~60 cm和60~80 cm土层, 百棉1号的RVD比DP99B分别高出14.3%、61.5%和90.0%, 达到显著水平。10月13日, 在0~20 cm、20~40 cm、40~60 cm和60~80 cm土层, 百棉1号的RLD比DP99B分别高出63.5%、15.9%、78.0%和60.8%, 百棉1号的RSD比DP99B分别高出54.1%、36.6%、82.8%和79.2%, 百棉1号的RVD比DP99B分别高出40.6%、65.0%、81.8%和100.0%, 并达到显著水平。
从总体上看, 0~80 cm土层内, 7月4日和7月24日, 2个基因型之间的RLD、RSD和RVD相比较, 无显著差异; 8月11日, DP99B的RLD、RSD显著大于百棉1号; 9月23日和10月13日, 百棉1号的RLD、RSD和RVD开始显著大于DP99B, 并随着时间的延长, 大于的幅度变大。从根系在土壤纵向分布(40~80 cm/0~40 cm)上看, DP99B的RLD、RSD和RVD在深层分布总体呈现增加、平台期(8月11日至9月23日)、减少的动态变化; 百棉1号呈现增加、减少、增加、减少的动态变化。其中, 除9月3日DP99B根系深层分布比例显著高于百棉1号及7月4日两者差异不显著外, 其他日期百棉1号的根系深层分布比例显著高于DP99B。
随着棉花的生长(7月22日至9月15日), DP99B的根系伤流液总量和流速逐步减小, 且减小幅度依次增大。百棉1号的根系伤流液总量和流速呈现单峰曲线; 8月22日, 其伤流液总量和流速均达到最大; 9月15日, 明显降低。7月22日, DP99B的根系伤流液总量和流速显著高于百棉1号, 分别高68.2%和66.9%; 8月2日, DP99B和百棉1号的根系伤流液总量和流速均无显著差异; 8月22日, 百棉1号的根系伤流液总量和流速显著高于DP99B, 分别高185.7%和184.8%; 9月15日, 百棉1号的根系伤流液总量和流速显著高于DP99B, 分别高1675.0%和1664.3%。2个基因型伤流液的蛋白质浓度均随着棉花生长呈现先增加后降低动态变化, 4个取样时期中仅8月22日有微小显著差异; 2个基因型的伤流液蛋白质总量之间差异和伤流液总量差异呈现一致趋势(表6)。
棉花熟性通常可用霜前籽棉占总籽棉的产量、棉花的开白花动态、棉花白花以上主茎节数3个指标表示[18]。2年间2个品种的霜前籽棉率差异均不显著(表1)。2012年6月30日至7月21日, DP99B和百棉1号的开白花量无显著差异; 依据白花以上主茎节数值判断, 百棉1号和DP99B的生长发育均在7月19日至7月26日之间进入生理衰退期(表2)。因此, DP99B和百棉1号2个基因型的早熟性具有一致性。
表5 2012年不同基因型棉花根系长度密度、面积密度、体积密度及纵向分布
同一行同一根系形态特征下标明不同小写字母的数值差异显著(< 0.05)。
Values within a row with the same root morphology trait followed by different lowercase letters are significantly different between two cotton genotypes at< 0.05. RLD: root length density; RSD: root surface area density; RVD: root volume density; LD: longitudinal distribution.
表6 2012年2个基因型棉花根系伤流液总量、流速及蛋白质含量
同一日期同一列下标明不同小写字母的数值表示在0.05水平上不同品种之间存在显著差异。
Values within a column and the same date followed by different lowercase letters are significantly different between two cotton genotypes at< 0.05.
2个早熟性基本一致的基因型, 其叶片衰老进程明显不同。2年结果显示, DP99B的n下降速率和PIABS下降速率等显著快于百棉1号(图1和表3), 表明DP99B为易衰老(叶片衰老快)基因型, 百棉1号为不易衰老(叶片衰老慢)基因型, 和生产上的报道具有一致性。
棉花衰在叶片, 源在根系[18]。伤流液多少反应根系衰老状况, 因此, 从伤流液可以看出, 2个基因型的根系衰老和叶片衰老具有协同性, 叶片衰老快的基因型DP99B的根系活力衰退也快, 而叶片衰老慢的基因型百棉1号的根系活力衰退也慢(图1、表3和表6)。棉花叶片衰老慢(不早衰)的品种, 平均根系直径大, 并且在盛花期后根系再生能力强、根系大[5,27]。本试验中, DP99B根系生长在盛花期后的花铃期达到高峰(8月中旬), 而百棉1号根系继续生长, 于吐絮早期(9月中下旬)达到高峰(表5)。因此, 盛花期后根系继续生长是叶片衰老慢的重要基础。有报道显示, 根系深层分布有利于延缓衰老。Kong等[7]研究发现, 小麦根系深层分布多显著延缓了开花后的叶片衰老, 增加了籽粒产量。本试验中, 与DP99B相比, 百棉1号根系深层分布多(2012年2个时期除外), 叶片衰老晚, 产量高(表1、图1、表4和表5)。由此可知, 根系伤流液多、盛花期后根系继续生长及根系深层分布多可延缓棉花衰老。
植物库源关系是不断变化的, 如植物叶片在营养生长阶段是库, 而在生殖生长阶段又是源。库源比增大, 叶片衰老加速; 库源比减小, 叶片衰老延迟[28-31]。植物的开花和结实会引起源库矛盾加剧, 引起叶片衰老[29]。黄淮流域棉区, 8月中上旬, 春棉进入生长高峰盛花期, 花铃从叶片争夺大量养分, 导致叶片衰老。根系生长, 也会从叶片争夺养分, 加剧叶片衰老。但是, 根系生长变化和叶片衰老的关系目前还不清楚。本试验结果显示, 叶片衰老快的基因型DP99B根系生长高峰在8月中上旬(8月11日), 与棉株生长高峰—盛花期相重叠; 而叶片衰老慢的基因型百棉1号根系生长高峰延后至吐絮期—9月下旬(9月23日); 而且在8月中上旬, 总取样土层DP99B的RLD、RSD和RVD显著高于百棉1号(表5)。这表明DP99B叶片衰老比百棉1号早的原因可能是, 在盛花期根系生长也从叶片转移走较多的光合产物。
土壤表层含有最多的根系, 随着土层深度加深, RLD减少, 随着作物生长, RLD增多[32-34]。但是, 不同土壤深度RLD分布随深度增加而减少的规律并非一成不变。Yang等[35]报道, 不同的年份间新疆棉花根系在不同土壤深度的分布存在一定差异, 2015年30~50 cm土层RLD高于0~30 cm土层, 而2016年则相反。随着棉花的生长, 不同灌溉条件下, 其RLD呈现不同的变化趋势[32]。本试验结果显示, 2011年起垄种植条件下, 百棉1号20~40 cm土层RLD高于0~20 cm土层; 2012年平地种植条件下, 从7月4日至10月11日的6个时期取样均显示, 其0~20 cm土层RLD高于20~40 cm土层, 但高的幅度不一样; DP99B则2年表现一致(表4和表5)。此外, 2个棉花品种的RLD、RSD和RVD随生长呈现不同的规律, 百棉1号在9月下旬(吐絮期) RLD达到最大值后开始下降; DP99B在8月中旬(盛花期) RLD达到最大值后开始下降。
与其他主要大田作物(玉米、小麦、大豆等)相比, 棉花的根系在土壤中更为稀疏[36]。但是, 试验条件、土壤质地及水分养分供应及不同基因型等因素均会影响作物RLD。例如, 英国冬小麦RLD, 土壤表土层(0~20 cm)为5~10 cm cm-3, 而在80~100 cm 土层仅0.2 cm cm-3[37]; 在耕作层(0~40 cm)介于3~5 cm cm-3之间, 而在40 cm土层以下小于1 cm cm-3[38]; 澳大利亚冬小麦RLD, 15个基因型在土壤表层15 cm内的变化范围为0.6~2.0 cm cm-3之间[39]。中国新疆棉花RLD, 在初花期30~40 cm土层可高达0.35 cm cm-3[35]; 在0~10 cm土层最高可达约5.0 cm cm-3; 在70~80 cm土层最高约0.1 cm cm-3[32]。本试验结果显示, 0~20 cm土层RLD接近1 cm cm-3, 而60~80 cm土层棉花根系RLD最高仅0.02 cm cm-3(表4和表5), 且不同棉花品种之间存在明显差异。新疆棉花和本试验中棉花RLD在表土层的差异, 可能和密度大小、灌溉方式、是否覆盖薄膜等有关。从最近小麦、棉花根系研究报道及本文结果对比, 也进一步表明, 土壤中棉花RLD明显小于小麦RLD。
棉花根系生长与叶片衰老具有一致性, 且前者决定后者。棉花盛花期后根系大、根系在土壤深层分布相对多及根系活力强直接延缓了叶片衰老; 生长旺盛期根系生长相对弱, 可避免与花铃一起从叶片争夺养分, 从而间接延缓叶片衰老, 增加产量。
[1] Hodge A, Berta G, Doussan C, Francisco M, Crespi M. Plant root growth, architecture and function., 2009, 321: 153–187.
[2] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice., 2009, 113: 31–40.
[3] Qi W Z, Liu H H, Liu P, Dong S T, Zhao B Q, So H B, Li G, Liu H D, Zhang J W, Zhao B. Morphological and physiological characteristics of corn (L) roots from cultivars with different yield potentials., 2012, 38: 54–63.
[4] Mu X H, Chen F J, Wu Q P, Chen Q W, Wang J F, Yuan L X, Mi G H. Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake.,2015, 63: 55–61.
[5] Brouder S M, Cassman K G. Root development of two cotton cultivars in relation to potassium uptake and plant growth in a vermiculitic soil., 1990, 23: 187–203.
[6] 凌启鸿, 陆卫平, 蔡建中, 曹显祖. 水稻根系分布与叶角关系的研究初报. 作物学报, 1989, 15: 123–131. Ling Q H, Lu W P, Cai J Z, Cao X Z. The relationship between root distribution and leaf angle in rice plant., 1989, 15: 123–131 (in Chinese with English abstract).
[7] Kong L, Si J, Sun M, Feng B, Zhang B, Li S, Wang Z, Wang F. Deep roots are pivotal for regulating post-anthesis leaf senescence in wheat (L)., 2013, 199: 209–216.
[8] 王余龙, 蔡建中, 何杰升,陈林, 徐家宽, 卞悦.水稻颖花根活量与籽粒灌浆结实的关系. 作物学报, 1992, 18: 81–89. Wang Y L, Cai J Z, He J S, Chen L, Xu J K, Bian Y. The relationships between spikelet-root-activity and grain filling and ripening in rice ().1992, 18: 81–89 (in Chinese with English abstract).
[9] 潘晓华, 王永锐, 傅家瑞. 水稻根系生长生理的研究进展. 植物学通报, 1996, 13(2): 13–20. Pan X H, Wang Y R, Fu J R. Advance in the study on the growth-physiology in rice of root system ()., 1996, 13(2): 13–20 (in Chinese with English abstract).
[10] 岳寿松, 于振文, 余松烈. 小麦旗叶与根系衰老的研究. 作物学报, 1996, 22: 55–58. Yue S S, Yu Z W, Yu S L. Senescence of flag leaf and root in wheat., 1996, 22: 55–58 (in Chinese with English abstract).
[11] Zhang Z, Xin W, Wang S, Zhang X, Dai H F, Sun R R, Frazier T, Zhang B H, Wang Q L. Xylem sap in cotton contains proteins that contribute to environmental stress response and cell wall development., 2015, 15: 17–26.
[12] 邱鸿步, 潘裕才, 王斌斌, 陆定志. 籼型水稻的叶片老化与植株伤流强度及产量关系的研究. 浙江农业科学, 1981, (4): 175–178. Qiu H B, Pan Y C, Wang B B, Lu D Z. The relationship between leaf senescence and the flow intensity of xylem sap, yield ofrice., 1981, (4): 175–178 (in Chinese with English abstract).
[13] 梁建生, 曹显祖. 杂交水稻叶片的若干生理指标与根系伤流强度关系. 江苏农学院学报, 1993, 14(4): 25–30. Liang J S, Cao X Z. Studies on the relationship between several physiological characteristics of leaf and bleeding rate of roots in hybrid rice (L.)., 1993, 14(4): 25–30 (in Chinese with English abstract).
[14] 赵全志, 黄丕生, 凌启鸿, 高尔明, 董家胜. 水稻颖花伤流量与群体质量的关系. 南京农业大学学报, 2000, 23(3): 9–12. Zhao Q Z, Huang P S, Ling Q H, Gao E M, Dong J S. The relationship between spikelet-bleeding-intensity and population quality of rice., 2000, 23(3): 9–12 (in Chinese with English abstract).
[15] 许凤英, 马均, 王贺正, 刘惠远, 黄清龙, 马文波, 明东风. 强化栽培条件下水稻的根系特征及其与产量形成的关系. 杂交水稻, 2003, 18(4): 61–65. Xu F Y, Ma J, Wang H Z, Liu H Y, Huang Q L, Ma W B, Ming D F. The characteristics of roots and their relation to the formation of grain yield under the cultivation by system of rice intensification (SRI).2003, 18(4): 61–65 (in Chinese with English abstract).
[16] Chen Y Z, Dong H Z. Mechanisms and regulation of senescence and maturity performance in cotton., 2016, 189: 1–9.
[17] Chen Y Z, Kong X Q, Dong H Z. Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton., 2018, 216: 10–21.
[18] 董合忠, 李维江, 唐薇, 张冬梅. 棉花生理性早衰研究进展. 棉花学报, 2005, 17: 56–60. Dong H Z, Li W J, Tang W, Zhang D M. Research progress in physiological premature senescence in cotton., 2005, 17: 56–60 (in Chinese with English abstract).
[19] Wright P R. Premature senescence of cotton-predominantly a potassium disorder caused by an imbalance of source and sink., 1999, 211: 231–239.
[20] Wang Y, Li B, Du M W, Eneji A E, Wang B M, Duan L S, Li Z H, Tian X L. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency., 2012, 63: 5887–5901.
[21] Zhao J Q, Li S, Jiang T F, Liu Z, Zhang W W, Jian G L, Qi F J. Chilling stress: the key predisposing factor for causinginfection and leading to cotton (L) leaf senescence., 2012, 7: e36126.
[22] 孔祥强, 罗振, 李存东, 董合忠. 棉花早衰的分子机理研究进展. 棉花学报, 2015, 27: 71–79. Kong X Q, Luo Z, Li C D, Dong H Z. Molecular mechanisms of premature senescence in cotton., 2015, 27: 71–79 (in Chinese with English abstract).
[23] Dong H Z, Niu Y H, Li W J, Tang W, Li Z H, Zhang D M. Regulation effects of various training modes on source-sink relation of cotton., 2008, 19: 819–824.
[24] Dai J L, Dong H Z. Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton., 2011, 33: 1697–1705.
[25] 胡泽彬, 王素芳, 张新, 张志勇, 代海芳, 王清连. 短季棉和长季棉钾效率和根系对钾缺乏响应的差异. 华北农学报, 2014, 29(5): 218–225. Hu Z B, Wang S F, Zhang X, Zhang Z Y, Dai H F, Wang Q L. Differences of potassium efficiency and root responses to potassium deficiency between short-and long-season cotton genotypes., 2014, 29(5): 218–225 (in Chinese with English abstract).
[26] Zhang Z Y, Tian X L, Duan L S, Wang B M, He Z P, Li Z H. Differential responses of conventional and Bt-transgenic cotton to potassium deficiency., 2007, 30: 659–670.
[27] Cassman K G, Bryant D C, Higashi S L, Roberts B A, Kerby T A. Soil potassium balance and cumulative cotton response to annual potassium additions on a vermiculitic soil., 1989, 53: 805–812.
[28] 段俊, 梁承邺, 黄毓文. 杂交水稻开花结实期间叶片衰老. 植物生理学报, 1997, 23: 139–144. Duan J, Liang C Y, Huang Y W. Studies on leaf senescence of hybrid rice at flowering and grain formation stage., 1997, 23: 139–144 (in Chinese with English abstract).
[29] Nooden L D. Integration of soybean pod development and monocarpic senescence., 1984, 62: 273–284.
[30] Miceli F, Crafts-Brandner S J, Egli D B. Physical restriction of pod growth alters development of soybean plants., 1995, 35: 1081–1085.
[31] 黄升谋. 水稻源库关系与叶片衰老的研究. 江西农业大学学报, 2001, 23(2): 171–173.Huang S M. A study on the relationship between the leaf senescence and source sink ratio in hybrid rice., 2001, 23(2): 171–173 (in Chinese with English abstract).
[32] Zhao C Y, Yan Y Y, Yimamu Y, Li J Y. Effects of soil moisture on cotton root length density and yield under drip irrigation with plastic mulch in Aksu Oasis farmland.2010, 2: 243–249.
[33] Ning S R, Shi J C, Zuo Q, Wang S, Ben-Gal A. Generalization of the root length density distribution of cotton under film mulched drip irrigation., 2015, 177: 125–136.
[34] Chen J, Liu L T, Wang Z B, Sun H C, Zhang Y J, Lu Z Y, Li C D. Determining the effects of nitrogen rate on cotton root growth and distribution with soil cores and minirhizotrons., 2018, 13: e0197284.
[35] Yang X K, Zhang Z Q, Niu Y, Tian H Y, Ma F Y. Cotton root morphology and dry matter accumulation at different film removal times., 2017, 109: 2586–2597.
[36] Gerik T J, Morrison J E, Chichester F W. Effects of controlled traffic on soil physical properties and crop rooting., 1987, 79: 434–438.
[37] Pillinger C, Paveley N, Foulkes M J, Spink J. Explaining variation in the effects of take-all (var. tritici) on nitrogen and water uptake by winter wheat., 2005, 54: 491–501.
[38] Hoad S P, Russell G, Kettlewell P S, Belshaw M. Root system management in winter wheat: practices to increase water and nitrogen use. HGCA Project Report, 2004. p 351.
[39] Atta B M, Mahmood T, Trethowan R M. Relationship between root morphology and grain yield of wheat in north-western NSW, Australia., 2013, 7: 2108–2115.
Coordination of root growth and leaf senescence in cotton
WANG Su-Fang, XUE Hui-Yun, ZHANG Zhi-Yong*, and TANG Ju-Xiang
Henan Institute of Science and Technology / Henan Collaborative Innovation Center of Modern Biological Breeding / Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, Henan, China
Two cotton cultivars, Baimian 1 and DP99B, were used to investigate the root growth and vigor, leaf senescence and yield in the field during 2011−2012. Baimian 1 produced higher cotton fiber yield than DP99B during two years. Baimian 1 had better leaf photosynthetic rate or performance index based on light energy absorption, higher root length density (RLD) and better root distribution, and higher root vigor than DP99B, evidenced by higher volume of bleeding sap, in which higher percentage of protein contents was contained. In 2012, DP99B had faster root growth with higher RLD at middle August and higher root vigor at late July than Baimian 1, and the total xylem sap amount of DP99B was 1.7 times that of Baimian 1. After bloom peaking, the higher density of root, more bleeding sap and slower leaf senescence showed the coordination to a great extent, confirming that leaf senescence is regulated by root growth and root vigor in later cotton growth season.
cotton; root distribution; root length density; bleeding sap; leaf senescence
2019-03-18;
2019-08-09;
2019-09-10.
10.3724/SP.J.1006.2020.94043
Corresponding author): 张志勇, E-mail: z_zy123@126.com
E-mail: wang2010sufang@126.com
本研究由国家自然科学基金项目(31271648, 31571600)资助。
This study was supported by the National Natural Science Foundation of China (31271648, 31571600).
URL:http://kns.cnki.net/kcms/detail/11.1809.S.20190910.0911.002.html