王西娜,于金铭,谭军利,张佳群,魏照清,王朝辉
宁夏引黄灌区春小麦氮磷钾需求及化肥减施潜力
王西娜1,于金铭1,谭军利2,张佳群1,魏照清1,王朝辉3
(1宁夏大学农学院,银川 750021;2宁夏大学土木与水利工程学院,银川 750021;3西北农林科技大学资源与环境学院,陕西杨凌 712100)
【】明确宁夏引黄灌区春小麦氮、磷、钾肥的施用现状及需求情况,为合理施肥和科学减施化肥提供理论依据。通过农户调查和田间小区试验,分析宁夏引黄灌区春小麦产量水平及氮、磷、钾肥施用情况,阐明不同氮、磷、钾水平对春小麦产量构成及氮、磷、钾养分需求的影响。农户调查结果表明,宁夏引黄灌区春小麦产量平均为(6 985±867)kg·hm-2,偏高产及高产农户比例达82.7%;随着产量水平提高,氮、磷肥施用量和过量施肥量均呈降低趋势,钾肥施用量总体不足。平均来看,氮、磷、钾施用量分别为294、162和49 kg·hm-2;97.1%的农户氮肥投入过量,过量施氮量为69—114 kg·hm-2;20.5%的农户磷肥投入过量,过量施磷量为18—42 kg·hm-2;钾肥投入总体不足,比推荐施钾量少30—51 kg·hm-2。氮肥试验结果表明,当施氮量在120—240 kg·hm-2时,地上部生物量、籽粒产量、收获指数、穗粒数均显著增加,并在施氮量180 kg·hm-2时达到最高,此时籽粒吸氮量、吸磷量和吸钾量亦达到最大,分别为168.2、23.9和23.2 kg·hm-2;随施氮量增加,氮收获指数无显著变化,平均值为56.5%,磷收获指数呈增加趋势,钾收获指数表现为下降趋势。施氮180 kg·hm-2时,春小麦氮素需求量达45.8 kg·Mg-1,比对照增加19.6%;磷需求量从不施氮的6.0 kg·Mg-1显著降到高量施用氮肥(240 kg·hm-2)的5.3 kg·Mg-1,而钾需求量则从42.6 kg·Mg-1增加到49.7 kg·Mg-1。磷肥试验结果显示,施用磷肥时春小麦千粒重和收获指数明显增加,但地上部生物量和穗粒数均明显降低,因此籽粒产量无明显差异,平均为5 446 kg·hm-2。施用磷肥可显著提高籽粒吸氮量、氮素收获指数和氮素需求量,平均值分别为141.6 kg·hm-2、54.5%和25.9 kg·Mg-1,分别比不施磷肥提高28.6%、27.9%、26.2%;施用磷肥亦可促进磷素向籽粒转移并提高磷收获指数,籽粒吸磷量和磷收获指数分别比不施磷肥提高15.9%和15.2%,磷需求量呈增加趋势,但未达显著水平。 钾需求量随施磷量增加显著降低,从不施磷的68.1 kg·Mg-1降到施磷120 kg·hm-2的49.7 kg·Mg-1。钾肥试验结果发现,施钾量对生物量,籽粒产量,收获指数,每公顷穗数,籽粒氮、磷、钾含量均无显著影响,但高量施钾(75 kg·hm-2)可显著减少穗粒数,增加千粒重和氮、磷、钾收获指数,穗粒数比对照下降9.1%,千粒重比对照增加7.6%,氮、磷、钾收获指数分别可达57.2%、73.5%、7.3%。施钾60 kg·hm-2时,氮、磷、钾需求量均达最高,分别为55.3、5.5、57.6 kg·Mg-1,而高量施钾(75 kg·hm-2)时,氮和钾需求量显著降低20.6%和13.7%。可见适量施钾可提高氮、钾需求量,而高量施钾则降低氮、钾需求量。减少氮肥、调控磷肥、适当增加钾肥依然是宁夏引黄灌区春小麦化肥结构调整的主要方向。春小麦氮需求量为38.3—57.2 kg·Mg-1,在适量施用氮、磷、钾肥时可显著增加;磷需求量为5.1—6.0 kg·Mg-1,随氮肥用量增加而降低,对磷、钾肥无显著响应;钾需求量为42.6—68.1 kg·Mg-1,随施氮量增加呈升高趋势,随施磷量增加呈降低趋势,在高量施钾时显著降低。推荐氮肥适宜用量为120—180 kg·hm-2,比农户平均施氮量减少25%—60%;磷肥用量在48—96 kg·hm-2时,更有利于稳定春小麦产量并促进氮、磷向籽粒的转移,比农户平均用量减少40.7%—70.3%;钾肥用量在0—60 kg·hm-2时可稳产增质,在现有施肥水平上适量增加即可。
春小麦;氮;磷;钾;收获指数;吸收量;需求量;宁夏引黄灌区
【研究意义】引黄灌区是宁夏的主要粮食产区,春小麦是宁夏引黄灌区的主要粮食作物之一,对宁夏回族自治区的粮食贡献率在30%以上,对保障宁夏粮食安全方面具有重要意义。施肥是提高粮食产量的主要措施之一,在宁夏,肥料对粮食产量的贡献份额平均为50%—52%,其中施用化肥所增产的粮食占当年粮食总产量的30.2%—51.2%[1]。然而,宁夏引黄灌区在小麦生产中普遍存在化肥施用不平衡及投肥结构不合理现象。据赵营等[2]调查发现,2011—2013年间宁夏引黄灌区春小麦N、P2O5、K2O平均用量分别为357.0、182.7、33.4 kg·hm-2,氮肥和磷肥投入过量的农户分别占86.4%和44.6%,而83.3%的农户钾肥投入严重不足。同时,养分投入以化肥为主,化肥中N、P2O5、K2O施用量分别占总施肥量的96.6%、98.0%和79.0%;在肥料施用时期上,氮肥的基追比大约为6﹕4;磷肥以基肥和种肥为主,钾肥几乎全部通过基肥施入。重化肥轻有机肥,重氮肥轻钾肥,重基肥轻追肥是宁夏引黄灌区春小麦肥料运筹中存在的主要问题。不合理施肥不但为春小麦生产带来了经济效益下降、产量不稳、倒伏、病虫害等一系列问题,而且导致了农业的面源污染,而科学合理施肥是春小麦高产优质高效和实现化肥减施的关键。因此,明确目前宁夏引黄灌区春小麦氮、磷、钾肥施用状况和春小麦对氮、磷、钾的需求情况,是进行合理施肥和制定化肥减施策略的主要所在,也是保障春小麦高产优质高效的主要途径。【前人研究进展】氮、磷、钾肥的合理运筹能促进春小麦生长,形成合理的群体结构,促进干物质和养分向籽粒转移,进而提高籽粒产量和品质。王旭等指出[3],西北麦区的化肥偏生产力达23.9 kg·kg-1,农学效率为9.7 kg·kg-1,化肥对小麦的贡献率达43.6%。田生昌等[4]在宁夏平罗研究发现,氮、磷、钾肥对春小麦的增产率表现为氮肥>磷肥>钾肥,春小麦最高产量(5 231.5 kg·hm-2)时的N、P2O5、K2O施肥量分别为258、173、22 kg·hm-2,比例为1﹕0.67﹕0.08。大量研究表明,氮、磷、钾对春小麦产量的影响符合报酬递减律,即适量施肥可提高产量,过量施肥则导致产量降低。李志宏等[5]对内蒙春小麦进行了氮磷二元二次方程拟合,计算出春小麦最高产量施氮量和施磷量分别为184.6—213.6 kg·hm-2和84.0—106.0 kg·hm-2,最佳施氮量和施磷量分别为158.8—187.8 kg·hm-2和71.9—94.4 kg·hm-2。在灌溉条件下,春小麦达到高产的适宜K2O用量为88 kg·hm-2[6],而中低肥力条件下,施K2O为45—75 kg·hm-2时可同时提高小麦产量和品质[7]。春小麦对氮、磷、钾的吸收亦受施肥量影响。郑国琴等[8]研究提出,宁夏引黄灌区施氮量为330 kg·hm-2,N﹕P2O5﹕K2O比例为 1﹕0.45﹕0.19时,春小麦籽粒产量和蛋白质产量达到最佳。何文寿等[9]研究了宁夏引黄灌区春小麦不同生育时期对氮、磷、钾养分的吸收,发现每形成100 kg籽粒产量吸收氮、磷、钾数量分别为氮(N)2.85 kg、磷(P2O5)1.0 kg、钾(K2O)3.76 kg;春小麦地上部分对氮、磷、钾吸收量分别为281.9、42.4、272.7 kg·hm-2。与不施氮磷钾肥相比,施N 225 kg·hm-2、P2O5120 kg·hm-2、K2O 60 kg·hm-2时,植株地上部分吸收的氮、磷、钾可分别提高190.6%、171.8%和93.1%[4]。赵营等[10]的试验结果显示,与常规施肥(施N315 kg·hm-2、施P2O5180 kg·hm-2)相比,优化施肥条件下(氮肥减少28.6%,磷肥减少33.3%,施钾肥60 kg·hm-2),春小麦产量地上部分和籽粒对氮素吸收量并没有显著降低。小麦对氮、磷、钾需求量还因地区、品种、产量水平而异。车升国等[11-12]发现,小麦籽粒需氮量和需磷量均随其产量水平提高呈增加趋势。黄倩楠等[13]调研了中国春麦、旱作、麦玉和稻麦 4 个典型种植区域农户小麦氮磷钾养分需求量与产量的关系,发现小麦对氮、磷、钾的需求量随产量增加呈降低趋势,其中春小麦N、P2O5、K2O需求量分别为28.6、4.5、26.5 kg·Mg-1。【本研究切入点】前人对春小麦氮磷钾需求量的研究大都基于统一氮、磷、钾用量或者含某一种养分的肥料施用对该养分需求量的影响,而对不同肥料及不同施肥量下春小麦氮、磷、钾的需求量缺少系统分析和研究。【拟解决的关键问题】基于宁夏引黄灌区的农户调查,明确春小麦生产中氮、磷、钾肥施用现状,并通过田间试验研究氮、磷、钾肥用量对春小麦产量和氮、磷、钾吸收利用的影响,为该区氮磷钾化肥合理施用和科学减施提供理论依据。
宁夏引黄灌区以青铜峡水利枢纽为界,分为上游的卫宁灌区和下游的青铜峡灌区。灌区海拔1 100— 1 300 m,平均气温8—9℃,作物生长季4—9月≥10℃积温为3 200—3 400℃,太阳辐射达5 860—6 100 MJ·m-2·a-1,年均日照时间2 800—3 100 h,无霜期164 d,年均蒸发量1 100—1 600 mm,年均降水量180—200 mm,60%—70%的降水集中在7、8、9三个月。土壤类型主要为灌淤土、盐渍土、淡灰钙土。根据《2018年度宁夏回族自治区耕地质量监测报告》[14]:灌区耕地土壤各养分平均含量分别为全盐0.126%、有机质13.80 g·kg-1、全氮0.82 g·kg-1、有效磷27.07 mg·kg-1、速效钾172.78 mg·kg-1。
田间小区试验位于永宁县杨和镇宁夏大学实验农场,年均≥10℃积温3 300℃,无霜期140—160 d,平均日照时数3 000 h,日温差13℃,年降水量180—200 mm,年均气温8.5℃。土壤为灌淤土,耕层(0—20 cm)土壤基本理化性状为:容重1.16 g·cm-3,pH 8.60,EC1.50.22 mS·cm-1,有机质10.50 g·kg-1,全氮0.81 g·kg-1,全磷0.69 g·kg-1,矿质态氮27.20 mg·kg-1,速效磷9.65 mg·kg-1,速效钾182.25 mg·kg-1。2018年试验区年降水量为256.3 mm,其中小麦生育期(3—6月)的降水量为55 mm;月降水量、月平均最高气温和最低气温见图1。
图1 2018年永宁县月降水量、月平均最高气温和最低气温
通过多点随机抽样方法于2018年和2019年连续在永宁县和吴忠市开展农户调查,采用问卷搜集春小麦种植面积、品种、产量、种植方式等以及肥料种类、品种、用量、施肥时期、施肥方式等信息,两年分别调查了118户和125户。
1.3.1 试验设计 2018年3—7月在位于宁夏永宁县杨和镇的宁夏大学实验农场开展了氮肥、磷肥和钾肥用量田间试验,具体试验处理见表1。每处理重复3次,小区面积9 m×7 m=63 m2,随机区组排列,各小区间起垄,垄宽50 cm,高30 cm。氮肥播前施用60%,苗期(4月25日)16%,拔节期(5月15日)24%;磷、钾肥于播前一次性施入。
供试春小麦品种为宁春4号。供试肥料包括尿素(含氮46%)、复合肥(24-10-6)、二铵(18-46-0)、氯化钾(含K2O 60%)、重过磷酸钙(含P2O546%)。
1.3.2 田间管理 2018年3月11日进行顶凌播种,机械条播,窄行15 cm,宽行25 cm,播种量为375 kg·hm-2。水源为黄河水,采用大水漫灌方式,分别于4月25日、5月15日、6月25日灌水900 m3·hm-2,另外在2017年11月上旬进行了冬灌,灌水量为1 200 m3·hm-2。4月20日人工喷施唑草酮和苯磺隆进行除草,6月10日采用无人机喷施联苯菊酯、吡虫啉防治蚜虫。
1.3.3 样品采集与测定 2018年7月10日进行春小麦收获计产和样品采集。采用样方法进行计产,即每小区随机选择1 m×1 m的3个样方,采集地上部分,分别称量总鲜重,然后晾干、统计穗数、脱粒、计产。同时采集3段1 m的考种样品,测量生物量、干物质、穗粒数、千粒重,然后分器官(茎叶、颖壳、籽粒)在65℃烘干,计算水分和干物质含量,然后粉碎。粉碎后的样品用来测定全氮、全磷和全钾含量,样品经硫酸-双氧水消解后,全氮用凯氏定氮法测定,全磷用钒钼蓝比色法测定,全钾用火焰光度计测定。
1.4.1 产量等级划分 参考马玉兰编写的《宁夏测土配方施肥技术》[15]及黄倩楠等[13]的产量等级划分方法对宁夏引黄灌区春小麦进行产量水平分级。以5 250— 6 000 kg·hm-2为适中产量,按750—1 500 kg·hm-2的上下变动分出低、偏低、适中、偏高和高5个等级,分别为:低<4 500 kg·hm-2、偏低4 500—5 250 kg·hm-2、中5 250—6 000 kg·hm-2、偏高6 000—7 500 kg·hm-2、高>7 500 kg·hm-2。
1.4.2 推荐施肥标准 氮、磷、钾推荐施肥标准引自马玉兰编写的《宁夏测土配方施肥技术》[15],见表2。
1.4.3 相关指标计算公式
(1)地上部养分吸收量(kg·hm-2)=[籽粒养分含量(%)×籽粒产量(kg·hm-2)+茎叶养分含量(%)×茎叶干物质量(kg·hm-2)+颖壳养分含量(%)×颖壳干物质量(kg·hm-2)]/1000;
(2)养分需求量(kg·Mg-1)=地上部养分吸收量(kg·hm-2)/籽粒产量(kg·hm-2)×1000;
(3)收获指数(%)=籽粒产量(kg·hm-2)/地上部干物质量(kg·hm-2)×100;
(4)养分收获指数(%)=籽粒养分吸收量(kg·hm-2)/地上部养分吸收量(kg·hm-2)×100。
表1 试验处理及其施肥量
表2 宁夏引黄灌区春小麦氮、磷、钾施肥量分级标准
1.4.4 数据处理软件
采用Microsoft Excel 2007 和DPS软件进行数据处理和统计分析。
243个农户调研结果显示(表3),春小麦产量水平总体较高,但农户之间依然存在较大差异。偏高产和高产农户比例分别达57.61%和25.10%,而低产和偏低产农户仅占2.06%和6.17%,平均产量为(6 985± 867)kg·hm-2,处于偏高产范围。与不同产量等级所对应的氮、磷、钾投入水平变化较大(表3)。所有低产水平农户氮、磷投入过量,而钾肥投入量不足。氮肥平均施用量达392 kg·hm-2,比推荐用量(180—225 kg·hm-2)高167—212 kg·hm-2;磷肥的比推荐用量(120—180 kg·hm-2)高48—108 kg·hm-2;而钾肥的则比推荐用量(79.5—100.5 kg·hm-2)少17—38 kg·hm-2。从平均值来看,宁夏引黄灌区春小麦氮、磷、钾肥平均投入量分别为294、162和49 kg·hm-2,三者比例为1﹕0.55﹕0.17;97.1%农户氮肥投入过量,20.2%磷肥投入过量,钾肥总体投入不足。可见,减少氮肥、调控磷肥、适当增加钾肥是该区春小麦化肥结构调整的主要方向。
2.2.1 氮肥用量对春小麦生物量、籽粒产量及其构成因素的影响 氮肥用量大于120 kg·hm-2时,春小麦地上部生物量、籽粒产量、收获指数显著增加(<0.05),并且籽粒产量的提高主要归功于穗粒数的增加(表4)。施氮量在180 kg·hm-2时,春小麦地上部生物量、籽粒产量和穗粒数均达最高,前两者分别比不施氮提高37.9%和44.7%,穗粒数平均增加5.4粒。如果以施氮240 kg·hm-2作为常规施氮量,当氮肥减少25%时,籽粒产量反而提高15.67%,当氮肥减少50%时,籽粒产量亦无显著降低;与农户调查的平均施氮量294 kg·hm-2相比,则氮肥可减少38.7%—59.2%。可见,目前宁夏引黄灌区春小麦的氮肥减施潜力为25%—60%。
2.2.2 氮肥用量对春小麦籽粒氮、磷、钾吸收量和需求量的影响 施氮180 kg·hm-2时,籽粒中氮素累积量最高,达168.2 kg·hm-2,比N0增加76.5%。籽粒吸磷量亦在施氮180 kg·hm-2时增加显著,相对N0处理增加33.5%;磷收获指数则是以施氮240 kg·hm-2处理的最高,达73.5%。籽粒吸钾量以施氮120和180 kg·hm-2处理增加较为显著,分别比N0提高28.8%和45.0%;钾收获指数则因高量施氮而显著降低。施氮180 kg·hm-2时,氮素需求量达45.8 kg·Mg-1,比N0增加19.6%;从不施氮到高量施用氮肥(240 kg·hm-2),磷需求量从6.0 kg·Mg-1显著降到5.3 kg·Mg-1,钾需求量则从42.6 kg·Mg-1增加到49.7 kg·Mg-1(表5)。可见,适量施氮会增加籽粒吸氮量、吸磷量和吸钾量,提高氮素需求量;高量施氮降低磷需求量,却促进磷素向籽粒转移,增加钾需求量而抑制钾素向籽粒转移。
表3 农户春小麦产量水平及氮、磷、钾施用量(n=243)
表4 不同施氮量下春小麦生物量、产量、产量构成因素、氮磷钾养分含量
同一列不同小写字母表示不同施氮水平之间差异达5%显著水平。下表同
In same column of a region, different lowercase letters indicate significant differences between means of N rates levels at<5%. The same as in the below tables
2.3.1 磷肥用量对春小麦生物量、籽粒产量及其构成因素的影响 随施磷量增加春小麦生物量呈降低趋势,收获指数呈增加趋势(表6)。与P0处理相比,施磷120 kg·hm-2时,生物量和籽粒含钾量分别降低17.4%和11.7%,收获指数和籽粒含氮量分别提高5.8个百分点和21.8%。磷肥用量对籽粒产量和每公顷穗数影响不显著,每穗粒数在施磷120 kg·hm-2明显降低至30粒;千粒重则随施磷量增加而明显增加,在施磷120 kg·hm-2时达50.9 g。说明,施用磷肥虽然增加了千粒重,促进了氮素向籽粒转移,却因降低了生物量和穗粒数而不能显著提高春小麦籽粒产量。
2.3.2 磷肥用量对春小麦籽粒氮、磷、钾吸收量和需求量的影响 籽粒吸氮量在施磷48 kg·hm-2时高达145.1 kg·hm-2,比不施磷对照提高31.8%;氮素收获指数在施磷120 kg·hm-2时可达到57.2%;氮素需求量平均值为47.8 kg·Mg-1,对磷水平的响应不显著(表7)。可见适量施用磷肥可促进氮素向籽粒转移,提高氮收获指数。适量施用磷肥亦可促进磷素向籽粒转移并提高磷收获指数,但对磷需求量的影响不显著。施磷48—120 kg·hm-2时,籽粒平均吸磷量和收获指数分别为20.9 kg·hm-2和72.5%,分别比对照提高15.9%和15.2%。施用磷肥对籽粒吸钾量和钾收获指数的影响不显著,但可显著降低钾需求量;不施磷肥时钾需求量为68.1 kg·Mg-1,施磷48、96和120 kg·hm-2时则分别降低了25.6%、13.5%和27.0%。
表5 不同施氮量下春小麦籽粒氮磷钾吸收量、需求量及收获指数
表6 不同施磷量下春小麦产量、生物量、产量构成因素及养分含量
2.4.1 钾肥用量对春小麦生物量、籽粒产量及其构成因素的影响 施钾量对生物量、籽粒产量、收获指数、每公顷穗数及籽粒的氮、磷、钾含量均无显著影响,对穗粒数有降低作用而对千粒重有增加作用(表8)。施钾75 kg·hm-2时,穗粒数比对照下降9.1%,千粒重比对照增加7.6%。可见,施用钾肥对春小麦产量和籽粒中氮、磷、钾养分含量的影响较小,但可以促进干物质向籽粒转移,提高籽粒饱满度。
2.4.2 钾肥用量对春小麦不籽粒氮、磷、钾吸收量和需求量的影响 不同施钾水平之间籽粒氮、磷、钾吸收量的差异均不明显,但高量施钾可显著增加氮、磷、钾收获指数(表9)。施钾量为60 kg·hm-2时,氮、磷、钾收获指数均最低,而氮、磷、钾需求量均达最高,分别为55.3、57.6和5.5 kg·Mg-1。当施钾量增加至75 kg·hm-2时,氮、磷、钾收获指数显著增加,说明高量施钾促进了植株氮、磷、钾向籽粒转移。施钾75 kg·hm-2时,氮和钾需求量分别显著降低20.6%和13.7%,磷需求量无显著变化。可见,适量施钾可提高氮、钾需求量,而高量施钾则降低氮、钾需求量。
表7 不同施磷量下春小麦籽粒氮磷钾吸收量、需求量及收获指数
氮素是植物体内许多重要化合物的主要成分,参与植物光合作用和一系列生物化学反应,对作物产量具有重要作用。本研究结果表明,施氮120—180 kg·hm-2时,可显著增加春小麦生物量、穗数和穗粒数,促进干物质向籽粒转移,从而提高籽粒产量和收获指数;继续增加施氮量,生物量、产量和穗粒数则呈降低趋势。这与前人的研究结果基本一致。高传东等[16]研究指出,施氮量在0—150 kg·hm-2范围时,两种春小麦的株高、小穗数、穗粒数、穗粒重、千粒重及产量均随施氮量增加而提高,继续增施氮肥到200 kg·hm-2时,株高和千粒重反而降低,产量增加也不明显。闻磊等[17]研究发现,随着施氮量的增加,春小麦的株高、叶面积指数、干物质积累量、产量等均呈现先增后减的趋势,施氮180 kg·hm-2和60%田间持水量条件下,小麦穗粒数和千粒重、干物质累积量及产量均达到最高。杨君林等[18]发现,与不施氮肥相比,施氮150 kg·hm-2条件下,春小麦茎叶生物量和籽粒产量分别增加了1 367.2和1 985.8 kg·hm-2;而施氮300 kg·hm-2时,籽粒产量显著降低。可见,适量施用氮肥是提高春小麦产量的主要途径。通过本试验结果拟合二元一次方程计算出,宁夏引黄灌区春小麦最高产量和最高产量施氮量分别为6 041和167.3 kg·hm-2,该值低于《宁夏测土配方施肥技术》[15]中推荐的适宜氮肥用量180—225 kg·hm-2,原因可能与试验区连年大量施用氮肥以及采用秸秆还田等技术培肥土壤,导致土壤氮素肥力提升有关。
表8 不同施钾量下春小麦产量、生物量、产量构成因素及养分含量
表9 不同施钾量下春小麦籽粒氮、磷、钾吸收量,需求量及收获指数
磷参与植物体内许多重要化合物的合成及代谢过程,是植物生长不可或缺的元素。本研究结果显示,随施磷量的增加,籽粒产量无明显差异,而春小麦地上部生物量和穗粒数均明显降低,千粒重和收获指数明显增加,表明施用磷肥可以促进干物质向籽粒转移,增加籽粒饱满度;当施磷量为96—120 kg·hm-2时,籽粒产量和千粒重均较高。该施肥量低于《宁夏测土配方施肥技术》[15]中推荐的春小麦适宜用量120—180 kg·hm-2,但与其他学者的研究结果基本一致。李志宏等[5]研究指出,春小麦最高产量施磷量和最佳施磷量分别为84.0—106和71.9— 94.4 kg·hm-2。张爱平等[19]在宁夏吴忠的试验结果发现施用磷肥显著增加了生物量和籽粒产量,当施磷量为120 kg·hm-2,小麦籽粒产量最高。宋勤璟等[20-21]在新春26号和34号春小麦品种上的研究发现,在施磷量为0—135 kg·hm-2范围内,小麦总干物质积累、穗粒数、千粒重和籽粒产量施磷量的增加而增加,超过此范围则出现下降趋势。何文寿等[22]对宁夏100个春小麦品种(系)的研究发现,春小麦籽粒产量和生物学产量均存在基因型差异,且在施磷肥120 kg·hm-2时,均较不施磷肥明显增加。可见,宁夏引黄灌区春小麦施磷量以不超过120 kg·hm-2为宜。
钾素是植物的品质元素,参与渗透调节、光合作用、物质运输等多种过程,可提高植物的抗逆性。研究结果表明,在宁夏引黄灌区,施钾量对春小麦生物量、籽粒产量、收获指数、每公顷穗数均无显著影响,对穗粒数有降低作用而对千粒重有增加作用,说明施用钾肥可以提高籽粒饱满度。田生昌等[4]在宁夏平罗研究发现,氮、磷、钾肥对春小麦的增产率以钾肥较低,春小麦最高产量(5 231.5 kg·hm-2)时的钾肥用量为22 kg·hm-2。党根友等[7]发现,中低肥力条件下, 施钾对春小麦有显著的增产效果,平均增产幅度为5.4%,施钾量(K2O)为45—75 kg·hm-2时可同时提高小麦产量和品质。杨开静等[6]认为,在灌溉条件下不同钾肥水平下春小麦产量差异不显著,但是同一氮、磷水平下,随着施钾量增加,春小麦产量出现先增后减的抛物线趋势,滴灌条件下春小麦达到高产的适宜K2O用量为88 kg·hm-2。可见,钾肥是否有增产效应与生产条件密切相关,但适量施用钾肥,可提高春小麦产量和品质,宁夏引黄灌区春小麦施钾量在0—60 kg·hm-2时可稳产增质,过多钾肥不利于产量提高。
籽粒中养分含量直接关系到籽粒品质,受外界养分供应和作物生长速度的双重影响。本研究发现,施用氮肥对籽粒氮、磷、钾含量均无显著影响,但可提高籽粒氮、磷、钾累积量,三者均在施氮180 kg·hm-2时达到最大;施用磷肥对籽粒氮、磷含量无显著影响,可显著降低钾含量,籽粒吸氮量和吸磷量在施磷48 kg·hm-2时显著增加,但吸钾量对磷肥用量无显著响应;施用钾肥对籽粒氮、磷、钾含量和累积量均无显著影响。这与前人研究结果不尽一致。LIU等[23]研究发现,施用氮磷肥和氮磷钾肥均能显著提高春小麦粗蛋白含量及蛋白质产量。刘克礼等[24-25]指出,植株中氮累积量在施磷180 kg·hm-2时比不施磷增加13%,在施氮300 kg·hm-2比不施氮增加61.9%,施钾150 kg·hm-2与不施钾处理无明显差异。施氮量为150 kg·hm-2时,籽粒吸氮量显著高于不施氮对照,超过300 kg·hm-2则出现降低趋势[18]。随施磷量增加,春小麦氮素累积动态呈先增加后降低的趋势, 适量增施磷肥能增加小麦吸氮量[19]。钾肥可显著提高春小麦籽粒粗蛋白含量和湿面筋含量[26]。刘克礼等[24-25]和高聚林等[27-28]发现,高追氮肥时,籽粒全氮、全磷、全钾含量分别增加22.2%、7.0%和16.3%;高施磷肥时,籽粒全氮、全磷、全钾含量分别增加27.6%、20.8%和4.3%;高施钾肥时,籽粒全氮、全钾含量分别增加3.8%、54.1%,全磷含量无显著变化。可见,氮、磷、钾肥对籽粒养分的影响因试验条件而异,在宁夏引黄灌区适量施用氮肥可增加春小麦籽粒中氮、磷、钾累积量,适量施磷可增加籽粒中氮、磷累积量,而钾肥对籽粒中养分累积量的影响不显著,这有待进一步研究。
小麦养分需求量与施肥量密切相关。本试验结果表明,适量施氮会显著增加氮需求量,高量施氮则使磷需求量显著降低,而钾需求量显著增加;施用磷肥对氮、磷需求量无显著影响,而使钾需求量显著降低;适量施用钾肥会增加氮、钾需求量,而对磷需求量无显著影响。在最高产量(6 331 kg·hm-2)时,氮、磷、钾需求量分别为45.8、5.3、45.4 kg·Mg-1,所对应的氮、磷、钾施用量分别为180、120、75 kg·hm-2。何文寿等[1]发现每形成100 kg籽粒产量吸收N、P2O5、K2O的数量分别为2.85、1.0、3.76 kg。随氮肥用量增加,需氮量由 20.8 kg·Mg-1升高到 25.7 kg·Mg-1[29]。随磷肥用量增加,需磷量由 3.8 kg·Mg-1升高到 4.2 kg·Mg-1[30]。随施钾量增加,需钾量由 18.9 kg·Mg-1升高到 21.9 kg·Mg-1[31]。刘克礼等[24]发现,春小麦籽粒氮、磷、钾需求量分别为37.5、12.9、29.9 kg·Mg-1,并指出高量施氮、施磷和施钾均可分别提高籽粒需氮量、需磷量和需钾量。说明,春小麦对氮、磷、钾需求量不但受自身养分供应的影响,而且受其他养分用量的影响,同时还与养分之间的配比密切相关,这有待进一步研究。
宁夏引黄灌区春小麦生产中,大多数农户存在氮肥施用过量而钾肥投入不足问题,部分施用磷、钾肥的农户亦存在施肥量差异较大的现象。因此,减少氮肥、调控磷肥、适当增加钾肥依然是宁夏引黄灌区春小麦化肥结构调整的主要方向。这与赵营等[2]2011年和2012年在该区的调研结果基本一致。根据田间试验结果,氮肥用量对春小麦产量的影响较为明显,当氮肥施用量达到120 kg·hm-2时,产量即显著增加,产量构成因素及氮磷钾养分含量及转移量亦显著增加;当施氮量超过180 kg·hm-2时,产量及其构成因素和养分含量出现下降趋势,因此,宁夏引黄灌区推荐氮肥适宜施用量为120—180 kg·hm-2,比生产上施氮量可减施25%—60%。磷、钾肥对籽粒产量均无显著影响,但可促进干物质及氮素向籽粒转移,增加千粒重。磷肥用量在48—96 kg·hm-2时,更有利于稳定春小麦产量并促进氮、磷向籽粒转移,比农户平均用量可减少40.7%—70.3%,钾肥用量在0—60 kg·hm-2时可稳产增质,在现有施肥水平上适量增减即可。
适量施氮可显著提高春小麦籽粒产量及氮、磷、钾吸收量;施磷肥对籽粒产量无显著影响,可提高穗粒数,千粒重及氮、磷吸收量;施钾肥对籽粒产量及氮、磷、钾吸收量均无显著影响,但可提高千粒重。春小麦氮需求量为38.3—57.2 kg·Mg-1,在适量施用氮、磷、钾肥时可显著增加;磷需求量为5.1—6.0 kg·Mg-1,随氮肥用量增加而降低,对磷、钾肥用量无显著响应;钾需求量为42.6—68.1 kg·Mg-1,随施氮量增加呈升高趋势,随施磷量增加呈降低趋势,在高量施钾时显著降低。
减少氮肥、调控磷肥、适当增加钾肥依然是宁夏引黄灌区春小麦化肥结构调整的主要方向。该区春小麦推荐氮肥适宜用量为120—180 kg·hm-2,比生产上可减施25%—60%;磷肥用量在48—96 kg·hm-2时更有利于稳定春小麦产量并促进氮、磷向籽粒转移,比农户平均用量可减少40.7%—70.3%;钾肥用量在0—60 kg·hm-2时可稳产增质,在现有施肥水平上适量增减即可。
[1] 何文寿. 宁夏植物营养与肥料研究现状与展望. 农业科学研究, 2013, 34(1): 54-60.
HE W S. Research advances and prospects of plant nutrition and fertilizers in Ningxia., 2013, 34(1): 54-60. (in Chinese)
[2] 赵营, 郭鑫年, 赵护兵, 王朝辉. 宁夏引黄灌区春小麦施肥现状与评价. 麦类作物学报, 2014, 34(9): 1274-1280.
ZHAO Y, GUO X N, ZHAO H B, WANG Z H. Evaluation on present situation of fertilization in spring wheat in the Yellow River irrigation region of Ningxia., 2014, 34(9): 1274-1280. (in Chinese)
[3] 王旭, 李贞宇, 马文奇, 张福锁. 中国主要生态区小麦施肥增产效应分析. 中国农业科学, 2010, 43(12): 2469-2476.
WANG X, LI Z Y, MA W Q, ZHANG F S. Effects of fertilization on yield increase of wheat in different agro-ecological regions of China., 2010, 43(12): 2469-2476. (in Chinese)
[4] 田生昌, 马建军, 叶陆明. 宁夏平罗春小麦氮、磷、钾肥肥效及适宜用量. 宁夏大学学报(自然科学版), 2012, 33(4): 396-399.
TIAN S C, MA J J, YE L M. Spring wheat N-P-K fertilizer efficiency and the appropriate amount for Pingluo in Ningxia., 2012, 33(4): 396-399. (in Chinese)
[5] 李志宏, 王兴仁, 张福锁. 我国北方地区几种主要作物氮营养诊断及追肥推荐研究1. 几种主要作物氮磷施用量的研究. 植物营养与肥料学报, 1997, 3(3): 262-267.
LI Z H, WANG X R, ZHANG F S. Nitrogen nutritional diagnosis and recommendation as topdressing fertilizer N for several crops in north China I. Recommendation of nitrogen and phosphate fertilizer for several crops in north China., 1997, 3(3): 262-267. (in Chinese)
[6] 杨开静, 王凤新, 宋娜, 马丹, 卢亚静, 郭利君. 滴灌条件下不同N、K肥施用量对春小麦生长和产量的影响. 中国农学通报, 2014, 30(12): 187-192.
YANG K J, WANG F X, SONG N, MA D, LU Y J, GUO L J. Effect of different application rates of N and K Fertilizers on the growth and yield of spring wheat under drip irrigation., 2014, 30(12): 187-192. (in Chinese)
[7] 党根友, 魏亦勤, 郭强, 樊明, 裘敏, 沈强云. 施钾对中低肥力灌淤土春小麦产量及品质的影响. 西北农业学报, 2010, 19(12): 35-40.
DANG G Y, WEI Y Q, GUO Q, FAN M, QIU M, SHEN Q Y. Effect of potassium on yield and quality of spring wheat in irrigation-silted soil., 2010, 19(12): 35-40. (in Chinese)
[8] 郑国琴, 何文寿, 郭瑞英. 春小麦高产高蛋白氮磷钾锌肥用量及配比研究. 干旱地区农业研究, 2006, 24(6): 17-20.
ZHENG G Q, HE W S, GUO R Y. Rational application rates of nitrogen, phosphorus, potassium, zinc fertilizers and their combining proportion in spring wheat with both high grain yield and high protein contents., 2006, 24(6): 17-20. (in Chinese)
[9] 何文寿, 何进勤, 郭瑞英. 宁夏引黄灌区春小麦不同生育期吸收氮、磷、钾养分的特点. 植物营养与肥料学报, 2006, 12(6): 789-796.
HE W S, HE J Q, GUO R Y. Characteristics of N, P and K uptake at different growth stages of spring wheat in irrigating region of Ningxia., 2006, 12(6): 789-796. (in Chinese)
[10] 赵营, 周涛, 郭鑫年, 梁锦秀, 吴霞, 冀宏杰, 张维理. 优化施肥对春小麦产量、氮素利用及氮平衡的影响. 干旱地区农业研究, 2011, 29(6): 119-124.
ZHAO Y, ZHOU T, GUO X N, LIANG J X, WU X, JI H J, ZHANG W L. Effect of optimum fertilization on spring wheat yield, N utilization and apparent N balance., 2011, 29(6): 119-124. (in Chinese)
[11] 车升国, 袁亮, 李燕婷, 林治安, 沈兵, 胡树文, 赵秉强. 我国主要麦区小麦氮素吸收及其产量效应. 植物营养与肥料学报, 2016, 22(2): 287- 295.
CHE S G, YUAN L, LI Y T, LIN Z A, SHEN B, HU S W, ZHAO B Q. N uptake and yield response of wheat in main wheat production regions of China., 2016, 22(2): 287- 295. (in Chinese)
[12] 车升国, 袁亮, 李燕婷, 林治安, 李燕青, 赵秉强, 沈兵. 我国主要麦区小麦产量形成对磷素的需求. 植物营养与肥料学报, 2016, 22(4): 869-876.
CHE S G, YUAN L, LI Y T, LIN Z A, LI Y Q, ZHAO B Q, SHEN B. Phosphorous requirement for yield formation of wheat in main wheat production regions of China., 2016, 22(4): 869-876. (in Chinese)
[13] 黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018, 51(14): 2722-2734.
HUANG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China., 2018, 51(14): 2722-2734. (in Chinese)
[14] 宁夏回族自治区农业技术推广总站. 2018年度宁夏回族自治区耕地质量监测报告[Z], 2018.
Ningxia Hui Autonomous Region Agricultural Technology Extension Station. 2018 Ningxia Hui Autonomous Region cultivated land quality inspection report[Z], 2018. (in Chinese)
[15] 马玉兰. 宁夏测土配方施肥技术. 银川: 宁夏人民出版社, 2008: 173-280.
MAYL.. Yinchuan: Ningxia People’s Press, 2008: 173-280. (in Chinese)
[16] 高传东. 氮肥施用对小麦产量和品质的影响[D]. 北京: 中国农业科学院研究生院, 2011.
GAO C D. Effect of Nitrogen fertilizer on wheat yield and quality[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[17] 闻磊, 张富仓, 邹海洋, 陆军胜, 郭金金, 薛占琪. 水分亏缺和施氮对春小麦生长和水氮利用的影响. 麦类作物学报, 2019, 39(4): 478-486.
WEN L, ZHANG F C, ZOU H Y, LU J S, GUO J J, XUE Z Q. Effective of water deficit and nitrogen rate on the growth, water and nitrogen use of spring wheat., 2019, 39(4): 478-486. (in Chinese)
[18] 杨君林, 马忠明, 张立勤, 王智琦, 连彩云, 薛亮. 施氮量对河西绿洲灌区垄作春小麦土壤水氮动态及吸收利用的影响. 麦类作物学报, 2015, 35(9): 1262-1268.
YANG J L, MA Z M, ZHANG L Q, WANG Z Q, LIAN C Y, XUE L. Effect to nitrogen fertilizer rate on soil water-nitrogen dynamics and absorption and utilization of ridge culture spring wheat in Hexi Oasis Irrigation District., 2015, 35 (9): 1262-1268. (in Chinese)
[19] 张爱平, 刘汝亮, 李友宏, 杨世琦, 杨淑静, 杨正礼. 施用磷肥对春小麦产量与吸氮特性及土体中硝态氮累积的影响. 干旱地区农业研究, 2009, 27(5): 30-34.
ZHANG A P, LIU R L, LI Y H, YANG S Q, YANG S J, YANG Z L. Effects of P fertilizer application on yield of spring wheat and characteristics of N absorption and NO3--N accumulation in soil profile., 2009, 27(5): 30-34. (in Chinese)
[20] 宋勤璟, 贾永红, 刘孝成, 张金汕, 吴薇, 祖丽胡玛尔·阿卜杜热依木, 吴娜尔·努尔丹汗, 石书兵. 施磷量对春小麦产量及种子活力的影响. 中国农学通报, 2017, 33(4): 8-14.
SONG Q J, JIA Y H, LIU X C, ZHANG J S, WU W, ZULIHUMAER ABUDUREYIMU, WUNAER NUERDANHAN, SHI S B. Different phosphate application amounts affecting yield and seed vigor of spring wheat., 2017, 33(4): 8-14. (in Chinese)
[21] 宋勤璟, 贾永红, 张金汕, 刘孝成, 吴薇, 李玉龙, 温浩然, 石书兵. 施磷量对春小麦干物质积累、分配及产量的影响. 新疆农业科学, 2016, 53(11): 1988-1998.
SONG Q J, JIA Y H, ZHANG J S, LIU X C, WU W, LI Y L, WEN H R, SHI S B. Effect of different phosphate application on accumulation and partitioning of dry matter and yield of spring wheat., 2016, 53(11): 1988-1998. (in Chinese)
[22] 何文寿. 宁夏春小麦磷素利用效率的基因型差异研究. 干旱地区农业研究, 2003, 21(2): 1-6.
HE W S. Genotypic differences in phosphorus utilization efficiency among spring wheat varieties in Ningxia., 2003, 21(2): 1-6. (in Chinese)
[23] LIU X B, ZHANG Q Y, JIN J, WANG G H, HERBERT S J. Fertilization management for improving quality properties of spring wheat in northeast China., 2005, 4(3): 207-213.
[24] 刘克礼, 高聚林, 张永平, 刘瑞香, 刘景辉. 春小麦氮、磷、钾三要素利用率的研究. 麦类作物学报, 2003, 23(3): 103-106.
LIU K L, GAO J L, ZHANG Y P, LIU R X, LIU J H. Study on N, P, and K utilization ratio of spring wheat., 2003, 23(3): 103-106. (in Chinese)
[25] 刘克礼, 高聚林, 刘瑞香, 张永平, 刘景辉. 春小麦氮素吸收、积累与分配规律的研究. 麦类作物学报, 2003, 23(3): 97-102.
LIU K L, GAO J L, LIU R X, ZHANG Y P, LIU J H. Rules of N assimilation, accumulation and distribution of spring wheat., 2003, 23(3): 97-102. (in Chinese)
[26] 李玉影, 吴英, 刘双权, 金继运, 黄绍文, 何萍. 钾对春小麦产量及品质的影响. 土壤肥料, 2002(2): 33-35.
LI Y Y, WU Y, LIU S Q, JIN J Y, HUANG S W, HE P. Effect of potassium on grain yield and quality of spring wheat., 2002(2): 33-35. (in Chinese)
[27] 高聚林, 刘克礼, 张永平, 刘瑞香, 刘景辉. 春小麦磷素吸收、积累与分配规律的研究. 麦类作物学报, 2003, 23(3): 107-112.
GAO J L, LIU K L, ZHANG Y P, LIU R X, LIU J H. Study on principle of P assimilation, accumulation and distribution of spring wheat., 2003, 23(3): 107-112. (in Chinese)
[28] 高聚林, 刘克礼, 张永平, 刘瑞香, 刘景辉. 春小麦钾素吸收、积累与分配规律的研究. 麦类作物学报, 2003, 23(3): 113-118.
GAO J L, LIU K L, ZHANG Y P, LIU R X, LIU J H. Principle of K assimilation, accumulation and distribution of spring wheat., 2003, 23(3): 113-118. (in Chinese)
[29] YUE S C, MENG Q F, ZHAO R F, YE Y L, ZHANG F S, CUI Z L, CHEN X P. Change in nitrogen requirement with increasing grain yield for winter wheat., 2012, 104(6): 1687-1693.
[30] TENG W, DENG Y, CHEN X P, XU X F, CHEN R Y, LV Y, ZHAO Y Y, ZHAO X Q, HE X, LI B, TONG Y P, ZHANG F S, LI Z S. Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat., 2013, 64(5): 1403-1411.
[31] ZHAN A, ZOU C Q, YE Y L, LIU Z H, CUI Z L, CHEN X P. Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China., 2016, 191: 13-19.
Requirement of Nitrogen, Phosphorus and Potassium and Potential of Reducing Fertilizer Application of Spring Wheat in Yellow River Irrigation Area of Ningxia
WANG XiNa1, YU JinMing1, TAN JunLi2, ZHANG JiaQun1, WEI ZhaoQing1, WANG ZhaoHui3
(1School of Agriculture, Ningxia University, Yinchuan 750021;2School of Civil and Hydraulic Engineering, Yinchuan 750021;3College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi)
【】The aim of this study was to clarify fertilization and requirement of nitrogen (N), phosphorus (P) and potassium (K) in spring wheat production in Yellow River Irrigation Area of Ningxia (NYRIA), so as to provide a theoretical guide for rational fertilizer reduction and application. 【】Based on the investigation of farmers’ fertilizer application and field fertilization experiments, farmers’ yield levels and N, P, K fertilizer application of spring wheat were analyzed, and the grain yield, yield components, and N, P, K nutrient requirement were investigated. 【】The average spring wheat yield of farmers was (6 985±867) kg·hm-2in NYRIA, and the percentage of high yield farmers was 82.7%. With the increase of yield, the excessive amount of N and P was decreased, and the application rates of K was insufficient. On average, the application rates of N, P and K were 294, 162 and 49 kg·hm-2, respectively, with 97.1% of farmers over applied N by 69-114 kg·hm-2, and 20.5% of farmers over applied P by 18-42 kg·hm-2, while K inputs were generally insufficient with an amount of 30-51 kg·hm-2. The N fertilization experiment showed that shoot biomass, grain yield, harvest index and grain number per ear all increased significantly at N rates of 120-240 kg·hm-2, and all reached the highest at the application of N 180 kg·hm-2. At the same time, the amount of N, P, and K absorbed by the grain also reached to the maximum value of 168.2, 23.9, and 23.2 kg·hm-2, respectively. Nitrogen application showed no significant effect on N harvest index, the average of which was 56.5%, and tended to increase P harvest index but decrease K harvest index. Nitrogen requirement reached to 45.8 kg·Mg-1at N rate of 180 kg·hm-2, being 19.6% higher than that of no N application. P requirement decreased from 6.0 kg·Mg-1at no N application to 5.3 kg·Mg-1at N rate of 240 kg·hm-2, while K requirement increased from 42.6 to 49.7 kg·Mg-1. The P experiment showed that shoot biomass and grain number per ear decreased significantly with the increase of P rates, while 1 000 grain weight and harvest index increased significantly, so there was no significant difference in grain yield over P rates. Moreover, P application improved N uptake and harvest index, being 28.6% and 27.9% higher respectively than that of no P application. Also, P fertilizer could promote P to transfer to grain because that P uptake and P harvest index were increased by 15.9% and 15.2%, respectively. However, it showed no significant effect on N and P requirement, but decreased K requirement from 68.1 kg·Mg-1at no P application to 49.7 kg·Mg-1at P2O5rate of 120 kg·hm-2. The K experiment showed that the application of K had no significant effects on biomass, grain yield, harvest index, ears per hectare, and the content of N, P and K in grain. While the high K fertilizer application of 75 kg·hm-2significantly reduced the number of grains per ear, but increased 1 000 grain weight and harvest index of N, P and K. Grain number per ear decreased by 9.1%, 1 000 grain weight increased by 7.6%, and harvest indexes of N, P and K were 57.2%, 73.5% and 7.3%, respectively. When applying 60 kg·hm-2of K2O, the demand for N, P and K reached the highest, which was 55.3, 5.5 and 57.6 kg·Mg-1, respectively, while the demand for N and K were both significantly reduced by 20.6% and 13.7% at K2O rate of 75 kg·hm-2. It was concluded that proper application of K could increase the demand of N and K, while over application of K could reduce the demand of N and K.【】Reducing N fertilizer, regulating P fertilizer and properly adding K fertilizer input were still the key for spring wheat fertilization in NYRIA. The N requirement of spring wheat was ranged 38.3-57.2 kg·Mg-1, and could increase by applying the moderate amount of N, P and K fertilizer. The demand for P of spring wheat was 5.1-6.0 kg·Mg-1, which tends to increase with N rates and is not influenced by P and K amount. The K requirement of spring wheat was within 42.6-68.1 kg·Mg-1, which seems to increase with N rates and decrease with P rates, and also is reduced by high amount of K application. The suitable recommended application of N fertilizer was 120-180 kg·hm-2, which was 25%-60% lower compared with N application of farmers. Application of P fertilizer at 48-96 kg·hm-2was more conducive to stabilize the yield of spring wheat and promote the transfer of N and P to the grain, which was reduced by 40.7%-70.3% compared with the average application of farmers. When the application of K fertilizer was 0-30 kg·hm-2, it was more benefit to stabilize the yield and increase the grain quality.
spring wheat; N; P; K; harvest index; absorption; requirement; Yellow River Irrigation Area of Ningxia
10.3864/j.issn.0578-1752.2020.23.014
2020-07-04;
2020-09-21
国家重点研发计划(2018YFD0200405)、国家自然科学基金(31860590)、宁夏高等学校一流学科建设(水利工程)(NXYLXK2017A03)
王西娜,E-mail:eunicexina-w@163.com。通信作者谭军利,E-mail:Tanjl@nxu.edu.cn
(责任编辑 李云霞)