彭荣
彭荣
(广东培正学院 数据科学与计算机学院,广东 广州 510830)
由引理可知
所以
(8)
因此
对式(12)取上极限,可得
[1] Banach S.Sur Les Operations Dans Les Ensembles Abstraits et Leur Application auxéquations intégrales[J].Fundam Math,1922,3:133-181
[2] Singh S L,Tiwari B M L,Gupta V K.Common fixed points of commuting mappings in 2-metric spaces and an application[J].Mathematische Nachrichten,1980,95(1):293-297
[3] Huang L G,Zhang X.Cone metric spaces and fixed point theorems of contractive mappings[J].Journal of Mathematical Analysis and Applications,2007,332(2):1468-1476
[7] Kaleva O,Seikkala S.On fuzzy metric spaces[J].Fuzzy sets and systems,1984,12(3):215-229
[8] Matthews S G.Partial metric topology[J].Annals of the New York Academy of Sciences-Paper Edition,1994,728:183-197
PENG Rong
(School of Data Science and Computer,Guangdong Peizheng University,Guangdong 510830,China)
O177.6
A
10.3969/j.issn.1007-9831.2020.10.002
1007-9831(2020)10-0005-06
2020-02-28
广东省普通高等学校基础研究重大项目(2017KZDXM038)
彭荣(1982-),男,湖北嘉鱼人,讲师,硕士,从事应用非线性分析及变分问题研究.E-mail:pengr2009@hotmail.com