农业利用对毛乌素沙地土壤碳氮含量及微生物量的影响

2020-11-11 02:55薛英龙李春越王益苗雨常顺
农业环境科学学报 2020年10期
关键词:硝态沙地集约化

薛英龙,李春越*,王益,苗雨,常顺

(1.陕西师范大学地理科学与旅游学院,西安710119;2.中国科学院地球环境研究所,西安710061)

随着城镇化与工业化的发展,我国面临着农业土地生产力不足、可耕作土地日益减少等问题,粮食需求增长和耕地资源匮乏已成为制约现代农业发展的主要影响因素[1]。近年来,为缓解干旱半干旱地区的经济发展和人口压力,促进荒漠区水土资源的大规模开发利用,使得人工绿洲不断向外围的荒漠区域扩大[2],导致大面积的沙地、戈壁向绿洲农田转变,但由于现有农田开垦年限的延长,以及不合理的土地利用等农田管理措施引发的土壤酸化、板结和肥力下降等问题也日趋严重[3]。

合理的农业利用方式能够增强土壤对外界环境变化的抵抗力、改善土壤结构和土壤肥力[4],满足多种作物不同的生长需求。不合理的农业利用方式会导致土壤养分流失和生产力下降[5]、加重土壤侵蚀、降低微生物群落的多样性和丰富度[6]。自20 世纪50年代开始,我国干旱半干旱地区经历了持久的沙地农田土地开发[7-8],并已取得较好的成绩[9]。刘任涛等[10]对科尔沁沙地研究后发现,对水浇农田实行保护性耕作和精细管理,有利于沙地土壤环境改善与生态系统恢复。周晓兵等[11]研究表明,塔克拉玛干荒漠绿洲过渡带植物普遍缺少氮素,而土地利用在一定程度上缓解了这种氮素匮乏。苏永中等[9]研究表明,荒漠沙地开垦为农田后,随着开垦年限的增加,虽然显著改善了土壤肥力,但该区域土壤肥力仍处于较低水平。

毛乌素沙地处于我国北方的半干旱地区,是以畜牧业为主的草地、林业、农业组成的复合型生态系统地区,地表水资源匮乏、植被覆盖率低、易受人为活动干扰及土壤风蚀退化严重等直接导致毛乌素沙地生态环境脆弱[12]。国内外大量学者基于不同试验区域研究了农业利用方式对沙地农田土壤质量的影响[13-14],表明若有合理的土地利用方式,并且选用适宜的耕作管理措施,则可通过增加土壤碳氮储量而影响该区域生境质量;反之,土地过度利用则会降低土壤质量,从而导致土地生产力下降。目前关于毛乌素沙地土地利用和管理措施对土壤质量的影响已经进行了初步探索,但就不同农业利用类型及其方式变化对土壤质量和微生物特性影响的研究报道较少。由于毛乌素沙地土壤风蚀严重、生态环境脆弱,而植被变化、土地利用方式改变是土壤质量变化的重要驱动力。因此,本文以毛乌素治沙造林基地中明沙样地为对照,选取不同农业利用类型和方式的传统农业(小麦、水稻、旱稻)、设施农业(黑莓、蓝靛果花楸、葡萄)、集约化农业(马铃薯)为试验样地,在系统分析沙地农业利用类型和方式对土壤碳、氮含量和微生物生物量影响的基础上,运用冗余分析和相关性分析研究了土壤各理化因子和微生物生物量的相关性,研究有助于深入理解毛乌素沙地土壤养分与环境因子间的作用机制,以期为绿洲农田选用合理的农业利用类型和方式提供理论依据,也为维护沙地土壤质量和农业生态系统提供科学指导。

1 材料与方法

1.1 研究区概况

采样点位于毛乌素沙地东南缘陕西省神木市圪丑沟流域的毛乌素生态试验站(38°10′ ~39°05′ N,109°40′~110°30′E),基地总面积约700 km2,位于毛乌素沙漠深处的秃尾河源头。该区土壤类型以风沙土为主,土质疏松瘠薄、抗风蚀性能差,春季干旱,易出现大风和寒潮。属干旱半干旱大陆气候,多年平均降水量440.8 mm,平均蒸发量2 092 mm,为降水量的4.7 倍。年平均气温7.8 ℃,最高月(7 月)平均气温23.9 ℃,最低月(1 月)平均气温-9.8 ℃。区内风沙天气频繁,春、秋两季西北风盛行,平均风速2.4 m·s-1,最大风速19 m·s-1。

毛乌素沙地经大面积开发利用后形成了草地、林地和农田的镶嵌景观,本试验选取了该区域农业生态系统中比较典型的传统农业、设施农业、集约化农业利用类型进行分析,不同农业利用类型下不同农业利用方式主要为:马铃薯(Solanum tuberosumL.)、小麦(Triticum aestivumL.)、水稻(Oryza sativaL.)、旱稻(Upland rice)、黑莓(Graptopetalum blackberry)、蓝靛果花楸(Lonicera caeruleaL. var. edulis Turcz. ex Herd.)、葡萄(Vitis viniferaL.),共7 种开垦年限为15 a 的代表性农业作物,代表了毛乌素沙地典型的自然条件相同而农业利用类型和方式不同的土地类型。

1.2 样品采集

试验样品采集于2017年7月,本研究以自然沙地为对照(CK),选取小麦(TA)、水稻(OS)、旱稻(UR)、黑莓(GB)、蓝靛果花楸(LC)、葡萄(VV)、马铃薯(ST),共8 种目标样地的土壤样品(表1)。传统农业种植区按当地农事习惯施肥和灌溉,设施农业和集约化农业种植区采用统一管理。各样地土壤类型均为沙地土壤,每种样地内随机选取3 个10 m×10 m 的小区,在小区内选择五点采样法采样,使用土钻采集0~20 cm 处土壤。将所采集土壤样品密封标记后,及时带回实验室进行处理。剔除土壤中动物残体、碎小石子、植物枯枝、杂草及其余杂质,土壤过2 mm 筛后,取出约1/3 土壤进行风干处理,用于测定土壤理化指标;剩余土样置于含去离子超纯水和0.1 mol·L-1NaOH 溶液的4 ℃黑暗密闭圆形容器平衡一周,然后低温保存用于微生物生物量和呼吸测定。

1.3 研究方法

土壤全碳采用TOC仪灼烧测定;土壤有机碳采用盐酸消解后TOC仪灼烧测定;土壤全氮采用全自动凯氏定氮仪测定;土壤铵态氮和硝态氮采用0.5 mol·L-1K2SO4浸提-流动分析仪测定;土壤呼吸采用碱液吸收滴定法测定;28 d矿化氮采用生物培养法测定[15]。

微生物生物量碳、氮测定:称取3 份相当于风干土壤质量为20 g的新鲜土壤于小烧杯中,将土样与盛有50 mL 无酒精氯仿的烧杯共同放入真空干燥箱,抽真空至氯仿持续沸腾后关紧阀门,25 ℃下培养24 h后取出氯仿,再次反复抽真空至完全去除土壤中残余氯仿,加入0.5 mol·L-1K2SO4溶液50 mL,25 ℃下充分振荡30 min;另外称取3份土壤直接加入50 mL K2SO4溶液浸提测定。

式中:2.64和0.54分别为氯仿熏蒸杀死的微生物体的碳、氮被K2SO4浸提出来的比例;Ec 为熏蒸与未熏蒸浸提液中碳质量分数的差值[16]。

表1 研究区试验设置Table 1 Experimental setup of research area

1.4 数据处理

试验数据为3 次重复的平均值±标准差,采用Origin 8.0绘图。采用Excel 2010进行数据处理,SPSS 10.0 软件进行单因素方差分析(One-way ANOVA),Duncan 法进行多重比较。采用Canoco 5 软件进行冗余分析(RDA),开源软件R 3.6.3进行相关性分析。

2 结果与分析

2.1 不同农业利用类型和方式对土壤微生物生物量碳、氮的影响

毛乌素沙地不同农业利用方式土壤微生物生物量碳含量在7.70~49.74 mg·kg-1之间(图1A)。不同农业利用方式下,小麦地、黑莓地、蓝靛果花楸地和葡萄地土壤微生物生物量碳含量显著高于CK,分别为CK的1.41、3.42、2.65、3.24 倍;而水稻地和旱稻地土壤微生物生物量碳含量显著低于CK,分别仅为CK 的68%和53%;马铃薯地土壤微生物生物量碳含量与CK 无显著差异。其中,设施农业利用类型土壤微生物生物量碳含量显著高于CK和其余农业利用类型。毛乌素沙地同一农业利用类型、不同利用方式之间土壤微生物生物量氮差异显著(图1B),传统农业中水稻地土壤微生物生物量氮含量分别为小麦地、旱稻地的1.86、3.74 倍,设施农业中黑莓地土壤微生物生物量氮含量分别为蓝靛果花楸地、葡萄地的1.71、1.32 倍;在不同农业利用方式下,水稻地、黑莓地、马铃薯地土壤微生物生物量氮含量均显著高于CK,而旱稻地显著低于CK;同时,集约化农业利用类型土壤微生物生物量氮含量显著高于CK和其余农业利用类型。研究表明不同农业利用类型对土壤微生物生物量碳、氮含量具有显著差异,其主要原因为研究区不同农业利用类型及其利用方式间土壤营养元素、水分和温度差异较大,土壤微生物生长所需生境不能得到全部满足,进而造成不同农业利用类型、不同样地间土壤微生物的含量差异较大。

图1 农业利用对土壤微生物生物量碳、氮的影响Figure 1 Effects of agricultural utilization on soil microbial biomass C and N

2.2 不同农业利用类型和方式对土壤全碳、有机碳的影响

毛乌素沙地不同农业利用方式土壤全碳含量均显著高于CK(图2A)。传统农业中小麦地土壤全碳含量(8.00 g·kg-1)显著高于水稻地(2.79 g·kg-1)和旱稻地(2.69 g·kg-1),且水稻地与旱稻地之间无显著差异;设施农业中黑莓地(10.01 g·kg-1)和蓝靛果花楸地(10.25 g·kg-1)土壤全碳含量间无显著差异,但均显著高于葡萄地(6.08 g·kg-1);集约化农业中马铃薯地土壤全碳含量(2.40 g·kg-1)较水稻地、旱稻地无显著差异。在不同农业利用类型下,除传统农业中小麦地外,设施农业利用类型土壤全碳含量显著高于其余农业利用类型,说明土壤全碳含量受凋落物累积与分解程度、地表植被覆盖度和人为干扰程度等因素的影响较大。

不同农业利用方式土壤有机碳含量变化范围为0.95~4.70 g·kg-1(图2B)。黑莓地、蓝靛果花楸地、葡萄地土壤有机碳含量均显著高于CK(1.06 g·kg-1),分别为CK的4.43、3.35、3.67倍,而其余农业利用方式土壤有机碳含量较CK均无显著差异。在不同农业利用类型下,传统农业和集约化农业利用类型间土壤有机碳含量无显著差异,设施农业利用类型土壤有机碳含量显著高于CK和其余农业利用类型。这与设施农业利用类型下各样地含有丰富的凋落物,而其余农业利用类型地表草根枯落物基本被全部移走,且农田耕作相对频繁,进而导致沙地农田有机碳分解较快有关。

2.3 不同农业利用类型和方式对土壤全氮、铵态氮、硝态氮的影响

不同农业利用方式土壤全氮含量均显著高于CK,且各农业利用类型间土壤全氮差异较大(图3A)。在不同农业利用类型下,设施农业利用类型土壤全氮含量最高,黑莓地、蓝靛果花楸地、葡萄地分别为CK的14.99、8.31、7.11倍;集约化农业有所下降,马铃薯地土壤全氮含量是CK 的3.51 倍;传统农业土壤全氮含量最低,小麦地、水稻地、旱稻地分别仅为CK的2.44、2.48、2.28倍。说明农业耕作措施影响土壤全氮含量。耕作过的土壤(传统农业、集约化农业)由于地表枯落物较少,致使其土壤全氮含量均显著低于未耕作过的土壤(设施农业)。

图2 农业利用对土壤全碳、有机碳的影响Figure 2 Effects of agricultural utilization on soil TC and OC

同一农业利用类型、不同农业利用方式间土壤铵态氮含量具有显著差异(图3B)。在不同农业利用方式下,除水稻地和蓝靛果花楸地外,其他农业利用方式土壤铵态氮含量较CK 均有所降低;其中,小麦地、旱稻地、黑莓地、葡萄地、马铃薯地土壤铵态氮含量分别为CK 的44%、57%、76%、91%、59%。不同农业利用方式土壤硝态氮含量均高于铵态氮含量(图3C)。在不同农业利用方式下,水稻地、黑莓地、蓝靛果花楸地、葡萄地、马铃薯地土壤硝态氮含量显著高于CK和其余农业利用方式,而小麦地、旱稻地土壤硝态氮含量显著低于CK,且马铃薯地土壤硝态氮含量显著高于其余农业利用方式。其中,设施农业和集约化农业土壤硝态氮含量均显著高于CK 和传统农业利用类型。说明马铃薯地土壤硝态氮累积较多,这主要是由于集约化农业和常规种植模式在灌溉和施肥体系上存在差异,以及马铃薯根系微生物联合作用的结果。

图3 农业利用对土壤全氮、铵态氮和硝态氮的影响Figure 3 Effects of agricultural utilization on soil TN,NH+4-N and NO-3-N

2.4 不同农业利用类型和方式对土壤呼吸和矿化氮的影响

在不同农业利用方式下,除旱稻外,其余农业利用方式土壤呼吸速率均显著高于CK(图4A)。小麦地、水稻地、黑莓地、蓝靛果花楸地、葡萄地、马铃薯地土壤呼吸速率分别为CK 的2.09、2.27、2.94、1.60、2.64、2.38 倍,表明农业利用对土壤呼吸均有不同程度的促进作用。不同农业利用类型间土壤呼吸熵差异显著(图4B)。在不同农业利用方式下,小麦地、水稻地、旱稻地、马铃薯地土壤呼吸熵均显著高于CK,分别为CK 的1.49、3.18、1.69、2.62 倍;蓝靛果花楸地土壤呼吸熵显著低于CK,为CK 的60%。其中,传统农业和集约化农业利用类型土壤呼吸熵均显著高于CK,而设施农业土壤呼吸熵则有所降低,说明设施农业利用类型下微生物呼吸消耗的碳比较少,能更有效地利用有机碳转化为微生物生物量碳。

不同农业利用方式土壤矿化氮含量均显著高于CK(0.07 mg·kg-1),且同一农业利用类型、不同利用方式间土壤矿化氮含量无显著差异(图4C)。在不同农业利用类型下,集约化农业利用类型土壤矿化氮含量最高,马铃薯地均值为0.54 mg·kg-1;传统农业次之,小麦地、水稻地和旱稻地分别是CK 的4.45、3.72 倍和4.11倍;设施农业土壤矿化氮含量最低,黑莓地、蓝靛果花楸地、葡萄地分别为CK的2.95、2.71、3.26倍。

2.5 毛乌素沙地农田土壤呼吸熵和矿化氮与其他指标的关系

以不同处理下土壤呼吸熵和矿化氮含量为响应变量,以土壤微生物生物量和各理化指标为解释变量作冗余分析(RDA),结果如图5 所示。土壤铵态氮作用最明显,解释了土壤呼吸熵和矿化氮含量变化的64.1%(F=25.0,P=0.002),其次是硝态氮,解释了土壤呼吸熵和矿化氮含量变化的18.1%(F=13.2,P=0.002),土壤各理化因子共解释了土壤呼吸熵和矿化氮含量变异程度的100.0%,影响的大小顺序为铵态氮>硝态氮>含水率>微生物生物量氮>田间最大持水量>全碳>全氮>有机碳>pH>微生物生物量碳。其中,第1轴解释了其变异的92.62%,第2轴解释了7.37%。

如图6 所示,土壤微生物生物量与土壤理化性质存在一定的相关性。土壤全碳、有机碳、全氮、微生物生物量碳两两之间呈显著正相关;有机碳、全氮、铵态氮、微生物生物量碳与呼吸熵呈显著负相关;微生物生物量氮、全氮与硝态氮呈显著正相关;矿化氮与铵态氮呈显著负相关;呼吸熵、矿化氮与pH呈显著正相关。

3 讨论

3.1 不同农业利用类型和方式对土壤微生物生物量碳、氮的影响

图5 土壤呼吸熵和矿化氮与其他指标的冗余分析Figure 5 Redundancy analysis of soil respiration entropy and mineralized nitrogen and other indicators

图6 土壤微生物生物量和各项基本理化指标的相关分析Figure 6 Correlation analysis of soil microbial biomass and basic physical and chemical indexes

本研究中不同农业利用类型土壤微生物生物量碳含量平均值大小依次为设施农业>CK>传统农业>集约化农业;不同农业利用方式下,黑莓地、葡萄地土壤微生物生物量碳含量显著高于CK和其余农业利用方式。表明微生物生物量碳易受农业利用方式的影响,且不同农业利用类型含量差异较大,可作为农业利用类型对土壤有机碳影响的良好指标。这是因为地表枯落物是不同样地有机碳的最重要来源之一,相比CK、传统农业和集约化农业,设施农业利用类型下各农业利用方式受外界风沙侵蚀影响较小,同时耕作措施等人工管理导致有机质含量提高,大量凋落物易在土壤表层积聚,通过共生菌根及有机酸、磷酸酶等根系分泌物的转化分解,为土壤微生物生长繁殖提供了丰富的碳源,同时也保持了表层土壤水分含量,更有利于土壤微生物的生命活动[17]。本研究发现水稻地、旱稻地和马铃薯地土壤微生物生物量碳含量较CK均有所降低,这可能是因为传统农业和集约化农业不仅遭受外界风沙侵袭,而且受人类经营活动影响强烈,尤其是稻田类型由于干湿交替等原因导致土壤微生物难以维持较高的生物量,同时土壤翻耕等剧烈改变土壤理化状况的农田管理措施,也能够导致土壤微生物区系改变和微生物生物量下降[18]。宋日等[19]通过研究传统农业中耕作方式对土壤微生物生物量的影响也验证了这一观点。而小麦地土壤微生物生物量碳含量显著高于CK,可能是因为这一时期小麦生长进入孕穗期,根系分泌能力增强,分泌物增多,为土壤微生物生长提供碳源,土壤微生物生物量碳含量提高[20]。本研究中,不同农业利用类型土壤微生物生物量氮含量平均值大小依次为集约化农业>设施农业>CK>传统农业,且马铃薯地土壤微生物生物量氮含量显著高于CK 和其余农业利用方式,表明集约化农业利用类型下马铃薯地土壤微生物对氮素的固持作用较强。一方面是由于马铃薯根系周围土壤微环境中含有能显著促进植物生长的固氮微生物,长期种植马铃薯对土壤氮素累积有明显的促进作用,显著提高了土壤微生物生物量氮含量[21];另一方面可能是因为机械化翻耕、收割等作业过程虽然带走了大量凋落物,但也导致部分枯枝落叶将土壤养分集中到表层土壤中,提高了土壤有机质和氮素含量,为微生物生存提供了丰富的氮源,使土壤微生物生物量增加[22]。作物在进入成熟期后对土壤养分需求降低,表层土壤中的土壤微生物菌群结构在根系分泌物的影响下发生较大变化,这也可能是水稻地土壤微生物生物量氮含量提高的原因之一,但还需后期实验进一步验证。

3.2 不同农业利用类型和方式对土壤碳、氮的影响

本研究显示,不同农业利用方式土壤全碳含量均显著高于CK,表明长期作物种植处理通过地表大量凋落物有机质的分解,以及根系分泌物向土壤中提供碳源物质,有利于维持和提高土壤全碳含量[23]。其中,农田土壤碳素不仅取决于沙地农田开垦前的土壤有机质含量和农业生态系统,在沙地开垦进行作物种植后,同一农业利用类型、不同利用方式间有机肥施用和作物根茬导致作物归还土壤的碳含量存在差异,这也可能是传统农业中小麦地土壤全碳含量显著高于稻型土壤,而设施农业中葡萄地显著低于黑莓地和花楸地的原因之一[3]。本研究还表明,设施农业利用类型土壤全碳、有机碳含量均显著高于其余农业利用类型。这是因为设施农业利用类型长期采用大棚处理且人为干扰(耕作活动)少,表层土壤受风沙影响较小,枯枝落叶覆盖度最大,其腐质化作用较为显著,地表大量的凋落物在有机酸、磷酸酶等根系分泌物作用下,使其有机碳含量显著高于其余农业利用类型[7,24];而传统农业和集约化农业利用类型下各作物样地的土壤有机碳含量较CK 无显著差异,这是因为研究区风蚀严重,不同程度地破坏了土壤结构的稳定性,加速了土壤有机质组分的分解,风沙侵蚀和作物收获导致表土凋落物覆盖度较低,带走的大量养分得不到及时补充,导致其表土碳输入量降低[7];另外,沙地农田开垦为耕作农田后,采用传统的非保护性农田管理措施和单一的作物生产模式,土壤有机质组分流失严重,进而影响了土壤有机质的积累和有机碳的存储[3]。

本研究中,不同农业利用类型土壤全氮含量平均值大小依次为设施农业>集约化农业>传统农业>CK,且各农业利用类型间差异显著,表明毛乌素沙地农田开垦后不同农业利用类型对耕层全氮均有显著影响。这是因为在毛乌素沙地干旱荒漠区,农田开垦利用前土壤全氮初始值较低,开垦利用后长期农作物种植可有效保护表层土壤免受风沙侵蚀,并通过发达的根系富集土壤养分,地表凋落物和腐根将养分集中到表土层,化肥和有机肥投入以及作物秸秆还田等农业管理措施的实施,都会导致土壤全氮含量提高[14]。另外,传统农业和集约化农业地表覆盖物少,而且受耕作措施扰动较大,其土壤有机碳、氮转化为CO2和无机氮的程度高[25],因此土壤有机碳和全氮含量显著低于设施农业。本研究结果还表明,集约化农业利用类型土壤硝态氮含量均显著高于CK 和其余农业利用类型。这是由于集约化农业中马铃薯地通过固氮微生物将空气中的N2转化为作物能吸收利用的铵态氮,为土壤硝化微生物提供了足够的氮源,促进了土壤硝化,也加速了铵态氮向硝态氮转化[21,26];另外,集约化农业种植区土壤的施肥量过大,远大于作物的吸收量,从而导致土壤硝态氮含量高于其余农业利用类型[27],造成集约化种植区土壤硝态氮含量过高。而设施农业利用类型下的人为控制为土壤硝化作用创造了条件,由于免耕处理和氮肥的持续供应,随着种植年限的延长,大棚土壤硝态氮不断增加,氮肥以硝态氮的形式在土壤中累积,因而设施农业土壤硝态氮含量显著高于CK 和传统农业[28]。魏迎春等[29]研究也表明,大棚处理的土壤硝态氮含量显著高于其余土地利用方式。不同农业利用方式间土壤硝态氮含量差异显著,可能与不同作物对养分的吸收利用、植物根系分泌物、地表凋落物分解以及有机氮的矿化平衡有关,并受土壤铵态氮和有机氮转化分解相互叠加作用的影响[28]。另外,由于不同农业利用类型改变了地表温度、pH 和透气性等土壤理化性质,进而对土壤微生物的生命活动造成影响,这也是土壤氮素随农业利用类型发生变化的主要原因之一。在不同农业利用方式下,除水稻地和蓝靛果花楸地外,其余农业利用方式土壤铵态氮含量较CK 均有所降低,且同一农业利用类型、不同农业利用方式间差异显著,一方面可能是由于沙地农田中不同作物根系会从土壤吸收大量的有效养分以满足其生长需要,且各农业利用方式使得土壤微生物群落结构和土壤养分含量发生变化,因而对土壤铵态氮含量产生影响;另一方面可能是由于农业利用促进了土壤的硝化作用,使得绝大部分开垦农田土壤的净硝化速率大于净矿化速率,不仅增加硝态氮淋溶或径流损失的风险,而且硝化作用导致不同农业利用类型下土壤铵态氮含量降低[30]。其中,集约化种植区采用水肥一体化的滴灌模式施肥,水分和肥料一起迁移至土壤,肥料逐渐从表土向深层渗透,导致表土中铵态氮含量降低[31]。本研究发现,同一农业利用类型、不同利用方式间土壤矿化氮含量无显著差异,不同农业利用类型土壤矿化氮含量平均值大小依次为集约化农业>传统农业>设施农业>CK,且马铃薯地矿化氮含量显著高于其他农业利用方式。这是因为马铃薯根系周围含有的活性物质可刺激微生物活动,提高了土壤氮素的矿化过程[21]。集约化农业和其他土地利用类型间土壤矿化氮含量的差异,主要反映出地表枯落物覆盖量和施肥等人类活动增加了农田中有机氮的输入,改变了土壤基质和微环境,同时耕作等农田管理措施也改变了土壤的pH,从而使矿化作用产生差异[14]。另外,不同农业利用方式对土壤碳、氮含量的影响也与各样地根系的生长发育和分布有关,根系是将作物光合产物直接输入到地下的唯一途径[32],这导致了不同利用方式间土壤碳、氮含量的差异。

3.3 不同农业利用类型和方式对土壤呼吸的影响

陈书涛等[33]研究发现,不同土地利用类型下,土壤呼吸速率均随试验区土壤有机碳含量增加而提高。Rodeghiero 等[34]研究表明,森林土壤呼吸强度随表层土壤有机碳含量的增加而呈线性正相关关系。本研究中,除旱稻地外,其余样地土壤呼吸速率均显著高于CK,且同一农业利用类型、不同利用方式之间土壤呼吸速率存在差异,表明土壤呼吸速率易受农业利用的影响。原因可能是毛乌素沙地农业利用类型及其方式不同常会直接或间接导致地表温度、水分等环境因素发生变化,而土壤温度和土壤水分是影响土壤呼吸的重要环境因素[8]。另外,这也与不同农业利用类型下表层土壤的底物输入量有关,因为土壤呼吸、有机质分解等所有生物化学过程都与底物供应和土壤微生物群落结构密切相关[35];有机碳会影响土壤微生物底物供应,其含量高低是影响土壤呼吸高低差异的重要因素之一[8]。其中,设施农业利用类型下各样地每年有大量的凋落物回归土壤,使得微生物生命活动可利用的碳源较为充足,为微生物创造了适宜的生存环境,土壤微生物呼吸速率显著提高;而传统农业和集约化农业利用类型由于种植作物土壤翻耕,导致土壤疏松、透气性良好,土壤微生物群落结构和大小发生变化,加速土壤有机质分解,进而提高了土壤呼吸速率[36]。土壤呼吸熵(也称微生物代谢熵)是土壤呼吸速率和微生物生物量碳的比值,其比值大小是土壤微生物利用碳源效率的重要依据[37]。本研究表明,不同农业利用类型土壤呼吸熵平均值大小依次为集约化农业>传统农业>CK>设施农业,而设施农业利用类型土壤微生物生物量碳、有机碳含量显著高于沙地和其余农业利用类型,表明设施农业利用类型下各样地土壤微生物对有机碳的利用率高。这可能是因为在适宜的水热条件下,土壤呼吸取决于微生物生物量的大小[38]。

4 结论

(1)毛乌素沙地不同农业利用类型及其方式通过改变土壤微环境,对土壤养分和微生物生物量的影响显著。不同农业利用类型下,土壤微生物生物量碳、全碳、有机碳、全氮含量和呼吸速率均在设施农业下最高,土壤微生物生物量氮、硝态氮和矿化氮含量均在集约化农业下最高。

(2)设施农业利用类型可以显著提高土壤碳储量及碳素利用率,而集约化农业在促进土壤氮素矿化方面具有明显优势。

猜你喜欢
硝态沙地集约化
河北太行山山前平原葡萄园土壤硝态氮累积特征及影响因素
论耕地利用可持续集约化与农户生计转型
塞罕坝地区沙地云杉引种试验及培育要点
能钻过柔软沙地的蛇形机器人
秋季蔬菜集约化育苗生产技术指导意见
沙地迷宫
不同类型氮组成对异养硝化好氧反硝化体系中氮转化的影响
植物吸收转运硝态氮及其信号调控研究进展
基于集约化的电费电价管理措施探析
风滚草