屈健 郑颖怀 杨炼 罗雪娥 唐宏英
〔摘要〕 目的 分析長链非编码RNA(long non-coding RNA, lncRNA)小核仁RNA宿主基因10(small nucleolar RNA host gene 10, SNHG10)在胰腺癌(pancreatic cancer, PC)细胞中的表达水平,并观察其对细胞迁移及侵袭能力的影响。方法 采用荧光定量PCR(qRT-PCR)检测5株PC细胞(AsPC-1、Capan-1、CFPAC-1、PANC-1和PaCa-2)和正常胰腺导管上皮细胞(HPDE)中SNHG10的表达特征。采用pcDNA3.1(+)-SNHG10载体过表达SNHG10,以pcDNA3.1(+)载体为对照;采用shRNA-SNHG10载体干扰SNHG10表达,以shRNA-control载体为对照。采用细胞划痕和Transwell侵袭试验观察过表达和干扰SNHG10后AsPC-1和PANC-1细胞迁移及侵袭能力的变化。结果 SNHG10在AsPC-1、Capan-1、CFPAC-1、PANC-1和PaCa-2细胞中的表达水平均显著高于HPDE细胞(P<0.05),并以AsPC-1和PANC-1细胞的表达水平为最高(P<0.05)。转染pcDNA3.1(+)-SNHG10载体可显著提高AsPC-1和PANC-1细胞中SNHG10的表达水平(P<0.05),而转染shRNA-SNHG10载体显著抑制AsPC-1和PANC-1细胞中SNHG10的表达水平(P<0.05)。转染shRNA-SNHG10载体可显著促进AsPC-1和PANC-1细胞的迁移及侵袭能力(P<0.05),而转染shRNA-NHG10载体显著抑制AsPC-1和PANC-1细胞的迁移及侵袭能力(P<0.05)。结论 SNHG10在PC细胞中表达上调。过表达SNHG10可促进PC细胞的迁移及侵袭能力,而干扰SNHG10可抑制PC细胞的迁移及侵袭能力。
〔关键词〕 SNHG10;胰腺癌;长链非编码RNA;迁移;侵袭
〔中图分类号〕R735.9;R285.5 〔文献标志码〕A 〔文章编号〕doi:10.3969/j.issn.1674-070X.2020.08.008
〔Abstract〕 Objective To analyze the expression levels of long non-coding RNA (lncRNA) small nucleolar RNA host gene 10 (SNHG10) in pancreatic cancer (PC) cells, and to investigate its effects on the migratory and invasive abilities of PC cells. Methods The expression patterns of SNHG10 in 5 types of PC cells (AsPC-1, Capan-1, CFPAC-1, PANC-1 and PaCa-2) and a normal pancreatic ductal epithelial cell (HPDE) was observed by quantitative real-time PCR (qRT-PCR). The shRNA3.1 (+)-SNHG10 vector was used to enforce SNHG10 expression, and the pcDNA3.1 (+) vector was served as a negative control. The shRNA-SNHG10 vector was used to silence SNHG10 expression, and the shRNA-control vector was served as a negative control. The migratory and invasive abilities of AsPC-1 and PANC-1 cells after knockdown and overexpression of SNHG10 were evaluated by cell scratch and Transwell invasion assays, respectively. Results The expression levels of SNHG10 in the AsPC-1, Capan-1, CFPAC-1, PANC-1 and PaCa-2 cells were significantly higher than that in the HPDE cells (P<0.05), and the SNHG10 expression of the AsPC-1 and PANC-1 cells was the highest (P<0.05). Transfection of pcDNA3.1 (+)-SNHG10 vector significantly increased the expression levels of SNHG10 in the AsPC-1 and PANC-1 cells (P<0.05), whereas transfection of shRNA-SNHG10 vector markedly inhibited the expression levels of SNHG10 in theAsPC-1 and PANC-1 cells (P<0.05). Transfection of shRNA-SNHG10 vector significantly promoted the migratory and invasive abilities of theAsPC-1 and PANC-1 cells (P<0.05), while transfection of shRNA-SNHG10 vector markedly inhibited the migratory and invasive abilities of theAsPC-1 and PANC-1 cells (P<0.05). Conclusion SNHG10 expression is upregulated in PC cells. Overexpression of SNHG10 promotes the migratory and invasive abilities of PC cells, while knockdown of SNHG10 inhibits the migratory and invasive abilities of PC cells.
〔Keywords〕 SNHG10; pancreatic carcinoma; long non-coding RNA; migration; invasion
胰腺癌(pancreatic cancer, PC)是最具侵袭性的恶性肿瘤之一,预后极差,5年生存率低于5%,中位生存期仅约为6个月[1]。PC以恶性程度高、易早期转移及对化疗的高度耐药性为主要临床特征[2-3]。研究发现许多癌基因的异常表达或激活参与了PC的发生及发展过程[4]。然而,到目前为止,关于PC转移的详细分子机制仍不明确。因此,当前研究迫切需要阐明PC侵袭和转移的潜在分子机制。近年来,非编码RNA在人类疾病模型中越来越受到研究者们的重视。长链非编码RNA(long non-coding RNA,lncRNA)是一类长度大于200个核苷酸但缺乏蛋白质编码能力的非编码RNA,并已被证明在调节肿瘤细胞生物学行为中发挥关键作用[5-6]。迄今为止,通过染色质特征分析和大规模测序发现了数千种lncRNAs,功能研究表明这些lncRNAs具有特殊的临床意义,并呈现出不同的生物学效应[7-8]。小核仁RNA宿主基因10(small nucleolar RNA host gene 10, SNHG10)属于SNHG家族成员之一,是最近研究发现的一种新的lncRNA[9]。LAN等[10]报道SNHG10在肝癌中的表达水平显著高于癌旁组织,并具有促进肝癌发生及转移的功能。迄今为止,关于SNHG10在PC中的生物学作用尚不清楚。本研究拟通过qRT-PCR检测SNHG10在PC细胞中的表达水平,并采用基因干扰与过表达技术观察SNHG10对PC细胞侵袭及迁移能力的影响。
1 材料与方法
1.1 主要试剂及仪器
RNAiso Plus与PrimeScriptTM RT reagent Kit with gDNA Eraser(TaKaRa公司);Terra qPCR Direct TB Green Premix(Clontech公司);DMEM培养基(Gibco公司);青霉素和链霉素(Sigma公司);Transwell小室(Corning公司);基质胶(BD Biosciences公司);引物与Lipofectamine 2000(Invitrogen公司);pcDNA3.1(+)-SNHG10载体、pcDNA3.1(+)载体、shRNA-SNHG10载体及shRNA-control载体(广州市锐博生物科技有限公司)。5810/5810R高速冷冻离心机(Eppendorf公司);MDF-U538-C超低温冰箱(SANYO公司);Prism 7900HT/FAST荧光定量PCR仪(Applied Biosystems公司);37XC倒置生物显微镜(上海光学仪器厂);Herocell 240 CO2培养箱(上海润度生物科技有限公司)。
1.2 细胞培养及转染
5株PC细胞(AsPC-1、Capan-1、CFPAC-1、
PANC-1和PaCa-2)和正常胰腺导管上皮细胞(HPDE)购于中国科学院典型培养物保藏委员会细胞库。采用DMEM培养基、10% FBS、100 U/mL青霉素和100 U/mL链霉素培养细胞,并置于37 ℃、5% CO2细胞箱中培养。常规传代,接种,并取对数期生长的细胞进行转染。细胞转染分成4组:pcDNA3.1(+)-SNHG10载体组、pcDNA3.1(+)载体组、shRNA-SNHG10载体组及shRNA-control载体组。转染步骤如下:取AsPC-1和PANC-1细胞接种到6孔板中,每组设计3个复孔,培养过夜。待各孔细胞汇合度达80%时,依次转染pcDNA3.1(+)-SNHG10载体、pcDNA3.1(+)载体、shRNA-SNHG10载体及shRNA-control载体各2 μg,Lipofectamine 2000各5 μL,每孔添加2 mL DMEM培养基,培养6 h。随后每孔更换2 mL DMEM+10% FBS培养基继续培养48 h。收集各孔细胞,并采用qRT-PCR检测SNHG10表达情况。
1.3 RNA抽提
收集约1×106个PC细胞,参照RNAiso Plus操作说明书,提取细胞中的RNA。利用紫外分光光度计测定RNA浓度,将OD260/280值在1.8~2.1范围内的RNA样本视为合格,并放置于-80 ℃冰箱保存。
1.4 qRT-PCR试验
参照PrimeScriptTM RT reagent Kit with gDNA Eraser操作说明书逆转录合成cDNA。参照Terra qPCR Direct TB Green Premix操作说明书进行PCR试验。反应体系及用量如下:2×TB Green Premix 10 μL,正反向引物各0.5 μL,cDNA 1 μL,PCR-Grade Water 8 μL。反应条件为:98 ℃ 2 min,随后98 ℃ 10 s,60 ℃ 15 s,68 ℃ 30 s,总共40个循环。以甘油醛-3-磷酸脱氢酶GAPDH为内参基因,引物序列如下:SNHG10正向引物5'-CCTCATCCTACTGCCTTACTATTGG-3',反向引物5'-GAAAGTCGTCTTCCCTCTTGTT-3';GAPDH正向引物5'-GATTCCACCCATGHCCAAATTC-3',反向引物5'-CTGGAAGATGGTGATGGGATT-3'。通过2-ΔΔCt法[11]分析SNHG10的表达水平。
1.5 细胞劃痕试验
将转染后的AsPC-1和PANC-1细胞接种到6孔板中,以DMEM+10% FBS培养基培养过夜,待各孔细胞汇合度达100%时,用无菌的100 μL枪头经过各孔中心划出相互垂直的2条划痕,用PBS缓慢冲洗细胞3次,去除杂质及被划掉的细胞。随后每孔更换DMEM培养基继续培养24 h。根据细胞迁移情况在不同时间点进行拍照,观察和测定迁移距离,并计算划痕愈合率。
1.6 Transwell侵袭试验
将转染后的AsPC-1和PANC-1细胞接种到基质胶包被的Transwell小室的上室中,并在上室中加入200 μL DMEM培养基,下室加入500 μL DMEM+10% FBS培养基培。细胞培养48 h后用无菌的棉签擦掉上室中的细胞,采用4%多聚甲醛固定侵入下室的细胞,并采用吉姆萨染色,通过显微镜下观察并计算各组单个视野中被染色的细胞个数。
1.7 统计学分析
采用SPSS 16.0统计软件进行统计学分析。所有试验至少独立重复3次,计量资料采用“x±s”表示,并进行正态性与方差齐性检验,符合正态性及方差齐性时则采用t检验或者单因素方差分析。如不满足正态性及方差齐性时,则采用秩和检验。P<0.05时判定差异有统计学意义。
2 结果
2.1 SNHG10在PC细胞中的表达水平
SNHG10在AsPC-1、Capan-1、CFPAC-1、PANC-1和PaCa-2细胞中的表达水平均显著高于HPDE细胞(P<0.05),且SNHG10在AsPC-1和PANC-1细胞的表达水平显著高于Capan-1、CFPAC-1和PaCa-2细胞(P<0.05)。见图1。
2.2 pcDNA3.1(+)-SNHG10和shRNA-SNHG10载体对SNHG10表达的影响
pcDNA3.1(+)-SNHG10载体、pcDNA3.1(+)载体、shRNA-SNHG10载体及shRNA-control载体在PC细胞中转染情况良好,效率均在70%以上。轉染pcDNA3.1(+)-SNHG10载体能显著提高AsPC-1和PANC-1细胞中SNHG10的表达水平(P<0.05),而转染shRNA-SNHG10载体可显著抑制AsPC-1和PANC-1细胞中SNHG10的表达水平(P<0.05)。见图2。
2.3 过表达和干扰SNHG10对AsPC-1和PANC-1细胞迁移能力的影响
与转染pcDNA3.1(+)组相比,转染pcDNA3.1(+)-SNHG10载体显著促进AsPC-1和PANC-1细胞的迁移能力(P<0.05),见图3。与转染shRNA-control相比,转染shRNA-SNHG10载体显著抑制AsPC-1和PANC-1细胞的迁移能力(P<0.05)。见图4。
2.4 过表达和干扰SNHG10对AsPC-1和PANC-1细胞侵袭能力的影响
与转染pcDNA3.1(+)相比,转染pcDNA3.1(+)-SNHG10载体显著促进AsPC-1和PANC-1细胞的侵袭能力(P<0.05),见图5。与转染shRNA-control相比,转染shRNA-SNHG10载体显著抑制AsPC-1和PANC-1细胞的侵袭能力(P<0.05)。见图6。
3 讨论
尽管目前研究者已经鉴定了数千种lncRNAs,但是绝大多数lncRNAs在疾病模型中的作用仍然未知[7-8]。研究表明,一些lncRNAs可充当致癌基因或抑癌基因而参与PC的发生与发展[12]。例如,YE等[13]报道lncRNA AFAP1-AS1在PC中表达上调,过表达AFAP1-AS1促进PC细胞增殖、迁移和侵袭行为。SHEN等[14]发现lncRNA XIST促进PC细胞迁移、侵袭和上皮间充质转化能力。YANG等[15]发现lncRNA DLX6-AS1通过调节细胞增殖、周期与凋亡而促进PC肿瘤发生。此外,LIU等[16]证实lncRNALINC01207促进PC细胞的自噬和凋亡。SNHG10是一种新的lncRNA,属于SNHG家族成员之一。研究发现,SNHG家族成员与PC转移密切相关,LncRNA SNHG1在PC表达上调通过激活Notch-1信号通路促进细胞转移和侵袭[17]。LncRNA SNHG7通过调控miR-342-3p/ID4信号促进PC细胞转移[18]。LncRNASNHG14通过吸附微小RNA-101刺激PC细胞自噬来增强对吉西他滨的耐药性[19]。尽管如此,关于SNHG10在PC中的潜在作用尚不清楚。本研究旨在明确SNHG10对体外培养的PC细胞迁移及侵袭能力的影响。
据文献报道,SNHG10在多种肿瘤中表达上调,如肺腺癌[20]、膀胱癌[21]和肝细胞癌[10]。本研究表明,SNHG10在PC细胞中的表达水平均显著高于HPDE细胞,并以AsPC-1和PANC-1细胞为最高。鉴于上述结果,故我们选择AsPC-1和PANC-1细胞进行体外细胞功能试验。随后,我们使用pcDNA3.1(+)-SNHG10载体在AsPC-1和PANC-1中过表达SNHG10;同时采用特异性shRNA-SNHG10载体抑制SNHG10的表达。结果显示,pcDNA3.1(+)-SNHG10载体可提高SNHG10表达水平50倍以上,而shRNA-SNHG10载体可降低SNHG10表达水平至0.25倍以下。细胞划痕和Transwell侵袭试验结果显示,转染shRNA-SNHG10载体显著促进AsPC-1和PANC-1细胞的迁移及侵袭能力,而转染shRNA-SNHG10载体显著抑制AsPC-1和PANC-1细胞的迁移及侵袭能力。这些结果表明SNHG10促进PC细胞的转移,这与先前肝癌中SNHG10的研究结果一致。SNHG10通过正反馈环调节其同源物SCARNA13(small Cajal body-specific RNA 13)促进肝癌转移[10]。
研究发现,lncRNAs通过ceRNA机制负性调控微小RNA(miRNAs)表达而发挥生物学作用[20,22]。例如,lncRNA LINC00336在肺癌中通过作为miR-6852的ceRNA而抑制胱硫醚β合酶基因表达[23]。LncRNA
[15] YANG J, YE Z, MEI D, et al. Long noncoding RNA DLX6-AS1 promotes tumorigenesis by modulating miR-497-5p/FZD4/FZD6/Wnt/beta-catenin pathway in pancreatic cancer[J]. Cancer Management and Research, 2019, 11: 4209-4221.
[16] LIU C, WANG J O, ZHOU W Y, et al. Long non-coding RNA LINC01207 silencing suppresses AGR2 expression to facilitate autophagy and apoptosis of pancreatic cancer cells by sponging miR-143-5p[J]. Molecular and Cellular Endocrinology,2019, 493: 110424.
[17] CUI L, DONG Y, WANG X, et al. Downregulation of long noncoding RNA SNHG1 inhibits cell proliferation, metastasis, and invasion by suppressing the Notch-1 signaling pathway in pancreatic cancer[J]. Journal of Cellular Biochemistry, 2019, 120(4): 6106-6112.
[18] CHENG D, FAN J, MA Y, et al. LncRNA SNHG7 promotes pancreatic cancer proliferation through ID4 by sponging miR-342-3p[J]. Cell and Bioscience, 2019, 9: 28.
[19] ZHANG X, ZHAO P, WANG C, et al. SNHG14 enhances gemcitabine resistance by sponging miR-101 to stimulate cell autophagy in pancreatic cancer[J]. Biochemical and Biophysical Research Communications, 2019, 510(4): 508-514.
[20] LI D S, AINIWAER J L, SHEYHIDING I, et al. Identification of key long non-coding RNAs as competing endogenous RNAs for miRNA-mRNA in lung adenocarcinoma[J]. European Review for Medical and Pharmacological Sciences, 2016, 20(11): 2285-2295.
[21] JIANG B, HAILONG S, YUAN J, et al. Identification of oncogenic long noncoding RNA SNHG12 and DUXAP8 in human bladder cancer through a comprehensive profiling analysis[J]. Biomedicine & Pharmacotherapy, 2018, 108: 500-507.
[22] QI X, ZHANG D H, WU N, et al. ceRNA in cancer: possible functions and clinical implications[J]. Journal of Medical Genetics, 2015, 52(10): 710-718.
[23] WANG M, MAO C, OUYANG L, et al. Long noncoding RNALINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA[J]. Cell Death & Differentiation, 2019, 26(11): 2329-2343.
[24] ZHANG J, CAI M, JIANG D, et al. Upregulated LncRNA-CCAT1 promotes hepatocellular carcinoma progression by functioning as miR-30c-2-3p sponge[J]. Cell Biochemistry and Function, 2019, 37(2): 84-92.
[25] SHI L, HONG X, BA L, et al. Long non-coding RNA ZNFX1-AS1 promotes the tumor progression and metastasis of colorectal cancer by acting as a competing endogenous RNA of miR-144 to regulate EZH2 expression[J]. Cell Death & Disease, 2019, 10(3): 150.
[26] SHI W, ZHANG C, NING Z, et al. Long non-coding RNA LINC00346 promotes pancreatic cancer growth and gemcitabine resistance by sponging miR-188-3p to derepress BRD4 expression[J]. Journal of Experimental & Clinical Cancer Research, 2019, 38(1): 60.
(本文編辑 苏 维)