不确定性冲击对宏观经济变量影响效应的差异性研究*
——基于金融摩擦区制的视角

2020-09-27 03:07喻世友宋晓飞
中山大学学报(社会科学版) 2020年5期
关键词:脉冲响应内生宏观经济

喻世友,宋晓飞

一、引 言

金融市场动荡与经济不确定性上升被认为是2008 年金融危机之后西方发达经济体经济衰退和复苏缓慢的两个最主要原因(Stock&Watson,2012)。国内外学者对这两方面因素的宏观经济波动效应分别进行了许多研究。最新文献把关注点放在两者交互上,考察金融市场在传导不确定性冲击对宏观经济影响中的作用(Gilchrist et al.,2014)。这两者间的联系是:由于经济中的个体对风险定价,当经济不确定性更高的时候,可能会导致金融市场功能①如:融资,提供流动性以及风险控制功能。减弱,由此不确定性冲击能够通过金融市场放大其对经济的影响。现有研究表明:不仅金融摩擦能够明显放大不确定性冲击的宏观经济效应(Gilchrist et al.,2014),并且金融市场状况更差的情况下这种宏观经济效应会更大(Alessandri & Mumtaz,2019)。而到目前为止,研究中国不确定性冲击的宏观经济效应的文献鲜有考虑金融市场因素。本文以此为切入点,研究中国不确定性冲击的宏观经济效应与金融市场摩擦之间的联系,提出并试图回答以下问题:在中国经济情境下,在不同的金融摩擦程度之下,中国经济不确定性冲击的宏观经济效应具有怎样的差异?金融摩擦程度更高时,不确定性冲击的影响是否更大?

为回答上述问题,本文使用中国2006年3月到2018年6月的月度数据,由信贷利差刻画金融摩擦程度①文献中使用信贷利差衡量金融摩擦程度已有不少先例(例如:战明华和应诚炜(2015),Matvos et al.(2018))。在此感谢审稿专家提醒笔者在理论上金融摩擦与信贷利差是不同的。,建立非线性波动均值VAR 模型,研究并比较不确定性冲击对中国宏观经济的影响效应在不同金融摩擦区制下的差异性。与多数实证研究所使用的方法相比,本文方法有两个特点:第一,使用结构冲击的随机波动率刻画不确定性,通过波动均值的方式将之引入VAR 模型,此设定使不确定性变量和前定内生变量一起直接影响宏观经济内生变量,与Mumtaz&Surico(2018)的设定类似,与国内学者常将不确定性代理指标变量直接作为系统的内生变量加以研究不同(孟庆斌和师倩,2017;田磊等,2017)。第二,使用一年期公司债与一年期国债之间的信贷利差刻画金融摩擦程度,由信贷利差是否超过某个内生阈值定义金融摩擦所在的区制,允许模型动态依赖于所处金融摩擦区制,即在不同金融磨擦区制下,允许模型参数结构存在差异性。这有别于上述学者对中国经济不确定性问题的研究。

本文非线性波动均值VAR 模型的设定具有灵活性,其优点是:允许宏观经济变量面对不确定性冲击时的响应随着金融磨擦程度的高低而存在差异性,避免无差异情形下参数估计的非一致性及后续的不恰当推断。通过对比不同金融摩擦区制下不确定性冲击的宏观经济效应,可以直接回答本文提出的问题。

本文研究发现,在我国经济情境下,不确定性冲击的宏观经济效应在不同金融摩擦区制下存在明显差异。在低金融摩擦区制下,不确定性冲击会导致产出降低,政策利率和信贷利差上升,对通胀具有不显著的提高效应;在高金融摩擦区制下,不确定性冲击对产出没有显著影响,但通胀提高的程度比低金融摩擦区制下更大,并且对政策利率和信贷利差有明显的抑制效应。进一步分析表明,货币当局在不同金融摩擦区制下的行为是导致上述差异的原因,在高金融摩擦区制下,货币当局对不确定性冲击做出了正面的响应,对冲了不确定性冲击的不利影响。对两种区制下不确定性冲击宏观经济效应的差异性的研究,在一定程度上解释了为何现有研究认为中国经济政策不确定性不具有明显的产出效应(田磊等,2017)。其原因是:现有研究中线性SVAR 的设定忽略了两个区制效应的差异,导致其无法识别不确定性冲击对产出的负面影响。

进一步通过预测方差分解发现,不确定性冲击能够解释相当比例的宏观经济波动,而且在金融摩擦更高区制下其解释的比例更高。最后,使用反事实分析发现,不确定性冲击对解释内生变量历史波动具有明显的重要性。预测方差分解以及反事实分析表明,不确定性冲击是中国宏观经济波动的重要来源,值得宏观经济当局对其加以关注。

基于本文发现可得到以下结论:第一,中国不确定性冲击的宏观经济效应在不同金融摩擦程度下具有明显差异,并且未被高金融摩擦放大,这与现有文献关于国外经济的研究结论不同(Alessandri &Mumtaz,2019)。其原因是:在高金融摩擦区制下,中国货币当局通过降低政策利率,有效降低信贷利差,及时对不确定性冲击做出了响应,对冲了不确定性冲击对宏观经济的不利影响。第二,不确定性冲击是中国宏观经济波动的一个重要来源,并且在金融摩擦程度更高时对宏观经济波动影响的比例更大。

本文的研究贡献在于:首先,与目前国内大部分文献不同,本文通过在VAR模型中加入服从于AR(1)过程的不确定性变量作为解释变量,并允许波动率可以影响内生变量,使实证模型与理论DSGE 模型更加一致,从而具有理论文献基础。其次,在模型中引入内生金融摩擦变量的阈值效应,考察不确定性冲击在不同金融摩擦区制下对宏观经济变量的影响效应,所得结论更具有启发性。最后,基于非线性波动均值VAR 模型的估计,通过预测方差分析以及反事实分析,量化并比较了不同金融摩擦区制下不确定性冲击对中国宏观经济波动的重要性。总体而言,本文在考察不确定性冲击与金融摩擦交互对中国宏观经济的影响方面迈出了新的一步,拓展了此研究领域的内容。

下文安排如下:第二部分是文献综述;第三部分介绍本文使用的模型框架;第四部分是实证分析;第五部分是结论与政策建议。

二、文献综述

经济不确定性的概念可以追溯到Knight(1921)。Knight 首先将不确定性的概念引入经济学分析,并进一步按照个体是否知道可能事件的分布而区分为风险和不确定性。在此之后大多数研究对不确定性和风险的概念不作完全区分,而是在统一的“不确定性”概念下展开研究。Bloom(2014)将经济不确定性定义为“人们对未来可能状况的不确定”,并认为经济不确定性能够造成经济衰退(Bloom,2014;Stock&Watson,2012)。传统不确定性影响实体经济变量的传导机制依赖于投资或雇佣决策的不可逆转性,近年来对不确定性冲击传导机制的研究重点开始转移到金融摩擦上(Gilchrist et al.,2014)。当金融合同面临代理或者道德风险问题时,不确定性的上升会提升外部融资溢价,导致资本形成成本上升以及投资的降低。这种“金融视角”的传导机制表明,金融因素在不确定性冲击影响实体经济的过程中具有关键作用。

目前关于不确定性冲击与金融摩擦关联性的VAR 实证文献较少。Benati(2016)发现,把信贷利差与不确定性代理变量同时放入VAR 模型会带来识别问题:当把金融摩擦考虑在内时,不确定性冲击的作用变得微弱。Caldara et al.(2016)研究发现,允许信贷状况对不确定性的影响做出反应是不确定性冲击能够影响经济活动的关键。

国内文献关于不确定性冲击对宏观经济影响的研究与国外以发达国家为对象的研究有所不同。中国作为最大的发展中国家和新兴市场经济体,政府在经济运行和资源配置中扮演着更为关键的角色,这驱动国内学者从新政治经济学的视角研究政策不确定性对实体经济的影响。张军和高远(2007)将政府周期性换届和官员的人事调动作为自然实验,研究官员更替引发的不确定性对经济增长和私人投资的影响。后续陆续有学者沿着这个思路考察官员变动带来的不确定性对中国经济的影响(徐业坤等,2013)。但官员变动导致的不确定性与本文讨论的不确定性具有明显的区别。一般而言,前者对经济的影响是区域性的,且具有明显的周期性,因为中国的官员更替周期是与地方政府换届周期强关联的,而本文考察的不确定性不存在与制度安排相关带来的周期性。另有部分国内学者使用Baker et al.(2016)构建的经济政策不确定性指标作为不确定性的代理指标,从宏观与微观层面考察经济政策不确定性对区域经济增长、企业投资融资等的影响(孟庆斌和师倩,2017;王义中和宋敏,2014)。此外,也有学者研究经济政策不确定性对宏观经济波动的影响。田磊等(2017)使用混合识别SVAR 模型,研究了经济政策不确定性冲击以及其他三种传统结构冲击对中国宏观经济波动的相对影响程度,发现经济政策不确定性冲击不是中国经济波动的主要因素,经济政策不确定性对产出具有微弱的影响作用,但对价格水平的打压作用明显,货币政策当局没有对经济政策不确定性做出针对性反应,并认为国有企业投资行为、政府对经济增长的底线思维等中国经济特征弱化了不确定性冲击对产出的影响效应。

由上面文献梳理可见,当前文献对金融摩擦与不确定性冲击互动的研究不够充分,关于中国不确定性冲击的宏观经济效应与金融摩擦之间关系的研究更是缺乏。在中国经济情境下,金融摩擦在不确定性冲击影响宏观经济变量过程中的作用怎样?或者说,在不同的金融摩擦区制下,不确定性冲击的宏观经济效应是否显著不同?为此,本文定义金融摩擦区制变量,将之嵌入非线性波动均值VAR 模型中,由此阈值模型的估计并通过脉冲响应分析,研究中国不确定性冲击在不同金融摩擦程度下的宏观经济效应。另外,通过预测方差分解分析以及构建关于不确定性冲击的反事实模拟,说明在不同金融摩擦区制设定下不确定性冲击在中国宏观经济波动分析中的重要性。

三、非线性波动均值VAR模型

较高的金融摩擦程度会引起宏观当局更多的关注,并按金融摩擦程度对宏观经济进行适时调控。为研究不确定性冲击和金融摩擦交互对中国宏观经济变量的影响效应,本节将经济按金融摩擦程度的高低分为两种金融摩擦区制,将它们嵌套进入随机波动均值VAR模型。

(一)模型设定

本文设定的模型包含以下几类变量:(i)四个宏观经济内生变量:实际GDP(Yt)、消费者价格指数(Pt)、银行间市场七天逆回购利率(Repo7Dt)①央行行长易纲在公开谈到货币政策时都是以7天逆回购利率来说明货币政策立场。这表明,7天逆回购利率是央行看重的政策利率。本文选用此利率作为货币政策利率。和AAA 级一年期公司债与一年期国债之间的信贷利差(Spreadt),其中信贷利差Spreadt用于度量金融摩擦的程度;(ii)随机不确定性变量λt,满足以下AR(1)过程:

其中α和F是未知参数,ηt是具有方差Q的独立同分布新息,代表不确定性冲击;(iii)金融摩擦区制变量= 1{Spreadt≤Z*},由信贷利差变量Spreadt和未知阈值参数Z*生成,即当Spreadt其值低于阈值Z*时,= 1,表示经济处于“低金融摩擦”区制;当其取值高于阈值Z*时,= 0,表示经济处于“高金融摩擦”区制。这里信贷利差的取值决定了经济所在的区制。

本文参考Mumtaz&Surico(2018)引入的VAR 模型框架②在此模型设定下,结构冲击具有时变随机波动率,且波动率直接影响内生变量。,设定以下允许两种金融摩擦区制的非线性波动均值VAR模型:

其中,Zt=(Yt,Pt,Repo7Dt,Spreadt)'是四个内生变量组成的列向量,M为内生变量的滞后阶数;经济不确定性变量λt(由式(1)定义)及其J阶滞后直接影响内生变量˜ = 1{Spreadt≤Z*}为金融摩擦区制变量,Z*为阈值参数;et是具有零均值和单位方差矩阵的独立同分布随机向量,并与不确定性冲击ηt不相关,分别为对应于低金融磨擦区制(S˜t= 1)和高金融磨擦区制(˜ = 0)的VAR 模型的随机扰动项,它们的方差协方差矩阵Ω1t和Ω2t都具有如下时变性:

其中A1和A2是对角化分解得到的下三角矩阵,Ht是对角矩阵,使不确定性变量λt通过如下方程影响上述方差协方差矩阵:

此处S是不随时间变化的常对角矩阵,s1,s2,s3,s4为参数。模型(2)中{ci,βij,γij,Ai,S,Z*,i= 1,2}是未知系数或矩阵。

注1:由(2)至(6)可见,经济不确定性变量λt及其滞后既直接影响产出、通胀、货币政策以及信贷利差等内生变量(模型系统性部分),使它们对不确定性更高(以及更加不可预测)的经济环境作出反应,又通过驱动Ht影响模型扰动项的协方差矩阵,使之随时间变动。由(1)(5)知,经济不确定性冲击ηt影响模型中变量的路径为:正向的不确定性冲击(ηt>0)提高了经济中的不确定性λt,使模型中变量扰动项的协方差矩阵特征值增大,进而导致内生变量预测精确度降低。相对于现有大多数研究,本文对波动均值的设定将经济变量一阶矩和二阶矩放在一个统一的内在一致框架中考察。

注2:模型(2)对不确定性的设定具有以下特征:(i)不确定性与经济中结构冲击的波动性直接相关(见(5)式);(ii)不确定性服从一个AR(1)过程;(iii)不确定性λt不会被内生变量Zt的滞后所影响,且一阶矩和二阶矩冲击之间正交(即E(etηt)= 0),这意味着,不确定性外生于内生经济变量水平变化。注意到,具有随机波动率的DSGE 模型也具有上述特征;此外,Carriero et al.(2018)也从实证的角度论证了不确定性外生于经济变量水平变化设定的合理性。所以,模型(2)对不确定性的设定具有文献基础。

注3:模型中Spread取值代表了经济面临的金融摩擦程度,它与阈值参数Z*结合决定经济所处的区制。在不同的金融摩擦区制下,模型方程(2)具有两组不同的结构系数{ci,βij,γij,Ai},i= 1,2。因此,不确定性冲击对模型中内生变量的影响效应在不同区制下可能是不同的。下文实证考察金融摩擦是否对不确定性冲击的宏观经济效应具有放大作用,主要是通过比较两种金融摩擦区制下各宏观经济内生变量关于不确定性冲击ηt的脉冲响应来实现。

注4:模型(2)的设定具有独特性,是国内现有不确定性宏观经济效应研究文献常用的两步法所无法实现的。现有国内文献(如:田磊等(2017))将不确定性看作内生变量,按以下两步形成VAR 模型:先构造不确定性度量指标(例如,常用的经济政策不确定性指数),然后将之与宏观基本面内生变量通过回归方程连接起来。

(二)模型估计方法

注意到,在给定λt一个抽样的情况下,模型(2)退化为具有已知异方差形式的阈值VAR 模型,由GLS(Generalized Least Squares)变换可将之变换成标准阈值VAR 模型,由Alessandri&Mumtaz(2017)的方法估计。由此思路,VAR模型(2)的估计可按以下步骤进行:

第一步:记初始不确定性状态变量λt= 0。设模型(2)滞后项系数的条件后验分布是一个多重正态分布,通过Metropolis 步骤从非标准后验分布中抽样得到阈值参数;然后根据此阈值把观测样本分成两个区制,接着从正态分布中抽样得到VAR自回归系数,由此计算VAR模型(2)两个区制下的残差向量。

第二步:给定第一步得到的残差序列,由Cogley&Sargent(2005)方法得到矩阵A1和A2的后验分布;从一个逆Gamma分布抽样得到方差S。给定这些参数,使用针对随机波动率模型的Metropolis算法进行抽样得到新的状态变量λt。

第三步:将第二步抽样得到的λt视为给定,重复上述两个步骤不断迭代直到估计的λt收敛①估计时设定迭代次数为100 000次,以保证模型达到收敛状态,并取后10 000次迭代作为模型的后验估计。,并得到模型的参数估计。

估计模型(2)后,我们应用Koop et al.(1996)的广义脉冲响应方法对不确定性冲击进行脉冲响应分析。具体地,在估计出所有参数的后验分布之后,通过模拟有冲击以及无冲击情形下的模型,得到内生变量在两种情况下的条件期望,计算两种条件期望之差得到脉冲响应:给定区制(s = 0,1)以及特定的历史路径(),广义脉冲响应计算为其中Ψt代表模型中所有的参数,k是考察脉冲响应的期限,μ代表考察的冲击(详见Mumtaz&Surico(2018))。这里有两点需要注意:第一,计算过程中区制之间的转移被视为内生,经济系统是否会进行区制转移取决于冲击的符号和大小,也就是说上述模拟同时考虑到了内生变量Yt以及参数Ψt的动态。第二,即使在给定的区制内,脉冲响应也依赖于冲击发生之前的历史路径()。实际上,信贷利差在历史低位与略低于阈值时,模型中的内生变量对结构冲击的响应形式可能是不同的,故本文关注的是每个区制内的平均响应。通过计算区制内脉冲响应的平均水平,研究每个区制内内生变量关于不确定性冲击的最具代表性的平均动态响应。

四、数据和实证结果分析

(一)数据处理及滞后阶数的设定

本文使用中国2006年3月到2018年6月的月度数据(因信贷利差数据可得性),其中,实际国内生产总值(实际GDP)、消费者价格指数(CPI)、银行间市场七天逆回购利率(Repo7D)的数据来自于Chang et al.(2016)①Chang et al.(2016)提供了各个频率季节处理后的中国宏观经济数据库,详见网页https://www.frbatlanta.org/cqer/research/china-macroeconomy.aspx?panel=1,信贷利差(Spread)数据由来自于CEIC 数据库②https://insights.ceicdata.com/的一年期AAA 公司债券收益率以及一年期国债收益率计算所得。根据Pfeifer(2014)关于处理观测数据的建议,同王曦等(2017)的处理,我们将实际GDP取对数后再使用单边HP滤波得到周期项③在宏观经济波动文献中常用此数据处理方式(王曦等,2017)。,作为模型(2)中Yt;对CPI取对数差分得到环比增速,作为(2)中的Pt;Repo7D和Spread直接使用原数据。对经过处理的数据集进行单位根检验,结果表明这些变量序列不存在单位根。

模型(2)内生变量滞后阶数M的选择综合了多种标准:AIC、FPE标准选择为滞后4阶,而HQIC显示滞后3 阶,SBIC 标准选择滞后2 阶。本文采取滞后4 阶的设定④田磊等(2017)将VAR模型滞后阶数设定为2,本文设定内生变量滞后阶数为4应能足以刻画数据。,即(2)中M= 4;参照文献Alessandri&Mumtaz(2019),不确定性变量λt的滞后阶数设定为3,即取J= 3。

(二)估计结果分析

先考察非线性波动均值VAR 模型估计得到的金融摩擦区制,见图1,其中阈值Z*的估计值约为1.7,阴影区表示信贷利差超过阈值的时期。可见,在2008年全球金融危机前夕、2012年初以及2014年初等时期,信贷利差都超过了阈值,表明这几个时期的金融摩擦程度显著高于其他时期。与实际情况比较来看,模型较好地捕捉到高金融摩擦区制时期。

图1 信贷利差与阈值Z*

图2 估计的不确定性序列λt

其次,关于不确定性序列λt的估计见图2。其中,实线代表估计的不确定性变量序列,阴影区间是序列的68%置信区间⑤宏观经济波动实证研究中,采用68%置信区间是常见的做法(Sims&Zha,2006)。下同。。可见,不确定性变量在不同时间具有明显的差异性,并且在高经济不确定性时期伴随着标志性宏观经济事件发生变动:在2007年股市动荡期间、2008年国际金融危机期间、2011年中国经济过热期间、2013 年中“钱荒”以及2015 年中国股票市场动荡等期间,不确定性都明显上升。此外,通过与常见的不确定性度量指标——中国交易型开放指数基金(Exchange Traded Funds,简称“ETF”)月度波动率比较来看,本文估计得到的不确定性序列与ETF 月度波动率之间的相关性系数为0.253,并且在5%的显著性水平上显著(P-value=0.0181)。这表明,本文估计的不确定性与经济实际相符,模型具有可靠性。

接下来对模型中四个内生变量关于不确定性冲击进行脉冲响应分析。我们依低、高两种金融摩擦区制,分别作出各内生变量对一单位标准差的外生不确定性冲击ηt的脉冲响应图,见图3。其中,横轴表示月份,纵轴是脉冲响应的大小;实线和阴影表示低金融摩擦区制(信贷利差小于阈值)时的脉冲响应及其68%的置信区间;虚线表示高金融摩擦区制(信贷利差大于等于阈值)时的脉冲响应及其68%的置信区间。以下按两种区制分别进行分析和比较。

图3 不同金融摩擦区制下不确定性冲击的宏观经济效应

由图3 各图中的实线和阴影部分知,在低金融摩擦区制下,GDP对不确定性冲击的脉冲响应小于零,即不确定性冲击会降低产出,这与国内学者关于政策不确定性的研究结果不同(田磊等,2017);CPI对不确定性冲击的脉冲响应为正,即不确定性冲击会提高通胀,但在初始10个月内置信区间较宽,此冲击的作用在统计上不具有显著性;Repo7D对不确定性冲击的脉冲响应初期为正,但置信区间很宽,即不确定性冲击对银行间七天逆回购利率同样具有不显著的提升作用,不确定性冲击的上升会导致银行间市场利率一定程度的升高;Spread对不确定性冲击的脉冲响应为正,且置信区间较窄,即不确定性冲击使信贷利差出现显著上升,这表明不确定性冲击通过金融市场表现出来并传导到实体经济,从而对宏观经济产生影响。

由图3 各图中的虚线部分知,在高金融摩擦区制下,不确定性冲击对产出的影响程度为正,比较小且统计上不显著(置信区间很宽);不确定性冲击对通货膨胀同样具有不显著的正向影响,但是影响程度高于低金融摩擦区制下的影响;而银行间市场七天逆回购利率以及信贷利差对不确定性冲击的脉冲响应均为负,且不具有统计显著性①高金融摩擦区制结果不够显著的原因可能是高金融摩擦区制的样本比例小,从计量经济学角度来说,样本少容易出现显著性不高的情况。。

比较图3两种金融摩擦区制下各变量的脉冲响应结果,我们发现;各变量对不确定性冲击的宏观经济效应在两种不同区制下具有一定的差异性。高区制下GDP的脉冲响应为正,低区制下GDP的脉冲响应为负,差异明显。高、低区制下CPI的脉冲响应均为正,但高区制下CPI的脉冲响应更大,这也是一个突出差异。有更大差异的是Repo7D和Spread的脉冲响应,在高区制下两者的脉冲响应均为负,但在低区制下两者的脉冲响应均为正。本文认为,货币当局在不同金融摩擦区制下不同的行为是导致不同金融摩擦区制下不确定性冲击宏观经济效应差异的原因,其中,金融摩擦程度的阈值Z*起到了类似于信号传递的作用。在高金融摩擦区制下(Spreadt>Z*),货币当局更为关注宏观经济出现衰退的可能性,对产出赋予更高的权重。此时,当经济中出现不确定性冲击时,货币政策当局会及时降低政策利率,稳定金融市场,进而降低信用利差,较好地对冲了不确定性冲击对产出的不利影响。

由上述脉冲响应分析结果可知,在低金融摩擦区制下,不确定性冲击导致产出降低的同时使通胀升高;在高金融摩擦区制下,货币政策当局采取了扩张性的货币政策,对冲了不确定性冲击对总产出的影响,同时也导致了更高的通胀。这表明,不确定性冲击的宏观经济效应类似于典型的负向供给冲击,这有两种可能的解释:一个是不确定性升高使得生产者出于风险规避行为从而减少生产,导致负向供给冲击;另一个是不确定性的升高导致经济中资源错配升高,从而资源利用效率降低,导致负向供给冲击(Su,2019)。

上述脉冲响应结果也可以由新凯恩斯DSGE 模型下的数值模拟得到验证。我们的模拟结果表明,面对不确定性冲击,货币政策当局不同的响应行为所导致的不确定性宏观经济效应与图3 中不同金融摩擦区制下的宏观经济效应相类似。而且,货币政策当局在高金融摩擦区制下不仅增加了对产出的响应权重,还会对不确定性本身作出响应。这逆向验证了上述脉冲响应结果的分析结论。

上述分析结果还表明,不确定性冲击在两种不同金融摩擦区制下的宏观经济效应具有较大的差异性,这与政策利率(Repo7D)冲击和信贷利差(Spread)冲击在不同区制下的宏观经济效应相比具有独特性。我们对这两种金融冲击在不同金融摩擦区制下也进行了脉冲响应分析(过程从略),结果显示,每种冲击的宏观经济效应在两种金融摩擦区制下的脉冲响应图非常接近,几乎没有差异。这与图3 中不确定性冲击的宏观经济效应在两种区制下的明显差异形成对比。这表明,在两种区制分析框架下,不确定性冲击与这两种金融冲击相比具有特殊性,在研究不确定性冲击的宏观经济效应时,应考虑金融摩擦与不确定性冲击的交互作用。

上述结果与Alessandri&Mumtaz(2019)的研究结果相似,不确定性冲击总体而言类似于负向的供给冲击,并且不确定性冲击在不同金融摩擦区制下的宏观经济效应具有明显差异。但在中国情形下,我们的研究发现与他们不同的是:在低金融摩擦区制,宏观当局没有对不确定性冲击作出积极响应,不确定性冲击对宏观经济具有显著的打压作用,导致了产出降低;而在高金融摩擦区制,货币当局及时对不确定性作出反应,对冲了不确定性对产出的不利影响。这是因为,与发达经济体相比,具有中国特色的政策决策机制以及经济结构使得政策出台速度更快和执行效率更高。在金融摩擦相对较高时,中国宏观调控对于经济状况关注度更高,当不利冲击出现时,宏观调控能够及时有效地做出响应,对冲了不确定性上升对经济的不利影响。

(三)不确定性冲击在宏观经济波动中的重要性分析

在上文基础上,本节通过预测方差分解与反事实分析来考察不确定性冲击对中国宏观经济波动的重要程度。

图4给出两个区制下各内生变量预测方差分解中不确定性冲击解释部分,其中,实线表示对预测方差的解释比例(%),阴影是其68%的置信区间。可见:(i)对于GDP而言,不确定性解释的比重在两个区制下都超过了10%,而在高金融摩擦区制下比在低金融摩擦区制下的解释比例高;(ii)不确定性冲击能够解释CPI 和Repo7D 高金融摩擦区制下超过20%的波动,是低金融摩擦区制下的两倍以上;(iii)对于信贷利差(Spread)而言,在两个区制内不确定性冲击都解释了其超过15%的波动,并且在高金融摩擦区制下,不确定性冲击解释的比例更高。

图4 宏观变量预测方差分解中不确定性冲击的解释比例(%)

另外,政策利率(Repo7D)冲击和信贷利差(Spread)冲击对各内生变量预测方差的解释比例在两种金融摩擦区制下无明显差异①限于篇幅,此结果不作报告,感兴趣读者可来信索取。。结合图3的分析结论,这进一步确认了在研究不确定性冲击的宏观经济效应时应将金融摩擦因素考虑进来。

除了通过预测方差分解来看不确定性冲击的重要性之外,还可以通过反事实分析来看不确定性冲击在解释各个变量历史序列中的作用。具体反事实分析的设计如下:假设不存在不确定性冲击,即式(1)中ηt= 0,将所有水平变量波动率设定在样本均值,模拟这个“常数不确定性”的世界得到反事实内生变量序列,然后计算真实数据与反事实序列之差作为不确定性冲击重要性的度量。

图5 给出反事实模拟的结果,图中实线代表各个变量实际值与反事实模拟值之差,阴影区域表示68%置信区间。首先,GDP 实际数据与其反事实模拟值之差,在2008 下半年至2009 年上半年的金融危机期间以及2011至2012年抑制通胀期间均为负数,表明去掉不确定性冲击之后,模型无法捕捉GDP 在此期间的产出下降。其次,对于通货膨胀(CPI)来说,去掉不确定性冲击后,模型无法捕捉到2007 年下半年至2008 年上半年通胀上升,以及2008 年下半年至2009 年上半年国际金融危机导致的通胀降低。再次,不确定性冲击对于政策利率(Repo7D)的分析也是重要的,忽略不确定性冲击之后,模型无法捕捉到2008至2009年国际金融危机期间、2012年以及2014年上半年政策利率的几次下调。最后,对于信贷利差(Spread)而言,去掉不确定性冲击之后,同样使得模型不能捕捉其于2011 年至2014 年间几次明显的上升以及2016 之后的降低。这些结果均说明,不确定性冲击在解释宏观经济波动中具有相当的重要性。

图5 去掉不确定性冲击的反事实分析

综合上述预测方差分解以及反事实分析可知,无论是低金融摩擦区制还是高金融摩擦区制,不确定性冲击都是宏观经济波动的重要影响因素,且在高金融摩擦区制下它对宏观经济波动的影响比例更大。

(四)对金融摩擦区制、经济不确定性以及央行行为的探讨

根据上述模型设定及其分析结果可知,不同金融区制下不确定性冲击的宏观经济效应出现明显差异的原因是:货币政策当局以信贷利差是否超过阈值Z*为信号,在不同金融摩擦区制下采取了不同的应对方式。从历史数据来看,信贷利差确是宏观经济状况的一个不错的指标,较好地反映了几次重要的宏观经济事件。例如,2008年全球金融危机,2011年底与2012年初城投债危机以及2013年底与2014年初银行间市场流动性降低导致的“二次钱荒”,均在本文模型估计所得的金融摩擦区制上得到了很好的反映(见图1阴影部分)。

由图2 估计的不确定性序列λt的时间序列图知,有几个不确定性比较高的时间段,如2007 年以及2015年股票市场的两次巨幅震荡、2013年中银行间市场流动性紧缺,却不在图1所估计的高金融摩擦区制内。这些发现与事实是相符的,央行在此期间内的确没有针对这些事件导致的经济不确定性上升作出及时有力的应对。我们对此作以下分析。

对于前两次股票市场的巨幅震荡来说,究其原因,从历史沿革上来说,央行没有对前两次震荡做更多响应,可能的原因有两个:第一,中国股票市场在设立之初定位之一就是当国有企业融资纾困,更重视一级市场融资功能,而对二级市场的健康发展较为忽视。第二,中国股票市场发展程度不高,市场参与主体多为散户,羊群效应明显,使得市场本身就更容易出现暴涨暴跌,而宏观政策当局不能为群体非理性行为负责。虽然央行无法针对上述两种原因对股票市场巨幅波动作出响应,但从股票市场波动带来不确定性的角度思考,央行其实有必要对股票市场的巨幅震荡带来的不确定性作出积极响应。具体操作上,当股票市场出现明显异常波动证据的时候,在其进一步发展成为资产价格泡沫之前,央行可以通过增加与公众沟通等方式来预警,必要时应积极使用货币政策来对冲不确定性上升对宏观经济的不利影响,达到合理管控宏观经济风险的目的。

对于2013年银行间市场流动性紧缺来说,其带来的不确定性部分地反映了当时央行缺乏足够的货币政策工具,对市场短期利率的控制能力相对较弱。但在2014年之后,央行逐渐创新货币政策工具,为银行间市场提供新的调控流动性工具,基本解决了银行间市场可能出现流动性短缺的问题。

从上述分析可知,货币当局仅根据信贷利差来决定是否对不确定性冲击作出应对是不足够的,央行作为最重要的宏观调控当局之一,需要在未来调整当前的做法,即使在信贷利差没有超过阈值的情况下,也应该关注和应对股票市场异常波动带来的经济不确定性对宏观经济的不利影响。事实上,目前政府对股票市场改革发展逐渐重视,十九大报告中明确提出“提高直接融资比重,促进多层次资本市场健康发展”,所以,可以预见,未来股票市场的地位必将显著提升,股票市场对宏观经济的影响也将加强。

五、结 论

本文研究不确定性冲击对中国宏观经济变量的影响效应以及金融摩擦在不确定性冲击效应传导中的作用。此研究拓展了中国经济情境下关于金融摩擦与不确定性冲击宏观经济效应的交互作用的学术研究。

相对于文献中常把不确定性代理指标作为内生变量建立传统VAR 模型的设定,本文将经济不确定性变量设定成外生于内生经济变量变化的一个状态AR(1)过程,还允许不确定性冲击作用于经济波动率,并按内生金融磨擦变量的变化范围将经济进行区制分类,最终将不确定性与金融磨擦区制分类的交互作用嵌套于宏观内生经济变量VAR 模型中,形成非线性波动均值VAR 模型。这种设定具有文献基础,并与中国特色经济发展相一致。利用中国2006 年3 月到2018 年6 月份月度数据估计非线性波动均值VAR模型,结果发现:第一,在低金融摩擦区制下,不确定性冲击会导致产出下降,银行间市场利率上行以及信贷利差上升。第二,在高金融摩擦区制下,不确定性冲击对宏观经济没有明显打压作用,原因是货币政策当局采取了相对宽松的货币政策,对冲了不确定性冲击对宏观经济的冲击。第三,通过预测方差分解以及反事实分析,发现不确定性冲击能够解释产出波动超过15%的比例,且在高金融摩擦区制下,不确定性冲击的重要性明显高于低金融摩擦区制。

上述结果中,高金融摩擦区制下的发现与现有国内经济政策不确定性冲击的研究一致,而在低金融摩擦区制下,不确定性冲击对宏观经济有显著的负面影响。这与国内现有研究结论不同(田磊等,2017),此差异源于国内现有研究没有考虑到经济在不同金融摩擦区制下不确定性冲击效应的差异性。这表明,在研究不确定性冲击的宏观经济效应时,诸如金融摩擦等金融因素的影响效应应在模型中得到反映。

基于本文结论,可以得到以下几点政策建议:第一,货币政策当局在高金融摩擦时期应继续对经济不确定性作出及时响应;第二,在金融摩擦较低时期,应关注经济不确定性冲击对宏观经济的影响,尤其是股票市场带来的经济不确定性,加强货币政策预调微调,以更好地进行政策响应;第三,不确定性冲击会通过金融市场表现出来,并经由金融市场进一步传导到实体经济,故宏观当局应多关注金融市场的变化,从而更好地管控宏观经济风险。

猜你喜欢
脉冲响应内生宏观经济
内生德育:九年一贯制学校德育路径探索
即时经济:一场实时革命将颠覆宏观经济实践 精读
主要宏观经济指标及债券指标统计表
植物内生菌在植物病害中的生物防治
内生微生物和其在作物管理中的潜在应用
全球宏观经济短期内的两条主线
“党建+”激活乡村发展内生动力
从G20视角看国际宏观经济政策协调
中国原油进口需求主要受国际油价影响吗?
基于脉冲响应的厅堂音质评价研究