黄土高原不同地点小麦籽粒矿质元素的含量差异

2020-09-12 10:13王丽王朝辉郭子糠陶振魁郑洺钧黄宁高志源张欣欣黄婷苗
中国农业科学 2020年17期
关键词:杨凌吸收量籽粒

王丽,王朝辉,2,郭子糠,陶振魁,郑洺钧,黄宁,高志源,张欣欣,黄婷苗

黄土高原不同地点小麦籽粒矿质元素的含量差异

王丽1,王朝辉1,2,郭子糠1,陶振魁1,郑洺钧1,黄宁1,高志源1,张欣欣1,黄婷苗1

(1西北农林科技大学资源环境学院/农业农村部西北植物营养与农业环境重点实验室,陕西杨凌 712100;2西北农林科技大学/旱区作物逆境生物学国家重点实验室,陕西杨凌 712100)

【】研究同一区域不同地点小麦籽粒养分含量差异与土壤养分供应和作物养分吸收利用之间的关系,为科学施肥和培肥土壤提供依据。于2017—2018年分别在陕西永寿和杨凌布置田间试验,在施N 180 kg·hm-2、P2O5100 kg·hm-2、K2O 75 kg·hm-2的条件下种植来自我国不同麦区的20个小麦品种,收获期取样测定籽粒产量、各器官养分及土壤养分含量,分析两地间土壤养分供应与籽粒大、中、微量元素含量差异的关系。永寿小麦籽粒氮和钾含量比杨凌低10.6%和6.7%,两地小麦磷含量无显著差异。永寿土壤氮磷供应能力、小麦氮磷钾吸收和向籽粒的转移均高于杨凌;但试验年份永寿的降水总量及其分布均比杨凌的更有利于小麦生长和产量形成,由此引起的产量增幅高于籽粒氮钾吸收量增幅、与磷吸收量增幅接近,产量稀释效应是导致两地间氮磷钾含量变化的主要原因。永寿小麦籽粒钙和镁含量比杨凌高19.0%和10.3%,两地硫含量无显著差异。永寿土壤交换性镁供应能力低于杨凌,交换性钙与杨凌无差异,但永寿土壤较低的pH、速效钾和较高的有效硫更有利于小麦钙镁硫的吸收和向籽粒的转移;与杨凌相比,永寿小麦籽粒钙镁吸收量增幅大于产量增幅、硫吸收量增幅与产量接近,这是两地籽粒钙镁硫含量变化的主要原因。永寿小麦籽粒铁、锰和铜含量比杨凌高9.3%、22.2%和12.7%,锌含量比杨凌低63.1%。永寿 0—20 cm土层有效铁锰含量与杨凌无差异,铜锌含量低于杨凌;但永寿小麦灌浆期比杨凌长,有利于小麦从土壤中吸收微量元素,而锌吸收被较高的有效磷抑制,导致永寿小麦铁锰铜吸收和向籽粒的转移高于杨凌而锌吸收和转移低于杨凌,这是两地籽粒铁锰铜含量变化的原因。在同一区域的不同地点,土壤养分供应和降水差异引起的产量与养分吸收增减幅度不同是籽粒养分含量变化的主要原因。与杨凌相比,永寿小麦籽粒氮含量低的主要原因是产量稀释效应;小麦磷和硫含量不降低的原因是土壤较高的有效磷和有效硫供应使得小麦磷、硫吸收量与产量以相近幅度增加;小麦籽粒钾、锌含量低的原因分别是土壤钾锌供应不足和磷锌拮抗;小麦钙镁含量的增加主要是因为较低的土壤pH和速效钾促进了钙镁吸收和转移;小麦籽粒铁锰铜含量的增加主要归因于较长的灌浆期增加了这些元素的吸收和向籽粒的转移。农业生产中应根据当地土壤养分供应和气候特点有针对性地调控施肥,使小麦养分吸收与产量变化相协调,在实现增产的同时提高籽粒矿质营养品质。

旱地;小麦;籽粒;矿质元素;土壤养分;黄土高原

0 引言

【研究意义】氮和硫是蛋白质重要组成元素,所有生物体都不可或缺[1]。镁是叶绿素、核酸酶等的重要成分,植物缺镁会严重影响光合作用,人体缺镁会导致精神抑郁、心肌坏死等疾病[2]。铁参与叶绿素合成与呼吸作用,植物缺铁会影响养分吸收,人体缺铁易导致缺铁性贫血等疾病[3]。锌与人体智力发育和免疫功能有关,缺锌易导致智力迟缓、免疫力下降等疾病[4]。目前全球约有1/3人口缺乏铁、锌等矿质营养元素[5-6]。谷物是人体矿质营养元素的重要来源。小麦作为我国三大主粮之一,2016年总产量1.3亿t,占世界总产17.6%[7]。旱地,包括有灌溉条件的旱地,生产的小麦占世界小麦总产量的75%以上[8]。旱地土壤贫瘠、水分缺乏,限制小麦生长和营养元素吸收累积。关注旱地小麦的矿质营养品质对人体健康有重要意义。【前人研究进展】植物吸收的养分主要来源于土壤和肥料。施用化学肥料尤其是氮磷钾肥对作物营养品质或元素含量的影响已有大量报道。在我国灌区,适当增加氮钾基肥,减少后期追肥,可提高弱筋小麦籽粒蛋白质含量[9];增加氮肥用量或追施比例可提高小麦谷醇溶蛋白比例和籽粒氮含量[10];稻田施氮160 kg N·hm-2使水稻籽粒蛋白质含量升高9.80%,籽粒铁和锰含量增加28.96%和22.16%,籽粒铜和锌含量升高58.31%和16.00%[11]。在旱地,施用氮磷肥使高氮小麦品种籽粒氮含量提高37.5%,磷、钾含量分别降低5.9%、11.9%,茎叶氮、磷、钾含量分别增加150.0%、33.3%和28.9%[12];小麦籽粒锌含量随施氮量增加而升高,随施磷量增加而降低,施氮量和施磷量每增加100 kg·hm-2,籽粒锌含量分别增加4.0 mg·kg-1和降低9.2 mg·kg-1[13]。施用微肥或植物生长调节剂对谷物矿质营养品质也有较大影响。在非洲梅克勒大学研究站和梅尔法农民培训中心的试验发现,开花期叶喷25 kg·hm-2硫酸铁与低播种量(125 kg·hm-2)的小麦籽粒蛋白质含量比高播种量(175 kg·hm-2)提高了6.04%[14]。在印度中央邦大学的试验表明,叶喷30 kg·hm-2锌肥可使水稻籽粒和秸秆的氮含量分别增加0.2%和11.46 kg·hm-2 [15]。在塞尔维亚的田间试验发现,开花期施用锆石可显著增加大豆粒重、β-胡萝卜素和铁含量,施用生物调节剂可增加大豆铁和锰含量、降低胡萝卜素含量[16]。西班牙巴斯克试验站研究发现,小麦和油菜籽粒氮与硫含量随施氮量的增加而增加,但施硫对籽粒硫含量无影响[17]。施肥对作物养分含量的影响主要是通过改变土壤养分供应能力来实现的。关于土壤养分供应改变与作物籽粒矿质元素含量关系的田间试验研究大多在同一地点进行。在我国黄土高原旱地,施磷提高了土壤有效磷含量、冬小麦籽粒磷和钾含量,但籽粒氮和锌含量降低[18]。河南旱地试验发现,增施氮肥可提高土壤硝态氮含量进而提高土壤供氮能力,在花后10 d时高肥力田块的小麦旗叶氮含量显著高于低肥力田块[19]。陕西长武旱地试验表明,种植绿肥能培肥土壤,使小麦籽粒氮和锌含量分别增加12.1%和12.6%,但对磷、硫、铁含量无显著影响[20]。近年来,关于不同地点的作物养分含量差异也有报道,但不同地点施肥量差异很大,难以确定导致作物养分含量差异的关键土壤自身因素。山西、陕西、甘肃的试验发现,覆膜栽培促进土壤养分活化和吸收,使小麦籽粒产量提高13.7%,但籽粒硫含量降低9.0%[21]。我国不同麦区的研究表明,叶喷锌肥平均可使籽粒锌含量提高5.2 mg·kg-1,籽粒锌含量变异与土壤pH、有效锌有关[22]。我国主要麦区599个地块取样分析发现,旱地小麦单作区的籽粒锌含量与土壤有效钾、有效锌正相关,与有效铁负相关;麦玉轮作区小麦籽粒锌与土壤有效锌正相关,与有效磷负相关;稻麦轮作区小麦籽粒锌与土壤铵态氮和有效锌正相关[23]。【本研究切入点】可见,关于施用化学肥料、栽培措施、土壤养分供应及理化性质与谷物籽粒矿质元素含量、营养品质及养分吸收利用的关系已有大量研究,但针对同一区域内不同地点土壤养分供应与作物养分含量、养分吸收利用之间的关系的研究较少。【拟解决的关键问题】本研究于2017—2018年选择来自全国不同麦区的20个小麦品种,分别在黄土高原旱地两个不同地点布置相同施肥处理的田间试验,研究不同地点小麦籽粒矿质元素含量差异与土壤理化性质、养分供应的关系并解释背后的营养学机制,为调控作物矿物质营养品质提供理论依据。

1 材料与方法

1.1 试验地点概况

试验始于2017年9月在陕西永寿(34°44′N, 108°12′E)和杨凌(34°16′N, 108°04′E)同时开展。永寿平均海拔970 m,年均温10.5℃,试验期间降水量平均600.8 mm;杨凌地处渭河三级阶地,平均海拔525 m,年均温12.9℃,试验期间降水量平均650.6 mm,两地均属典型旱作雨养农业区。小麦为主要粮食作物,采用一年一熟种植,每年9月下旬到10月初播种,次年6月中旬收获。土壤类型为土垫旱耕人为土,播前土壤(0—20 cm)和(20—40 cm)基本理化特性见表1。夏季休闲期(7、8、9月)降水量永寿分别为55.1、73.4和53.2 mm(图1-a),杨凌分别为48.95、70.1和97.8 mm(图1-b)。

1.2 试验设计

两地采用相同的方案。施基肥,包括施氮磷钾肥。施肥量为N 180 kg·hm-2(尿素,N 46%)、P2O5100 kg·hm-2(过磷酸钙,P2O516%)、K2O 75 kg·hm-2(硫酸钾,K2O 52%),种植20个小麦品种。供试小麦品种来自我国不同麦区,其中西北麦区4个,黄淮海麦区14个,长江中下游麦区1个和西南麦区1个。试验采用随机区组设计,小区面积 2.0 m2(2.0 m×1.0 m),常规平作、人工点播,株距2.5 cm,行距20 cm,种植 5 行,4 次重复。永寿和杨凌试验分别于2017年9 月29日和10月20日播种,均在次年6月12日和5日收获。整个生育期无灌溉,其他田间管理措施与当地农户一致。

表1 2017年冬小麦播种前供试土壤0—40 cm土层理化性质

不同小写字母表示地点间差异达5% 显著水平 Different lowercase letters represent the significant difference between sites (<0.05)

图1 两个试验点2017—2018年休闲期(7—9月)和冬小麦生长季(10月至来年6月)降水量

1.3 样品采集及测定

1.3.1 土壤样品采集及测定 小麦播前期,采集0— 40 cm土层的土壤,20 cm为一层,每区组5 点,4 次重复,同层样品剔除根系等杂物后混匀取500 g左右,剩余土壤按层次回填田间并压实。

新鲜土样捏碎、混匀,采用烘干法测定土壤含水量[24],1 mol·L-1KCl溶液浸提、连续流动分析仪(AA3,德国)测定硝、铵态氮。土样风干后,过1 mm筛保存后取部分过0.15和0.25 mm筛。过0.15 mm筛后土样,采用重铬酸钾容量法-外加热法测定有机质,过1 mm筛后土样,用水土比2.5﹕1 浸提测定pH,用浓硫酸消煮、连续流动分析仪测定全氮,0.5 mol·L-1NaHCO3溶液浸提、连续流动分析仪测定有效磷,1 mol·L-1中性NH4OAc 溶液浸提、火焰光度计法测定速效钾[25],硫酸钡比浊法测定有效硫,DTPA-TEA 浸提、原子分光光度法测定有效铁、锰、铜、锌,过0.25 mm筛后土样,1 mol·L-1乙酸铵浸提、原子吸收分光光度法测定交换性钙和镁。

1.3.2 植物样品采集及测定 成熟期采用盲抽法[12],在每个品种中间两行随机抽取30 穗小麦全株,用不锈钢剪刀从根茎结合处剪去根系用做考种和化学分析。样品风干后,称取穗和茎叶风干重,穗脱粒分为籽粒与颖壳,称取籽粒风干重,差减法计算颖壳风干重,并行考种。收割中间两行剩余的小麦,自然风干脱粒,与30 穗小麦一起用于计产。化学分析样中,不锈钢剪刀将茎叶剪至1 cm左右小段后,分别称取籽粒、茎叶和颖壳20 g左右,用自来水快速冲洗两次、蒸馏水洗3次,90℃杀酶30 min,65℃烘至恒重,计算风干样的含水量、小麦产量、生物量。小麦产量、生物量、千粒重均用烘干重表示。

烘干的植物样用球磨仪(RETSCH MM400,Germany,氧化锆研磨罐)粉碎后,用 H2SO4(95%)-H2O2(优级纯)联合消解,用全自动连续流动分析仪(AA3, SEAL Analytical,Germany)测定消解液中的氮和磷含量,火焰光度计测定钾含量;用浓HNO3-H2O2(优级纯)液微波消解,电感耦合等离子体质谱仪(ICP-MS,美国)测定消解液中的钙、镁、硫、铁、锰、铜、锌含量。不同器官的养分含量均以烘干重为基数表示。

1.4 数据计算与统计分析

籽粒养分吸收量=籽粒养分含量×籽粒产量/1000;

地上部养分吸收量=(籽粒养分含量×籽粒产量+茎叶养分含量×茎叶生物量+颖壳养分含量×颖壳生物量)/1000;

养分收获指数=籽粒养分吸收量/地上部养分吸收量×100%。

式中,氮、磷、钾、钙、镁、硫养分含量单位为 g·kg-1,铁、锰、铜、锌养分含量单位为 mg·kg-1,氮、磷、钾、钙、镁、硫吸收量单位为kg·hm-2,铁、锰、铜、锌养分含量单位为 g·hm-2,籽粒与生物量单位为kg·hm-2。

试验数据采用 Microsoft Excel 2016 进行整理计算,SigmaPlot 12.5作图,采用IBM SPSS Statistics 22.0 进行方差分析。

2 结果

2.1 产量及产量构成差异

两个地点间,永寿的小麦籽粒产量、生物量、收获指数、穗数分别比杨凌显著高出31.7%、11.3%、18.8%和22.7%(表 2);千粒重显著低于杨凌4.3%,穗粒数差异不显著。可见,两个地点间产量、生物量、收获指数、穗数均存在差异,穗粒数相对稳定。

2.2 土壤养分含量差异

对小麦播前土壤大量营养元素的测定表明,0—20 cm土层全氮、硝态氮、铵态氮、速效钾含量地点间差异不显著,永寿的有效磷含量高出杨凌4.9 倍(表1);20—40 cm土层,永寿的全氮显著高出杨凌16.7%,硝态氮、铵态氮、有效磷含量分别高出3.8倍、53倍和10.6倍,速效钾显著低于杨凌9.7%。可见,永寿土壤氮、磷供应充分,钾相对较低,杨凌钾供应充分,氮、磷较低。

分析两地土壤的中微量营养元素发现(表3),0—20 cm土层硫、钙、铁、锰含量地点间差异不显著,永寿的交换性镁、有效铜和有效锌含量显著低于杨凌54.3%、9.6%和29.8%。20—40 cm土层硫、钙、铁、锰、铜、锌含量地点间差异不显著,永寿的交换性镁含量显著低于杨凌57.9%。结果表明,杨凌土壤交换性镁含量高,0—20 cm土层有效铜和有效锌含量高。

表2 两个地点的小麦籽粒产量、生物量和收获指数及产量构成

不同小写字母表示地点间差异达5% 显著水平。下同

Different lowercase letters represent the significant difference between sites (<0.05). The same as below

表3 播前表层(0—40 cm)土壤的中、微量营养元素含量

2.3 籽粒大量营养元素含量差异

分析收获期小麦籽粒大量营养元素含量发现,永寿籽粒氮含量显著低于杨凌10.6%,磷含量无差异,钾含量显著低于杨凌6.7%(图2-A)。比较两地小麦养分吸收和转移发现,永寿小麦的吸收氮、磷及钾的量显著高出杨凌17.8%、32.1%和22.4%(图2-B)。永寿小麦地上部氮、磷吸收量显著高出杨凌12.5%和26.5%,钾吸收量差异不显著(图2-C)。氮磷钾养分收获指数永寿显著高出杨凌4.9%、4.4%和31.4%(图2-D)。说明两地小麦的籽粒大量营养元素含量存在差异,永寿籽粒氮和钾含量显著低于杨凌,籽粒氮、钾吸收量及收获指数显著高于杨凌,地上部氮吸收量显著高于杨凌,钾吸收量地点间差异不显著;两地籽粒磷含量差异不显著,永寿籽粒和地上部磷吸收量及收获指数显著高于杨凌。

柱子上部不同小写字母表示在永寿和杨凌各个指标差异显著(P<0.05)。下同

2.4 籽粒中量营养元素含量差异

比较两地的中量元素养分发现(图3-A),永寿小麦籽粒的钙、镁含量显著高出杨凌19.0%和10.3%,硫含量地点间差异不显著。永寿籽粒吸收钙、镁及硫的量显著高于杨凌57.7%、46.1%和34.2%(图3-B),地上部钙、镁、硫吸收量显著高出杨凌26.2%、18.3%和27.8%(图3-C),钙、镁、硫养分收获指数显著高出杨凌23.1%、23.7%和3.9%(图3-D)。可见,两地小麦籽粒中量营养元素含量存在差异,永寿籽粒钙、镁含量显著高于杨凌,硫含量在两地差异不显著,钙、镁、硫吸收量及收获指数显著高于杨凌。

图3 两个地点的旱地冬小麦籽粒钙、镁、硫含量,吸收量和养分收获指数

2.5 籽粒微量营养元素含量差异

微量营养元素的测定结果表明,永寿小麦籽粒铁、锰、铜含量显著高出杨凌 9.3%、22.2%和12.7%,锌含量显著低于杨凌63.1%(图4-A)。比较两地小麦籽粒养分吸收和转移发现,永寿小麦铁、锰、铜吸收量显著高出杨凌44.6%、62.7%和48.3%,籽粒锌吸收量显著低于杨凌50.4%(图4-B)。永寿小麦地上部铁、锰、铜的吸收量显著高出杨凌23.9%、25.8%和29.0%,地上部锌吸收量永寿显著低于杨凌53.0%(图4-C)。分析养分收获指数发现,永寿铁、锰、铜养分收获指数显著高出杨凌22.6%、31.3%和14.1%,锌养分收获指数地点间差异不显著。说明永寿小麦籽粒铁、锰、铜含量,吸收量和收获指数显著高于杨凌,而籽粒锌含量和吸收量显著低于杨凌。

图4 两个地点的旱地冬小麦铁、锰、铜、锌含量,吸收量和养分收获指数

3 讨论

3.1 籽粒氮、磷、钾含量差异

研究表明,永寿的小麦籽粒氮、钾含量低于杨凌,而磷含量两地无显著差异。从两地的土壤养分来看,0—20 cm表层全氮、硝态氮、铵态氮含量地点间差异不显著,但永寿20—40 cm土层全氮显著高出杨凌16.7%,硝态氮、铵态氮分别高出3.8倍和53倍,但较强的下层土壤供氮能力并没有使永寿小麦籽粒含氮量提高。进一步分析原因在于两地的产量和养分吸收差异。虽然永寿的氮收获指数显著高出杨凌4.9%,但地上部和籽粒吸氮量仅高出杨凌12.5%、17.8%,小麦产量却显著高出杨凌31.7%,产量稀释效应导致籽粒氮含量低。美国长期定位试验也表明,小麦籽粒含氮量与产量呈负相关[26]。江苏品种试验发现,施磷108 kg·hm-2时,产量增加31.8%,籽粒吸氮量增加26.3%,结果蛋白质含量降低3.7%[27]。陕西永寿定位试验还发现,产量每增加1 000 kg·hm-2,小麦籽粒含氮量3年平均降低1.1 g·kg-1[12],均说明产量增加导致的稀释效应会使籽粒氮含量降低。两土层,永寿有效磷含量分别高出杨凌4.9和10.6倍,永寿产量、地上部和籽粒吸磷量显著高出杨凌31.7%、26.5%和32.1%,磷收获指数也高出杨凌4.4%,产量与籽粒吸收增幅比例相近,产量未能对籽粒的磷吸收造成稀释,因而两地点间小麦籽粒磷含量差异不显著。华北平原44 个地点的调研发现,玉米产量增加21.3% 时,而总磷吸收量只增加15.3%,所以籽粒磷含量降低4.3%[28]。印度新德里盆栽试验表明,磷肥基施,施锌5 kg·hm-2使水稻产量增加5.92%,吸磷量增加了5.88%,结果籽粒磷含量仅降低0.06%[29]。均说明产量增加会使籽粒磷含量降低。

两地点间,0—20 cm土层速效钾含量差异不显著,20—40 cm土层永寿速效钾含量显著低于杨凌9.7%,地上部吸钾量在两地无差异,但永寿籽粒吸钾量和钾收获指数高出杨凌22.4%和31.4%,说明在土壤速效钾缺乏的情况下,永寿小麦虽然能将钾优先向籽粒分配,可是永寿小麦产量高出杨凌31.7%,产量的稀释效应仍导致永寿小麦籽粒钾含量降低,显著低于杨凌。丹麦磷钾肥用量试验发现,由于年份间小麦成熟期降雨量增加,籽粒产量增加8.4%导致其钾含量降低11.3%[30]。河北廊坊秸秆还田试验发现,秸秆还田使小麦产量和籽粒中的钾吸收量增加16.5%和32.7%,没有引起籽粒钾含量变化,但不同年份间产量和籽粒钾含量呈负相关,其中产量每增加1 000 kg·hm-2,钾含量平均降低1 g·kg-1[31]。斯里兰卡品种试验也表明,水稻籽粒钾含量随产量增加而降低[32],均表明产量增加导致的稀释效应会使籽粒钾含量降低。

结果表明,在相同的施肥条件下,永寿的小麦产量高于杨凌。分析永寿和杨凌两地的降雨量发现,10月份(出苗期)时,永寿降雨量高于杨凌,充足的水分利于小麦出苗,4月份小麦拔节至开花期时,永寿充足的降水促进小麦生长发育、有效穗形成和干物质累积,5月份小麦开花期至灌浆期,两地降雨量相近。可见,在小麦生长的关键时期,永寿降雨量高于杨凌,有利于小麦生长发育,是小麦产量提高的关键。小麦对于氮磷钾的吸收离不开土壤养分供应,适量施肥增加了土壤氮磷钾养分供应,从而提高小麦籽粒氮磷钾吸收,但籽粒养分含量能否提高还取决于施肥和土壤养分供应引起的籽粒产量变化。

3.2 土壤养分与籽粒钙、镁、硫含量

研究表明,永寿小麦籽粒钙和镁含量高于杨凌,硫含量在两地差异不显著。从两地的土壤养分来看,两个土层的土壤交换性钙在地点间无显著差异,永寿产量显著高出杨凌31.7%,但地上部和籽粒钙吸收量分别比杨凌高出26.2%和57.7%,钙收获指数高出杨凌23.1%。可见,与产量的变化相比,永寿小麦吸收和向籽粒转移钙的能力更强,故永寿籽粒钙含量显著高于杨凌。这可能与pH 有关。永寿两土层pH 显著低于杨凌,有利于活化土壤的钙[33],促进了小麦对钙的吸收。波兰的施肥用量试验发现,钾和钙具有拮抗作用,缺钾肥时可以增加冬油菜和冬小麦营养器官钙含量[34]。两地0—20 cm土层速效钾含量地点间差异虽不显著,但永寿低于杨凌16.0%,20—40 cm土层土壤速效钾含量永寿显著低于杨凌,这可能是永寿小麦籽粒钙高于杨凌的另一个原因。

永寿两层土壤的交换性镁含量均显著低于杨凌,永寿地上部和籽粒镁吸收量显著高出杨凌18.3%和46.1%,养分收获指数显著高出杨凌23.7%,说明永寿土壤供镁少,但小麦吸收镁的能力强,且向籽粒中分配得多,故永寿籽粒镁含量显著高于杨凌,这可能与土壤速效钾含量低有关。钾对镁的吸收具有拮抗作用[35],钾抑制根系对镁的吸收和向地上部转移[36]。20—40 cm土层中永寿速效钾含量显著低于杨凌,因而籽粒镁含量显著高于杨凌。pH 与土壤交换性镁具有正相关性[37],0—20 cm和20—40 cm土层中永寿土壤pH 显著低于杨凌,可能是其土壤交换性镁显著低于杨凌主要原因。湖北省红壤土盆栽试验研究发现,随施钾用量增加,油菜植株中钙和镁含量呈下降趋势,说明钾与钙镁之间存在着明显的拮抗作用,且钾对钙的影响程度大于镁[35,38]。永寿钙和镁含量显著高于杨凌,这一结果与上述结果一致。

两地点间土壤有效硫虽无显著差异,但永寿两土层有效硫分别高出杨凌60.6%、67.2%,永寿地上部和籽粒硫吸收量显著高出杨凌27.8%、34.2%,硫养分收获指数显著高出杨凌3.9%,说明土壤有效硫充足可以促进小麦对硫的吸收及向籽粒分配,由于永寿产量高于杨凌31.7%,籽粒对硫的吸收增幅接近产量增幅,没有造成小麦籽粒硫含量差异。有研究指出,氮和硫之间具有协同作用[39],小麦籽粒硫含量每增加1.0 mg·kg-1,籽粒蛋白质含量增加1.7%[40]。在有效硫为5.84 mg·kg-1的土壤上施硫可增加根系和旗叶硝酸还原酶活性,从而增加蛋白质含量[41]。在施氮磷钾的基础上,合理配施硫肥60 kg·hm-2可促进后期干物质及籽粒氮、硫累积,提高产量[42]。永寿籽粒氮含量显著低于杨凌,籽粒硫含量在两地差异却不显著,与上述结果并不一致。可见,钾与钙和镁之间具有拮抗作用,pH与土壤交换性镁具有正相关性,硫和氮之间具有协同作用,但小麦对硫的吸收和籽粒硫含量取决于土壤的供硫能力及产量变化,因此在实践中适宜施肥及考虑元素间的相互作用对提高籽粒养分含量和产量尤为重要。

3.3 土壤养分与籽粒铁、锰、铜、锌含量

研究表明,永寿籽粒铁、锰和铜含量显著高于杨凌,锌含量显著低于杨凌。从土壤养分来看,土壤有效铁和锰含量地点间无显著差异,永寿地上部和籽粒铁吸收量显著高出杨凌23.9%和44.6%,地上部和籽粒锰吸收量显著高出杨凌25.8%和62.7%,养分收获指数显著高出杨凌22.6%和31.3%,说明永寿小麦对铁和锰的吸收及向籽粒分配高于杨凌,产量显著高出杨凌31.7%,小麦籽粒吸收的增幅高于产量增幅,故永寿籽粒铁和锰含量高。中国小麦主产区的调研发现,籽粒产量每增加1 000 kg·hm-2,春小麦和冬小麦籽粒铁含量分别降低2.1和1.3 mg·kg-1[43]。河南的田间试验也发现,施氮240 kg·hm-2和施磷209 kg·hm-2后,小麦产量增加8.7%,籽粒铁吸收量仅增加6.6%,因而铁含量降低1.8%[44]。美国的调研也发现,产量升高,小麦籽粒铁含量每年平均降低0.3%[45]。印度的品种试验发现,两种锰水平下,小麦产量增加18.5%,籽粒锰吸收量降低9.8%,锰含量降低26.9%[46]。欧洲布拉格的肥料用量试验也发现,大麦籽粒锰含量和产量之间呈负相关,主要由稀释效应导致[47]。均说明产量的稀释效应会使小麦籽粒铁和锰含量降低。本试验中永寿小麦地上部铁和锰吸收量及向籽粒的分配远高于杨凌,使得籽粒养分吸收量增幅高于产量增幅,籽粒锰含量因此高于杨凌。华北任丘、北京、赵县的试验发现,过多的降水不利于小麦对铁和锰的吸收[48],在小麦灌浆期时永寿降雨量低于杨凌,这可能是永寿籽粒铁和锰含量高的另一个原因。

分析土壤0—20 cm土层有效铜含量结果发现,永寿显著低于杨凌9.6%,但永寿籽粒铜吸收量和铜收获指数显著高于杨凌48.3%和14.1%,产量显著却仅高出杨凌31.7%。说明在土壤铜元素缺乏的情况下,永寿籽粒对铜的吸收和分配高于杨凌,故籽粒铜含量高。在杨凌的田间试验发现,相对于秸秆覆盖,地膜覆盖使小麦产量增加了10.7%,籽粒铜吸收量增加了2.5%,铜含量降低7.5%[49]。泰国的试验发现,相对于干旱胁迫,充分灌水使玉米产量提高14.5%,籽粒铜吸收量增加了13%,铜含量降低1.3%[50]。说明在土壤有效铜缺乏的情况下,永寿小麦对铜的吸收和向籽粒的分配高于杨凌,是其籽粒铜含量高的一个主要原因。pH与土壤有效铜呈极显著负相关[51],pH降低使土壤吸附铜离子的能力降低,因此土壤中有效态铜离子增加[52]。永寿两土层pH显著低于杨凌,这会促进土壤铜的有效化和小麦对铜的吸收。陕西长武绿肥与冬小麦轮作试验发现,影响土壤有效铜的关键时期是灌浆期[53],永寿灌浆期比杨凌长,这可能是永寿小麦铜含量高的另一个原因。

永寿土壤0—20 cm 土层有效锌显著低于杨凌29.8%,永寿籽粒锌吸收量显著低于杨凌50.4%,锌养分收获指数地点间差异不显著,说明土壤有效锌缺乏时,永寿小麦对锌的吸收低于杨凌,永寿产量却显著高出杨凌31.7%,故土壤有效锌缺乏和产量稀释效应导致永寿小麦籽粒锌含量低于杨凌。英国的小麦品种试验表明,籽粒产量和锌含量呈负相关,高产品种籽粒锌含量下降约20%—30%[54]。巴基斯坦的田间试验发现,施磷使玉米产量提高12%,籽粒锌含量却显著降低10%,原因是籽粒锌吸收量仅升高0.1%[55]。杨凌田间长期定位试验也发现,施磷使小麦籽粒产量增加15%,其锌吸收量却降低19%,因而锌含量降低31%[56]。均说明产量增加导致的稀释效应使籽粒锌含量降低,磷和锌之间存在拮抗作用[57]。永寿土壤0—20 cm和20—40 cm 土层速效磷显著高出杨凌4.9和10.6倍,可能是其籽粒锌含量降低的另一个原因。

可见,产量的稀释效应会影响籽粒微量元素含量,但不同地点的土壤和气候存在差异,永寿小麦对铁、锰、铜吸收和向籽粒的分配多于杨凌,因而籽粒铁、锰、铜含量高。降水增加会影响小麦对铁和锰的吸收,pH低促进小麦对铜的吸收,永寿土壤有效锌低而有效磷高,磷和锌存在拮抗作用,因而籽粒锌含量低于杨凌。

4 结论

旱地条件下,永寿小麦籽粒氮含量低主要是产量稀释效应导致的,较高的土壤有效磷和硫供应虽然有利于永寿小麦籽粒和地上部磷和硫吸收量提高,但由于吸收量与产量增幅相近,故没有造成其含量降低,土壤钾、锌供应不足和磷、锌拮抗影响了永寿小麦籽粒钾、锌累积,低pH、低速效钾促进了永寿小麦钙、镁吸收和转移,较长的灌浆期及其低降雨量有利于小麦铁、锰、铜元素吸收和向籽粒转移。因此,同一区域地点间土壤养分和降雨不同引起的小麦产量与养分吸收量增减不一是造成其籽粒养分含量差异的主要原因。在旱地小麦生产中,需根据当地具体的土壤养分和气候特点调控施肥,实现增产的同时,调控籽粒养分含量。

[1] TEA I, GENTER T, NAULET N, BOYERV,LUMMERZHEIMM, KLEIBER D. Effect of foliar sulfur and nitrogen fertilization on wheat

storage protein composition and dough mixing properties., 2004, 81(6): 759-766.

[2] MA D, ZHANG J P, ZHANG Y Y, ZHANG X, HAN X, SONG T, ZHANG Y, CHU L. Inhibition of myocardial hypertrophy by magnesium isoglycyrrhizinate through the TLR4/NF-κB signaling pathway in mice., 2017, 55: 237-244.

[3] EVANS W J, PIERCE A G. Interaction of phytic acid with the metal ions, copper (ii), cobalt (ii), iron (iii), magnesium (ii), and manganese (II)., 1982, 47(3): 1014-1015.

[4] SEVER L E. Zinc and human development: A review., 1975, 3(1): 43-57.

[5] World Health Organization. Micronutrient deficiencies: Iron Deficiency Anemia[EB/OL]. http://www.who.int/nutrition/topics/ida/en/#, 2016- 4-5.

[6] PRASAD R. Micro mineral nutrient deficiencies in humans, animals and plants and their amelioration., 2012, 82(2): 225-233.

[7] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2017.

National Bureau of Statistics of the People’s Republic of China.Beijing: China Statistics Press, 2017. (in Chinese)

[8] LI S X, WANG Z H. Dryland agriculture in Eastern Asia//PETERSON G, UNGER P W, PAYNE W A.. ASA-CAAA- SSSA. Madisom, Wisconsin: USA Publishers, 2006: 671-722

[9] 武际, 郭熙盛, 王允青, 汪建来, 杨晓虎. 氮钾配施对弱筋小麦氮、钾养分吸收利用及产量和品质的影响. 植物营养与肥料学报, 2007, 13(6): 1054-1061.

WU J, GUO X S, WANG Y Q, WANG J L, YANG X H. Effects of combined application of nitrogen and potassium on absorption of N and K, grain yield and quality of weak gluten wheat., 2007,13(6): 1054-1061. (in Chinese)

[10] 戴廷波, 孙传范, 荆奇, 姜东, 曹卫星. 不同施氮水平和基追比对小麦籽粒品质形成的调控. 作物学报, 2005(2): 248-253.

DAI T B, SUN C Y, JING Q, JIANG D, CAO W X. Regulation of nitrogen rates and dressing ratios on grain quality in wheat., 2005(2): 248-253. (in Chinese)

[11] HAO H L, WEI Y Z, YANG X E, FENG Y,WU C Y. Effects of different nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality in rice ()., 2007, 14(4): 290-294.

[12] 刁超朋. 旱地高产小麦品种籽粒氮磷含量差异与产量形成及养分吸收利用的关系[D]. 杨凌: 西北农林科技大学, 2018.

DIAO C P. Difference in grain nitrogen and phosphorus contents of high-yielding wheat cultivars and its relation to yield formation and nutrients uptake and utilization in drylands [D]. Yangling: Northwest A&F University, 2018. (in Chinese)

[13] 靳静静, 王朝辉, 戴健, 王森, 高雅洁, 曹寒冰, 于荣. 长期不同氮、磷用量对冬小麦籽粒锌含量的影响. 植物营养与肥料学报, 2014, 20(6): 1358-1367.

JIN J J, WANG Z H, DAI J, WANG S, GAO Y J, CAO H B, YU R. Effects of long-term N and P fertilization with different rates on Zn concentration in grain of winter wheat., 2014, 20(6): 1358-1367. (in Chinese)

[14] MELASH A A, MENGISTU D K, ABERRA D A, TSEGAY A. The influence of seeding rate and micronutrients foliar application on grain yield and quality traits and micronutrients of durum wheat., 2019, 85(1): 221-227.

[15] MISHRA U S, SHARMA D, RAGHUBANSHI B P S. Effect of zinc and boron on yield, nutrient content and quality of blackgram (L.)., 2018, 19(1): 34-37.

[16] DRAGIČEVIĆ V, NIKOLIĆ B, WAISI H, STOJILJKOVIĆ M, ĐUROVIĆ S, SPASOJEVIĆ L, PERIĆ V. Alterations in mineral nutrients in soybean grain induced by organo-mineral foliar fertilizers., 2015, 2(1): 12.

[17] GALLEJONES P, PRADO A D, UNAMUNZAGA O, AIZPURUA A. Nitrogen and sulphur fertilization effect on leaching losses, nutrient balance and plant quality in a wheat–rapeseed rotation under a humid Mediterranean climate., 2012, 93(3): 337-355.

[18] 马清霞, 王朝辉, 惠晓丽, 张翔, 张悦悦, 侯赛宾, 黄宁, 罗来超, 张世君, 党海燕. 基于产量和养分含量的旱地小麦施磷量和土壤有效磷优化. 中国农业科学, 2019, 52(1): 73-85.

MA Q X, WANG Z H, HUI X L, ZHANG X, ZHANG Y Y, HOU S B, HUANG N, LUO L C, ZHANG S J, DANG H Y. Optimization of phosphorus rate and soil available phosphorus based on grain yield and nutrient contents in dryland wheat production.2019, 52(1): 73-85. (in Chinese)

[19] 杜盼, 张娟娟, 郭伟, 马新明, 郭建彪. 施氮对不同肥力土壤小麦氮营养和产量的影响. 植物营养与肥料学报, 2019, 25(2): 176-186.

DU P, ZHANG J J, GUO W, MING X M, GUO J B. Effect of nitrogen application on nitrogen nutrition and yield of wheat in fields of different fertility., 2019, 25(2): 176-186. (in Chinese)

[20] 何红霞, 王朝辉, 包明, 马小龙, 佘旭, 何刚, 邱炜红. 栽培模式对旱地小麦产量和籽粒养分含量的影响. 应用生态学报, 2018, 29(3): 818-826.

HE H X, WANG Z H, BAO M, MA X L, SHE X, HE G, QIU W H .Effects of cultivation patterns on wheat yield and grain nutrient concentration in dryland., 2018, 29(3): 818-826. (in Chinese)

[21] 罗来超, 王朝辉, 惠晓丽, 张翔, 马清霞, 包明, 赵岳, 黄明, 王森. 覆膜栽培对旱地小麦籽粒产量及硫含量的影响. 作物学报, 2018, 44(6): 886-896.

LUO L C, WANG Z H, HUI X L, ZHANG X, MA Q X, BAO M, ZHAO Y, HUANG M, WANG S. Effects of plastic film mulching on grain yield and sulfur concentration of winter wheat in dryland of loess plateau., 2018, 44(6): 886-896. (in Chinese)

[22] 杨月娥, 王森, 王朝辉, 刘慧, 王慧. 我国主要麦区小麦籽粒锌含量对叶喷锌肥的响应. 植物营养与肥料学报, 2016, 22(3): 579-589.

YANG Y E, WANG S, WANG Z H, LIU H, WANG H. Response of wheat grain Zn concentration to foliar sprayed Zn in main wheat production regions of China., 2016, 22(3): 579-589. (in Chinese)

[23] HUANG T M, HUANG Q N, SHE X, MA X L, HUANG M, CAO H B, HE G, LIU J S, LIANG D L, WANG Z H. Grain zinc concentration and its relation to soil nutrient availability in different wheat cropping regions of China., 2019, 191: 57-65.

[24] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.

LU R K.. Beijing: China Agriculture Science and Technology Press, 2000. (in Chinese)

[25] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.

BAO S D.. Beijing: China Agriculture Press, 2000. (in Chinese)

[26] LOLLATO R P, FIGUEIREDO B M, DHILLON J S, ARNALL D B, RAUN W R. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term experiments., 2019, 236: 42-57.

[27] ZHU X K , LI C Y , JIANG Z Q, HUANG L L, FENG C N, GUO W S, PENG Y X. Responses of phosphorus use efficiency, grain yield, and quality to phosphorus application amount of weak-gluten wheat., 2012, 11(7): 1103-1110.

[28] WU L, CUI Z, CHEN X, YUE S C, SUN Y X, ZHAO R F, DENG Y, ZAHNG W, CHEN K. Change in phosphorus requirement with increasing grain yield for Chinese maize production., 2015, 180: 216-220.

[29] SHAHANE A A, SHIVAY Y S, KUMAR D, PRASANNA R. Interaction effect of nitrogen, phosphorus, and zinc fertilization on growth, yield, and nutrient contents of aromatic rice varieties., 2018,41(18): 2344-2355.

[30] JøRGENSEN J R, DELEURAN L C, WOLLENWEBER B. Prospects of whole grain crops of wheat, rye and triticale under different fertilizer regimes for energy production., 2007, 31(5): 308-317.

[31] BAI Y L, WANG L, LU Y L, YANG L P, ZHOU L P, NI L, CHENG M F. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation., 2015, 14(12): 2467-2476.

[32] KEKULANDARA D S, SIRISENA D N, BANDARANAYAKE P C G, SAMARASINGHE G, WISSUWA M, SURIYAGODA L D B. Variation in grain yield, and nitrogen, phosphorus and potassium nutrition of irrigated rice cultivars grown at fertile and low-fertile soils., 2019, 434(1/2): 107-123.

[33] 周卫, 林葆. 土壤中钙的化学行为与生物有效性研究进展. 土壤肥料, 1996(5): 20-23, 45.

ZHOU W, LIN B. Advances in research on chemical behavior and bioavailability of calcium in soil., 1996(5): 20-23, 45. (in Chinese)

[34] BRODOWSKA M S, FILIPEK T, KURZYNA-SZKLAREK M. Content of magnesium and calcium in cultivated plants depending on various soil supply with nitrogen, potassium, magnesium and sulfur., 2017, 22(4): 1167-1177.

[35] 张竹青, 鲁剑巍. 施钾水平对油菜吸收钙和镁的影响. 安徽农业大学学报, 2003(3): 276-279.

ZHANG Z Q, LU J W. Influence of potassium fertilization on calcium and magnesium absorption in cole., 2003(3): 276-279. (in Chinese)

[36] OHNO T, GRUNES D L. Potassium-magnesium interactions affecting nutrient uptake by wheat forage 1., 1985, 49(3): 685-690.

[37] 王亮, 李双异, 汪景宽, 顾鑫, 孟凡奎. 长期施肥与地膜覆盖对棕壤交换性钙、镁的影响. 植物营养与肥料学报, 2013, 19(5): 1200-1206.

WANG L, LI S Y, WANG J K, GU X, MENG F K. Influence of potassium fertilization on calcium and magnesium absorption in cole., 2013, 19(5): 1200-1206. (in Chinese)

[38] ELZAM O E, HODGES T K. Calcium Inhibition of potassium absorption in corn roots., 1967, 42(11): 1483-1488.

[39] SALVAGIOTTI F, JULIO M, CASTELLARIíN, MIRAALLES D J, PEDROL H M. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake., 2009, 113(2): 170-177.

[40] 白金顺, 曹卫东, 毕军, 李学敏, 杨璐, 高嵩涓, 熊静. 速效硫肥对冬小麦产量、品质和经济效益的影响. 中国农学通报, 2013, 29(27): 105-110.

BAI J S, CAO W D, BI J, LI X M, YANG L, GAO S J, XIONG J. Effects of rapid release sulphur fertilizer on grain yield, quality and economic profit for winter wheat.2013, 29(27): 105-110. (in Chinese)

[41] 王东, 于振文, 王旭东. 硫素对冬小麦籽粒蛋白质积累的影响. 作物学报, 2003(6): 878-883.

WANG D, YU Z W, WANG X D. Effects of sulfur on protein accumulation in kernels of winter wheat.2003(6): 878-883. (in Chinese)

[42] 张辉, 朱云集, 田文仲, 谢迎新. 不同灌水条件下施硫对冬小麦碳、氮、硫物质积累及产量的影响. 植物营养与肥料学报, 2011, 17(4): 838-844.

ZAHNG H, ZHU Y J, TIAN W Z, XIE Y X. Effects of sulphur applicationon accumulations of carbon, nitrogen and sulphur and grain yield of winter wheat under different irrigation conditions., 2011, 17(4): 838-844. (in Chinese)

[43] LIU H, WANG Z H, LI F, YANG Y E, HUANG D L, HUANG D L, LIANG D L, ZHAO H B, MAO H. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China., 2014, 156: 151-160.

[44] 黄鑫, 李耀光, 孙婉, 侯俊峰, 马英, 张剑, 马冬云, 王晨阳, 郭天财. 不同粒色小麦籽粒铁锌含量和生物有效性及其对氮磷肥的响应. 作物学报, 2018, 44(10): 1506-1516.

HUANG X, LI Y G, SUN W, HOU J F, MA Y, ZHANG J, MA D Y, WANG C Y, GUO T C. Variation of grain iron and zinc contents and their bioavailability of wheat cultivars with different-colored grains under combined nitrogen and phosphorus fertilization., 2018, 44(10): 1506-1516. (in Chinese)

[45] GARVIND F, WELCH R M, FINLEY J W. Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm., 2006, 86(13): 2213-2220.

[46] JHANJI S, SADANA U S, SEKHON N K, KHURANA M P S, SHARMA A, SHUKLA A K. Screening diverse wheat genotypes for manganese efficiency based on high yield and uptake efficiency., 2013, 154(3): 127-132.

[47] HEJCMAN M, BERKOVA M, KUNZOVA E. Effect of long-term fertilizer application on yield and concentrations of elements (N, P, K, Ca, Mg, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn) in grain of spring barley., 2013, 59(7): 329-334.

[48] 常旭虹, 赵广才, 王德梅, 杨玉双, 马少康, 李振华, 李辉利, 贾二红, 陈枫. 生态环境与施氮量协同对小麦籽粒微量元素含量的影响. 植物营养与肥料学报, 2014, 20(4): 885-895.

CHANG X H, ZHAO G C, WANG D M, YANG Y S, MA S K, LI Z H, LI H L, JIA E H, CHEN F. Effects of ecological environment and nitrogen application rate on microelement contents of wheat grain., 2014, 20(4): 885-895. (in Chinese)

[49] 李峰, 田霄鸿, 陈玲, 李生秀. 栽培模式、施氮量和播种密度对小麦子粒中锌、铁、锰、铜含量和携出量的影响. 土壤肥料, 2006(2): 42-46.

LI F, TIAN X H, CHEN L, LI S X. Effect of planting model, N fertilization and planting density on concentration and uptake of Zn, Fe, Mn and Cu in grains of winter wheat.2006(2): 42-46. (in Chinese)

[50] FEIL B, MOSER S B, JAMPATONG S, STAMP P. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization., 2005, 45(2): 516-523.

[51] 张玥琦, 程奇, 关之昊, 姚澜, 王业迪, 张慧, 杨丽娟. 稻草与生石灰对设施土壤微量元素含量和番茄产量的影响. 水土保持学报, 2019, 33(4): 228-233, 348.

ZHANG Y Q, CHENG Q, GUAN Z H, YAO L, WANG Y D, ZHANG H, YANG L J. Effects of straw and lime additions on the DTPA- extractable micronutrients contents and tomato yield in greenhouse soil.2019, 33(4): 228-233, 348. (in Chinese)

[52] 于君宝, 王金达, 刘景双, 齐晓宁, 王洋. 典型黑土pH值变化对微量元素有效态含量的影响研究. 水土保持学报, 2002(2): 93-95.

YU J B,WANG J D,LIU J S,QI X N,WANG Y. Effect of soil ph value variation on effective content of trace elements in typical black soil.2002(2): 93-95. (in Chinese)

[53] 杨宁. 豆科绿肥—冬小麦轮作提高小麦产量和营养元素含量的效应与土壤机制[D]. 杨凌: 西北农林科技大学, 2012.

YANG N. The effect and soil mechanism of improving wheat yield and nutrients content with legume-winter wheat rotations[D]. Yangling: Northwest A&F University, 2012. (in Chinese)

[54] FAN M S, ZHAO F J, FAIRWEATHER-TAIT S J, POULTON P R, DUNHAM S J, MCGRATH S P. Evidence of decreasing mineral density in wheat grain over the last 160 years., 2008, 22(4): 315-324.

[55] IMRAN M, REHIM A, SARWAR N, HUSSAIN S. Zinc bioavailability in maize grains in response of phosphorous-zinc interaction., 2016, 179(1): 60-66.

[56] 惠晓丽, 王朝辉, 罗来超, 马清霞, 王森, 戴健, 靳静静. 长期施用氮磷肥对旱地冬小麦籽粒产量和锌含量的影响. 中国农业科学, 2017, 50(16): 3175-3185.

HUI X L, WANG Z H, LUO L C, MA Q X, WANG S, DAI J, JIN J J. Winter wheat grain yield and zinc concentration affected by long-term N and P application in dryland., 2017, 50(16): 3175-3185. (in Chinese)

[57] ZHANG W, LIU D, LI C, CUI Z L, CHEN X P, RUSSELL Y, ZHOU C Q. Zinc accumulation and remobilization in winter wheat as affected by phosphorus application., 2015, 184(184): 155-161.

Differences of Main Nutrient Concentration in Wheat Grain Between Typical Locations of the Loess Plateau

WANG Li1, WANG ZhaoHui1, 2, GUO ZiKang1, TAO ZhenKui1, ZHENG MingJun1, HUANG Ning1, GAO ZhiYuan1, ZHANG XinXin1, HUANG TingMiao1

(1College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi;2Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi)

【】This study was performed to understand the differences of wheat grain nutrient concentrations and their relations to soil nutrient and crop nutrient uptake and utilization among different locations at the same region, in order to guide reasonable fertilizer application and improve soil fertility for local farmers. 【】Field experiments were conducted at Yongshou and Yangling in Shaanxi province from 2017 to 2018. At each site, twenty wheat cultivars from different wheat production areas were planted under conditions of 180 kg N·hm-2, 100 kg P2O5·hm-2and 75 kg K2O·hm-2. The aboveground wheat plant and soil samples were collected at maturity to determine the grain yield and nutrient concentration in different organs and soil available macro- and micronutrients, for investigating the relationships between soil nutrient supply and grain nutrient concentration at two locations. 【】Compared to Yangling, the grain nitrogen (N) and potassium (K) concentrations were decreased by 10.6% and 6.7% at Yongshou, respectively, but no difference was observed for phosphorus (P) concentration between two locations. Soil N and P supply capacity, N, P and K uptake and harvest index at Yongshou were higher than that of Yangling, but the total rainfall and its distribution at Yongshou were more beneficial to grain yield formation to Yangling. The increase magnitude of grain yield caused by the rainfall was larger than the magnitude of grain N and K uptake increase, and close to that of grain P uptake. Thus, the decrease of grain N, P and K concentrations was mainly attributed to the yield dilution. The concentrations of grain calcium (Ca) and magnesium (Mg) at Yongshou were 19.0% and 10.3% higher than that at Yangling, respectively, and the difference for sulfur (S) concentration was not significantly different between two locations. Soil exchangeable Mg at Yongshou was lower than that at Yangling, and no difference of soil exchangeable Ca was found between two locations. However, the lower soil pH and available K, and higher available S promoted the uptake and translocation of Ca and Mg to grain at Yongshou. Compared with Yangling, the increase of Ca and Mg absorption in wheat grains was greater than that of yield increase, and the increase of S absorption was close to that of the yield. Therefore, Ca and Mg concentration in grains increased, and the S concentration did not change significantly. The concentrations of grain iron (Fe), manganese (Mn) and copper (Cu) at Yongshou were 9.3%, 22.2% and 12.7% higher than those at Yangling, respectively, and grain zinc (Zn) concentration was 63.1% lower than Yangling. No significant difference was observed for soil available Mn between two locations, but soil available Cu and Zn at Yongshou were lower than that of Yangling. The longer filling period promoted the uptake of micronutrients in wheat grain, whereas the higher soil available P inhibited Zn uptake, this resulted in a higher Fe, Mn and Cu uptake and translocation to grain, and lower Zn uptake and translocation to grain. The higher Fe, Mn and Cu uptake in grain increased their concentrations, while the Zn concentration decreased. 【】 Therefore, the discordance between variation of grain yield and its nutrient uptake caused by different precipitation and soil nutrient supply capacities between locations were the key reason for their nutrient concentration variation in dryland. Compared with Yangling, the yield dilution influence was the main reason for the lower N concentration in wheat grain of Yongshou. It was the higher soil available P and available S supply, so that the higher P and S absorption of grain and aboveground at Yongshou did not decrease its grain P and S concentrations. The lower soil available K and Zn as well as the P and Zn antagonistic inhibited the accumulation of wheat grain K and Zn at Yongshou. Low pH and low available K promoted the plant absorption and transfer of Ca and Mg to grain at Yongshou, and the longer grain-filling period benefitted the absorption of Fe, Mn and Cu and the transfer to grain. In practical crop production, the optimized fertilization practice should be taken according to the specific soil nutrient supply and climate conditions for the purpose to coordinate the crop nutrient uptake and yield change, to produce wheat with high yield and high grain nutrient quality.

dry land; wheat; grain; soil nutrients; Loess Plateau

10.3864/j.issn.0578-1752.2020.17.010

2019-10-27;

2020-02-16

国家重点研发计划(2018YFD0200400)、国家现代农业产业技术体系建设专项(CARS-3)

王丽,E-mail:371860842@qq.com。通信作者王朝辉,E-mail:w-zhaohui@263.net

(责任编辑 李云霞)

猜你喜欢
杨凌吸收量籽粒
水肥一体化条件下生菜养分吸收特性研究
山西省主推小麦品种籽粒形态性状分析
不同灌溉方式下水肥一体化对玉米养分吸收规律的影响
春玉米需肥规律及施肥技术
籽粒苋的饲用价值和高产栽培技术
杨凌推出稳农助农“定心丸”
解码杨凌:不老的农业
基于EDEM 的洛稻籽粒堆积仿真研究
杨凌深耕服务“田园”
测土配方施肥对玉米养分吸收量的影响