沈为清
摘要:轴向柱塞泵的回油流量是进行泵剩余使用寿命预测的重要数据。本文使用时间序列方法,建立了柱塞泵回油流量的ARIMA模型,使用所建立的ARIMA模型进行了泵回油流量的预测研究。研究结果为使用时间序列方法预测泵的剩余使用寿命提供了有益借鉴。
关键词:ARIMA模型;轴向柱塞泵;回油流量;剩余使用寿命
中图分类号:TH137.51 文献标识码:A 文章编号:1674-957X(2020)21-0031-02
0 引言
轴向柱塞泵是航空航天飞行器、高速重载工程机械等产品液压系统的关键核心部件,是我国装备制造业着力提升性能质量的关键核心基础零部件之一,被视为液压系统的“心脏”[1]。其出现早期性能退化的主要特征是泵的回油量随运行时间缓慢增加,直至出现泵供油压力不足,此时需要更换柱塞泵;而故障原因则是由于使用时间较长,泵内部摩擦副磨损严重,造成内泄露增大。如能根据回油量的实时监测数据展开数据分析,不仅可以获得柱塞泵的磨损退化规律曲线,而且还能估算泵的剩余使用寿命,为制定维修策略提供科学依据。因此,对轴向柱塞泵回油流量的预测研究非常必要。目前,已经见于文献的用于预测轴向柱塞泵回油流量和剩余使用寿命的方法有Wiener过程[2]、马尔科夫过程[3]、加速退化数据方法[4]等,它们大致可分为数学模型和基于数据驱动的方法两类。本文所采用的时间序列方法属于数据驱动方法,通过对轴向柱塞泵的回油流量历史数据进行时间序列ARIMA建模,探索了使用时间序列方法进行泵剩余使用寿命的可行性。
1 ARIMA建模回油量曲线的方法
ARIMA模型全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA),是指将非平稳时间序列转化为平稳时间序列,然后对因变量的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型[5]。一般而言,工程中常见观测到的衰退过程数据都是非平稳的,以本文研究對象——轴向柱塞泵的回油流量数据为例,若使用ARIMA建模,其建模方法常遵循以下步骤,如图1所示。
下面根据图1所示流程,结合MATLAB软件,建模回油流量的时间序列。所使用数据来自文献[2]的泵4数据,如图2所示。
2 时间序列的平稳性检验
如图2所示为某轴向柱塞泵的回油流量曲线,呈现出明显的上升的趋势,显然不是平稳时间序列。为此,将图2数据进行一阶差分,差分后的时间序列如图3所示。由图3可以看出,数据上升趋势已被去除,较为平稳。在MATLAB中应用adftest命令对图3数据进行Augmented Dickey-Fuller检验,其值为1,表明数据确为平稳时间序列。故ARIMA(p,d,q)模型中的d可以确定为1。
3 ARIMA建模
由图3,在MATLAB中计算数据的自相关函数(Autocorrelation Function,ACF)和偏自相关函数(Partial Autocorrelation Function,PACF),计算结果如图4和图5所示。
由图4,ACF拖尾;由图5,PACF也拖尾。因此初步断定模型为ARMA模型。为了确定ARMA模型阶数,采用AIC准则函数法确定模型阶次。AIC准则又称赤池信息准则,对于ARIMA(p,d,q)模型,
(1)
上式中,T为样本容量,σ为样本方差,准则要求其取值越小越好。在MATLAB中编程,计算得当p=2,q=2时,模型的拟合效果最好,此时AIC=-8.8841。对ARMA(2,2)进行系数估计,所得模型如下:
(2)
式(2)为初步建立的ARMA(2,2)模型。为检验模型适用性,利用所建立ARMA(2,2)模型计算残差,并作其ACF图如图6所示。由图6,残差基本符合白噪声特征;在MATLAB中使用lbqtest命令进行残差检验,返回值为0,表明模型对数据拟合良好,可以使用式(2)进行数据预测。
图7为使用式(2)进行一步预测的结果。由图7,计算最后30个数据预测的相对误差,其值为9.57%。在MATLAB中将预测步数逐步放大到2步、3步,…,10步,发现预测的相对误差逐渐增大。
4 结论
通过上述对轴向柱塞泵回油流量历史数据进行ARIMA建模,实施流量预测的研究过程,可以获得以下结论:①ARIMA模型对回油量的一步误差预测误差较大,为9.57%;且随着预测步数的增加,预测相对误差逐步增加。故可以预见,如采用ARIMA模型对指定流量阈值的柱塞泵预测剩余使用寿命,误差也会较大。②为改进时间序列预测结果,后期会引进机器学习,如随机森林等,这是本文后期将要研究的方向。
参考文献:
[1]杨占才,靳小波,王红,等.轴向柱塞泵故障诊断与寿命预测技术研究[C].航空工业测控技术发展中心、中国航空学会测试技术分会、状态监测特种传感技术航空科技重点实验室.第十六届中国航空测控技术年会论文集.2019:121-124.
[2]Wang Xingjian, Lin Siru, Wang Shaobing, et al. Remaining useful life prediction based on the Wiener process for an aviation axial piston pump[J]. Chinese Journal of Aeronautics, 2016, 29(3): 779-788.
[3]马济乔,陈均,刘海涛,王雷.基于加速退化数据的液压泵寿命预测与可靠性分析[J].计算机与数字工程,2019,47(07): 1613-1617.
[4]何兆民,王少萍.基于时变状态转移隐半马尔科夫模型的寿命预测[J].湖南大学学报(自然科学版),2014,41(08):47-53.
[5]江渝,李幸,卓金武.MATLAB时间序列方法与实践[M].北京:中国工信出版社,2019.