郑凯 陈超 袁仕国
【摘要】 目的:总结近年来交感神经及其递质影响、调控造血干细胞的相关研究,为造血干细胞的进一步研究、应用等提供参考。方法:广泛查阅交感神经系统与造血干细胞关系的研究文献,总结交感神经系统调控造血干细胞的方式、机制等。结果:交感神经及其神经递质对造血干细胞存在的微环境/壁龛、动员、增殖、衰老、损伤保护、昼夜节律等存在多位点的影响和调控。结论:交感神经及其递质对造血干细胞的调控相关研究主要集中在壁龛和动员的影响,需要进一步明确其机制、方式、阶段,为贫血、血液肿瘤等相关疾病治疗、造血干细胞临床应用等提供可靠的支持。
【关键词】 自主神经系统 造血干细胞 壁龛 去甲肾上腺素
doi:10.14033/j.cnki.cfmr.2020.17.077 文献标识码 A 文章编号 1674-6805(2020)17-0-03
Progress of Research on the Relationship between Sympathetic Nervous System and Hematopoietic Stem Cells/ZHENG Kai, CHEN Chao, YUAN Shiguo. //Chinese and Foreign Medical Research, 2020, 18(17): -188
[Abstract] Objective: To summarize the related researches of hematopoietic stem cells (HSCs) regulated by sympathetic nervous system (SNS) or its transmitters, and to provide view for further research and application about stem cells. Method: The literatures on the relationship between SNS or its transmitters and HSCs were extensively reviewed, and the mechanisms of regulation were summarized. Result: The SNS or its transmitters multiple regulates the niche, mobilization, proliferation, senescence, injury protection, circadian rhythm, etc. of HSCs. Conclusion: The researches about regulation of SNS and its transmitters on HSCs mainly focuse on the influence of niche and mobilization. It is necessary to further clarify the mechanism, mode and stage for the treatment of anemia, hematological and other related diseases, and the clinical application of HSCs.
[Key words] Autonomic nervous system Hematopoietic stem cells Niche Norepinephrine
First-authors address: Shanghai Jinshi Pharmaceutical Technology Co., Ltd. Guangzhou Branch, Guangzhou 510030, China
造血干細胞(haematopoietic stem cells,HSCs)从胚胎造血内皮细胞发育而来,并在胎儿肝脏中增殖,然后定居于骨髓中,具有自我复制、多向分化和重建长期造血的能力[1-2]。HSCs是目前研究最久远、最深入的干细胞[3-4]。HSCs可以在整个生命周期中自我更新,同时补充所有血系细胞,使HSCs移植成为治疗多种血液疾病、挽救生命的手段[5]。但是,临床上由于缺乏HLA匹配的骨髓供体和脐带血中HSCs的低产量限制了可治疗患者的人数[6]。更好地了解HSCs的调节机制以便培养扩增HSCs和产生多潜能干细胞[1,4,7]。目前研究发现,交感神经系统(sympathetic nervous system,SNS)及其神经递质对HSCs的壁龛、增殖、动员入血、自我更新等存在多靶点、多阶段的调控作用。本文拟综述SNS及其神经递质对HSC的调控作用及机制,为进一步研究、临床使用HSC提供参考。
1 SNS调节HSCs的壁龛
1.1 SNS组成并调节HSCs的壁龛
壁龛的概念是1978年由Schofield[8]率先提出的,指的是维持并监控HSCs自我更新和分化的调节单位。在此概念的基础上,新的功能基因工具、先进的成像方法、HSCs和壁龛细胞新标记的发现,使得可以更好地了解HSCs壁龛[1]。成体HSCs存在于骨髓中,HSCs如何发挥自我更新和分化的过程受到壁龛的严格控制,这种壁龛包括骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMMSCs)、骨系细胞、内皮细胞、SNS、非髓鞘Schwann细胞和巨核细胞等的复杂网络[9-10]。HSCs主要位于骨髓血管窦状隙附近,其中内皮细胞和BMMSCs通过产生多种因子维持HSCs功能[11-12]。肾上腺素受体信号—儿茶酚胺也可能由骨髓细胞自身产生和释放。SNS活动遵循由下丘脑的视交叉上核驱动的昼夜节律性,但也可以由多种环境刺激激活。HSCs表达肾上腺素受体,SNS纤维及神经递质如去甲肾上腺素是HSCs的非常重要的壁龛组成部分,SNS调节骨髓造血功能,并维持造血功能的稳定[13-15]。骨髓中的HSCs、BMMSCs和成骨细胞上表达β-肾上腺素受体,而骨髓中未成熟细胞迁移的昼夜调节受β-肾上腺素受体调节[16]。
对大鼠实施渗透微型泵使用胍乙啶递送的大鼠股骨骨髓局部化学SNS切除术,发现局部胍乙啶处理引起股骨骨髓中Nestin+/SDF1+BMMSCs和c-Kit+/CD90+HSCs显著减少[17]。在发育的骨髓中,BMMSCs是形成HSCs壁龛的组分之一,BMMSCs、SNS外周神经元和神经胶质细胞共同起源,并且个体不同的BMMSCs在内软骨形成和HSCs壁龛形成中具有不同的功能[18]。糖尿病人骨髓中SNS末梢的数量明显减少[16],导致壁龛功能改变而损害HSCs的动员,HSCs和造血祖细胞异常定位于糖尿病小鼠的骨髓壁龛中,并且SNS末端的数量和功能的异常与这种错误定位相关,BMMSCs对HSCs和造血祖细胞动员至关重要[19]。
1.2 SNS病变影响HSCs壁龛并恶化血液肿瘤
SNS纤维通过调控骨髓nestin+MSCs对正常的HSCs有维持作用,给予神经保护药物或拟SNS药物可防止HSCs突变体增殖,用恢复nestin+MSCs的β3-肾上腺素受体激动剂治疗通过间接减少白血病干细胞的数量来阻止骨髓增生性肿瘤进展,HSC突变体驱动的壁龛损伤极大地促成了骨髓增生性肿瘤[20]。血管周围的间充质干细胞和祖细胞(mesenchymal stem and progenitor cells,MSPC)对于形成健康的造血干细胞(HSC)生态位至关重要。骨髓中nestin阳性的BMMSCs在SNS纤维及Schwann细胞的调控支配下,能够维持HSCs的存活和扩增[21]。AML患者的骨髓SNS病变导致神经递质浓度降低,导致Th细胞免疫功能失衡,其BM-MSCs向神经细胞分化的能力降低[21]。AML的发展破坏了SNS神经和Nestin(+)壁龛细胞的静止状态。肾上腺素能促进白血病发生的信号传导是通过在白血病骨髓基质细胞上表达的β2肾上腺素受体而不是β3肾上腺素能受体进行的。SNS病可能代表了恶性肿瘤的机制之一。急性髓性白血病会诱导SNS病变,而SNS病变在造血干细胞壁龛改变中促进白血病骨髓浸润[22]。
2 SNS调节HSCs的动员和增殖
2.1 生理情况下
Katayama等[15]最先研究认为SNS调节造血干细胞迁移出骨髓,调节壁龛对造血干细胞的吸引力。HSCs动员由SNS通过β3-肾上腺素受体正调节[23]。包括急性冠状动脉综合征的心脏事件本身会激活SNS,直接动员HSCs[24]。SNS末梢可释放NE,而成熟骨髓细胞也可释放NE和/或肾上腺素。两者均可结合于壁龛中nestin+ MSC表达的β-肾上腺素受体上,并通过调节CXCL12的表达来调节HSCs的生理运输[12]。半乳糖基转移酶和半乳糖脑苷脂酶影响SNS的功能和/或生物活性鞘脂的平衡,从而影响SDF-1/CXC趋化因子受体4(CXC chemokine receptor 4, CXCR4)轴和HSCs的增殖[25]。下丘脑中的毒蕈碱受体1型信号通过下丘脑-垂体-肾上腺轴的激素引发促进粒细胞集落刺激因子诱发的HSCs动员[26]。大脑到外周免疫系统可经由SNS信号连通,使HSCs偏向分化成糖皮质激素抗性类细胞或骨髓谱系免疫细胞[27]。Spiegel及其同事等[13,28]研究发现人CD34+的造血干祖细胞表达多巴胺受体和β2肾上腺素能受体,神经递质通过经典的Wnt信号通路促进CD34+细胞的增殖和NOD-SCID小鼠骨髓造血重建能力。
2.2 严重创伤情况下
严重损伤导致从骨髓到损伤部位的造血祖细胞动员增加,这可能导致创伤后持续的骨髓功能障碍。NE是HSCs动员的已知诱导剂,并且已经显示用普萘洛尔的非选择性β-肾上腺素受体阻断减少创伤和出血性休克后的动员,在创伤和出血性休克后给予β2-肾上腺素受体和β3-肾上腺素受体阻断可以防止过量的HSCs动员和骨髓功能障碍,并且这些作用似乎是全身介导的,对后续愈合没有不利影响,减轻严重损伤后过度的SNS刺激对减轻骨髓功能障碍是有益的[29]。在伴有慢性应激的肺挫伤/失血性休克后,每日给予可乐定可恢复骨髓功能并改善贫血,减轻慢性压力和减少NE是改善严重损伤后骨髓功能的关键治疗靶点[30]。
3 SNS调控HSCs的昼夜节律
循环HSCs及其祖细胞表现出强烈的昼夜波动,在光照开始后5 h达到峰值并在黑暗后5 h达到最低点[14]。当小鼠经受连续光照或“时差”(定义为12 h的错位)时,昼夜振荡显著改变。循环HSCs及其祖細胞在反相中随着CXCL12在骨髓壁龛中的表达而波动。HSCs的周期性释放和CXCL12的表达受分子钟的核心基因调节,这种调节通过SNS分泌NE昼夜节律变化而实现[14]。自主神经胆碱能神经系统(包括PNS和SNS)双重调节HSCs和白细胞的每日迁移:在晚上,中枢PNS胆碱能信号抑制SNS-NE而减少HSCs和白细胞从骨髓迁出;而在白天,受抑制的SNS-NE能通过β3-肾上腺素受体激活,主导HSCs和白细胞迁出骨髓。这种迁入和迁出受光触发/光激活SNS胆碱能活性的支配[31]。
4 SNS调控HSCs的衰老和损伤保护
HSCs的衰老表现为再生能力和多向分化潜能的下降,骨髓壁龛会影响HSCs衰老,HSCs衰老关键取决于骨髓中SNS纤维支配,年轻小鼠骨髓壁龛中SNS神经或β3-肾上腺素受体信号传导的丧失导致HSCs过早衰老,对老年小鼠补充选择性地作用于β3-肾上腺素受体的拟SNS药则恢复了老年HSC的体内功能,表明保存或恢复衰老期间骨髓的SNS神经支配的可能具有HSC再生的潜力[32]。化疗等有明显骨髓抑制作用,而神经肽Y通过保护SNS而维持HSCs功能[33]。
综上所述,SNS及其神经递质构成HSCs的壁龛,并调节壁龛的生理和病理。SNS病变将导致壁龛不能维持稳定,HSCs增殖、分化、动员等均受到严重影响;而SNS兴奋则促进HSCs的增殖、动员、迁移。SNS及其神经递质对HSCs起着非常重要的调节作用。SNS及其神经递质是非常易于干预的因素,且SNS及其神经递质相关药物在各个系统疾病广泛使用。进一步深入研究SNS及其神经递质对HSCs的作用及相关机制,探索更多的未知领域,将为临床包括HSCs移植、贫血、血液肿瘤、衰老等在内的众多问题提供坚实的理论和依据。
參考文献
[1] Sandra P,Paul S F.Haematopoietic stem cell activity and interactions with the niche[J].Nature reviews Molecular Cell Biology,2019,20(5):303-320.
[2] Emily G,Karen K H.Specification and function of hemogenic endothelium during embryogenesis[J].Cellular and Molecular Life Sciences:CMLS,2016,73(8):1547-1567.
[3] Carsten B,Lisa von P,Veli V U,et al.A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies[J].Nature,2018,553(7689):515-520.
[4] Michalis A,Corbin E M,Rebecca J B,et al.Ascorbate regulates haematopoietic stem cell function and leukaemogenesis[J].Nature,2017,549(7673):476-481.
[5] Vincenzo C,Andrew T N,Timothy J B,et al.MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment[J].Nature,2019,576(7786):281-286.
[6] John J M,Jennifer C M,Carole D F,et al.Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis[J].Journal of Neurology,Neurosurgery,and Psychiatry,2019,90(5):514-521.
[7] Adam C W,Reiko I,Misako M,et al.Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation[J].Nature,2019,571(7763):117-121.
[8] Schofield R.The relationship between the spleen colony-forming cell and the haemopoietic stem cell[J].Blood Cells,1978,4(1-2):7-25.
[9] Cheng H,Sun G,Cheng T.Hematopoiesis and microenvironment in hematological malignancies[J].Cell Regen (Lond),2018,7(1):22-26.
[10] Genevieve M C,Elise J,Sean J M.Adult haematopoietic stem cell niches[J].Nature Reviews Immunology,2017,17(9):573-590.
[11] Leitao L,Alves C J,Sousa D M,et al.The alliance between nerve fibers and stem cell populations in bone marrow:life partners in sickness and health[J].FASEB J,2019,33(8):8697-8710.
[12] Maestroni G.Adrenergic modulation of hematopoiesis[J].J Neuroimmune Pharmacol,2019,15:82-92.
[13] Spiegel A,Shivtiel S,Kalinkovich A,et al.Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling[J].Nat Immunol,2007,8(10):1123-1131.
[14] Mendez-Ferrer S,Lucas D,Battista M,et al.Haematopoietic stem cell release is regulated by circadian oscillations[J].Nature,2008,452(7186):442-447.
[15] Katayama Y,Battista M,Kao W M,et al.Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow[J].Cell,2006,124(2):407-421.
[16] Zhou J,Zhang Z,Qian G.Neuropathy and inflammation in diabetic bone marrow[J].Diabetes Metab Res Rev,2019,35(1):e3083.
[17] Dubovy P,Klusakova I,Kucera L,et al.Local chemical sympathectomy of rat bone marrow and its effect on marrow cell composition[J].Auton Neurosci,2017,206:19-27.
[18] Isern J,Garcia-Garcia A,Martin A M,et al.The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function[J].Elife,2014,3:e3696.
[19] Ferraro F,Lymperi S,Mendez-Ferrer S,et al.Diabetes impairs hematopoietic stem cell mobilization by altering niche function[J].Sci Transl Med,2011,3(104):101r-104r.
[20] Arranz L,Sanchez-Aguilera A, Martin-Perez D, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms[J].Nature,2014,512(7512):78-81.
[21]陈晨.AML患者骨髓交感神经病变和类神经细胞分化的研究[D].济南:山东大学,2017.
[22] Hanoun M,Zhang D,Mizoguchi T,et al.Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche[J].Cell Stem Cell,2014,15(3):365-375.
[23] Shastri A,Budhathoki A,Barta S K,et al.Stimulation of adrenergic activity by desipramine enhances hematopoietic stem and progenitor cell mobilization along with G-CSF in multiple myeloma:A pilot study[J].Am J Hematol,2017,92(10):1047-1051.
[24] Baruch A,van Bruggen N,Kim J B,et al.Anti-inflammatory strategies for plaque stabilization after acute coronary syndromes[J].Curr Atheroscler Rep,2013,15(6):327.
[25] Visigalli I,Biffi A.Maintenance of a functional hematopoietic stem cell niche through galactocerebrosidase and other enzymes[J].Curr Opin Hematol,2011,18(4):214-219.
[26] Pierce H,Zhang D,Magnon C,et al.Cholinergic Signals from the CNS Regulate G-CSF-Mediated HSC Mobilization from Bone Marrow via a Glucocorticoid Signaling Relay[J].Cell Stem Cell,2017,20(5):648-658.
[27] Weber M D,Godbout J P,Sheridan J F.Repeated social defeat,neuroinflammation, and behavior:monocytes carry the signal[J].Neuropsychopharmacology,2017,42(1):46-61.
[28]李凤菊.去甲肾上腺素对电离辐射损伤小鼠血小板生成能力的影响及机制[D].重庆:第三军医大学,2017.
[29] Pasupuleti L V,Cook K M,Sifri Z C,et al.Do all beta-blockers attenuate the excess hematopoietic progenitor cell mobilization from the bone marrow following trauma/hemorrhagic shock?[J].J Trauma Acute Care Surg,2014,76(4):970-975.
[30] Alamo I G,Kannan K B,Ramos H,et al.Clonidine reduces norepinephrine and improves bone marrow function in a rodent model of lung contusion, hemorrhagic shock, and chronic stress[J].Surgery,2017,161(3):795-802.
[31] Garcia-Garcia A,Korn C,Garcia-Fernandez M,et al.Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes[J].Blood,2019,133(3):224-236.
[32] Maryanovich M,Zahalka A H,Pierce H,et al.Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche[J].Nat Med,2018,24(6):782-791.
[33] Park M H,Jung I K,Min W K,et al.Neuropeptide Y improves cisplatin-induced bone marrow dysfunction without blocking chemotherapeutic efficacy in a cancer mouse model[J].BMB Rep,2017,50(8):417-422.
(收稿日期:2020-02-17) (本文編辑:何玉勤)